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Some results on curvature and topology of Finsler manifolds

by Bing Ye Wu (Fuzhou)

Abstract. We investigate the curvature and topology of Finsler manifolds, mainly
the growth of the fundamental group. By choosing a new counting function for the fun-
damental group that does not rely on the generators, we are able to discuss the topic in
a more general case, namely, we do not demand that the manifold is compact or the fun-
damental group is finitely generated. Among other things, we prove that the fundamental
group of a forward complete and noncompact Finsler n-manifold (M,F ) with nonnegative
Ricci curvature and finite uniformity constant has polynomial growth of order ≤ n−1, and
the first Betti number satisfies b1(M) ≤ n− 1. We also obtain some sufficient conditions
to ensure that the fundamental group is finite or is trivial. Most of the results are new
even for Riemannian manifolds.

1. Introduction. Finsler geometry is just Riemannian geometry with-
out the quadratic restriction. Instead of a Euclidean norm on each tangent
space, one endows every tangent space of a differentiable manifold with a
Minkowski norm. In recent years, global Finsler geometry have been de-
veloped tremendously, including geodesic theory [BCS], the sphere theorem
[R], volume comparison theorems [S1, S2, W1, WX] and the global theory
of submanifolds [S3, W2], etc.

In global Finsler geometry it is important to reveal the relationship be-
tween the topology and geometry invariants for Finsler manifolds. In this
paper we shall investigate the curvature and topology of Finsler manifolds,
mainly the growth of the fundamental group. The growth of the fundamental
group for Riemannian manifolds was first discussed by Milnor [M]. By using
volume comparison theorems he was able to prove that any finitely generated
subgroup of the fundamental group of an n-dimensional complete Rieman-
nian manifold with nonnegative Ricci curvature has polynomial growth of
order ≤ n, while the fundamental group of a compact Riemannian mani-
fold of negative sectional curvature has exponential growth. Milnor’s results
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have been generalized to Finsler manifolds by Shen in the case of nonnega-
tive Ricci curvature [S1, S2], and by Xin and the author [WX] and Shen and
Zhao [SZ] in the case of negative flag curvature. However, the fundamental
group is assumed to be finitely generated and an additional condition on S-
curvature is needed in these results. The additional condition on S-curvature
has recently been removed by the author by using the maximal or minimal
volume form [W1].

We shall consider this topic further and obtain some results on the growth
of the fundamental group of Finsler manifolds. By choosing a new counting
function that does not rely on the generators, we are able to discuss the
topic in a more general case, namely, we do not demand that the manifold
is compact or the fundamental group is finitely generated. For example, we
prove that the fundamental group of a forward complete and noncompact
Finsler n-manifold with nonnegative Ricci curvature and finite uniformity
constant has polynomial growth of order ≤ n−1, and the first Betti number
satisfies b1(M) ≤ n − 1. We also obtain some sufficient conditions for the
fundamental group to be finite or trivial. Most of the results are new even
for Riemannian manifolds.

2. Finsler geometry. In this section, we give a brief description of
basic quantities and fundamental formulas in Finsler geometry; for more
details one is referred to [BCS, CS]. Let (M,F ) be a Finsler n-manifold
with Finsler metric F : TM → [0,∞). Let (x, y) = (xi, yi) be the local
coordinates on TM . The fundamental tensor gij is defined by

gij(x, y) :=
1

2

∂2F 2(x, y)

∂yi∂yj
.

Let Γ ijk(x, y) be the Chern connection coefficients. Then the first Chern

curvature tensor R i
j kl can be expressed as

R i
j kl =

δΓ ijl
δxk
−
δΓ ijk
δxl

+ Γ iksΓ
s
jl − Γ sjkΓ ils,

where δ
δxi

:= ∂
∂xi
−ykΓ jik

∂
∂yj

. LetRijkl := gjsR
s
i kl, and write gy = gij(x, y)dxi

⊗dxj ,Ry = Rijkl(x, y)dxi⊗dxj⊗dxk⊗dxl. For a tangent plane P ⊂ TxM ,
let

K(P, y) = K(y;u) :=
Ry(y, u, u, y)

gy(y, y)gy(u, u)− [gy(y, u)]2
,

where y, u ∈ P are tangent vectors such that P = span{y, u}. We call
K(P, y) the flag curvature of P with flag pole y. Let

Ric(y) =
∑
i

K(y; ei),



Curvature and topology of Finsler manifolds 311

where e1, . . . , en is a gy-orthogonal basis for the corresponding tangent space.
We call Ric(y) the Ricci curvature of y.

A volume form dµ on the Finsler manifold (M,F ) is nothing but a global
nondegenerate n-form on M . For a more technical definition of volume form
one is referred to [W2, W3]. In local coordinates we can express dµ as dµ =
σ(x)dx1∧· · ·∧dxn. The frequently used volume forms in Finsler geometry are
the Busemann–Hausdorff volume form and the Holmes–Thompson volume
form. Other useful volume forms are the maximal and minimal volume forms
which can be defined as follows. Let

dVmax = σmax(x)dx1 ∧ · · · ∧ dxn, dVmin = σmin(x)dx1 ∧ · · · ∧ dxn

with

σmax(x) := max
y∈TxM\{0}

√
det(gij(x, y)),

σmin(x) := min
y∈TxM\{0}

√
det(gij(x, y)).

Then it is easy to check that the n-forms dVmax and dVmin as well as the
function ν := σmax/σmin are well-defined on M . We call dVmax and dVmin the
maximal volume form and the minimal volume form of (M,F ), respectively.
We note that both the maximal and the minimal volume forms play a crucial
role in comparison techniques in Finsler geometry [W1].

Let λ, µ : M → R be defined by

λ(x) = max
y∈TxM\0

F (y)

F (−y)
, µ(x) = max

y,z,u∈TxM\0

gy(u, u)

gz(u, u)
.

They are called respectively the reversibility at x and the uniformity constant
at x [E, R]. It is clear that

λ(x)2 ≤ µ(x), ∀x ∈M.

We have

Proposition 2.1 ([W1]). Let (M,F ) be an n-dimensional Finsler man-
ifold. Then

(i) F is Riemannian ⇔ ν = 1⇔ µ = 1;
(ii) ν ≤ µn.

Let (M,F ) be a Finsler manifold. For p ∈ M , let Ip = {v ∈ TpM :
F (v) = 1} be the indicatrix at p. For v ∈ Ip, the cut-value c(v) is defined
by

c(v) := sup{t > 0 : dF (p, expp(tv)) = t}.
Then, we can define the tangential cut locus C(p) of p by C(p) := {c(v)v :
c(v) < ∞, v ∈ Ip}, the cut locus C(p) of p by C(p) = exppC(p), and the
injectivity radius ip at p by ip = inf{c(v) : v ∈ Ip}. It is known that C(p) has
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zero Hausdorff measure in M . Also, we set Dp = {tv : 0 ≤ t < c(v), v ∈ Ip}
and Dp = exppDp. It is known that Dp is the largest domain which is
starlike with respect to the origin of TpM and such that expp restricted to
that domain is a diffeomorphism, and Dp = M \ C(p).

Let Bp(R) be the forward geodesic ball of (M,F ) centered at p with
radius R. By definition, Bp(R) = r−1([0, R)), where r = dF (p, ·) : M → R is
the distance function from p induced by F . Let g̃ = g∂r be the Riemannian
metric on Ḃp(R) = Bp(R) ∩ Dp \ {p}, where ∂r is the geodesic field with
respect to p. We have the following volume comparison results.

Theorem 2.2 ([W1]). Let (M,F ) be a forward complete Finsler n-
manifold.

(i) If the flag curvature of M satisfies K(V ;W ) ≤ c, then

volmax(Bp(R)) ≥ 1

µ(p)n/2
vol(Bnc (R))

for any R ≤ ip.
(ii) If the flag curvature of M is nonpositive and the Ricci curvature of

M satisfies RicM ≤ c < 0, and if M is simply connected, then

volmax(Bp(R)) ≥
volg̃(Bp(1))

vol(B2
c(1))

vol(B2
c(R)), ∀R ≥ 1.

(iii) If the Ricci curvature of M satisfies RicM ≥ (n− 1)c, then

volmin(Bp(R)) ≤ µ(p)n/2 vol(Bnc (R)).

Here volmax and volmin are the volume with respect to dVmax and dVmin,
respectively, and Bnc (R) is the geodesic ball of radius R in the (Riemannian)
space form of constant curvature c.

Theorem 2.3 ([W1]). Let (M,F ) be a forward complete and noncom-
pact Finsler manifold with nonnegative Ricci curvature and finite reversibil-
ity, then the volume volmax(Bp(R)) of the forward geodesic ball has at least
linear growth:

volmax(Bp(R)) ≥ c(p)R.

3. Universal covering space and fundamental group. Let (M,F )

be a Finsler n-manifold, and f : M̃ → M be the universal covering space.
A homeomorphism ϕ : M̃ → M̃ is called a deck transformation of the cov-
ering mapping f if f ◦ ϕ = f . The set Γ of deck transformations obviously
forms a group under composition. One checks that Γ acts properly discon-

tinuously on M̃ . If we endow M̃ with the pulled-back metric F̃ = f∗F , then
f : (M̃, F̃ ) → (M,F ) is a local isometry, and it is easy to check that each

γ ∈ Γ is an isometry, and (M,F ) and (M̃, F̃ ) have the same reversibility and
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uniformity constants. It is also clear that if (M,F ) is (forward) complete,

then so is (M̃, F̃ ) (see [SZ]).
Given p ∈ M , let π1(M,p) be the fundamental group of M based at p,

that is, the homotopy classes of loops γ : [0, 1]→M ∈ C0 satisfying γ(0) =
γ(1) = p. It is well-known that the deck transformation group Γ is isomor-
phic to π1(M,p), and the corresponding map is given as follows [C]: fix a
point p̃ ∈ f−1(p); then given γ ∈ Γ , all paths joining p̃ to γ(p̃) are homotopic

(since M̃ is simply connected), and therefore project to a well-defined ele-
ment of π1(M,p). The map is clearly a homomorphism, and by the homotopy
lifting lemma, one can check that it is in fact one-to-one and onto, and thus
is an isomorphism. Also, Γ acts transitively on f−1(p) for each p ∈M . In the
following, we shall identify π1(M,p) with the deck transformation group Γ .

Definition 3.1 ([SZ]). Let (M,F ) be a forward complete Finsler mani-

fold and f : (M̃, F̃ )→ (M,F ) denote its universal covering mapping. Given
any point p ∈ M , for each γ ∈ Γ ∼= π1(M,p), the geometric norm ‖γ‖
associated with p is defined by

‖γ‖ = d
F̃

(p̃, γ(p̃)),

where p̃ is any point in the fiber f−1(p), and d
F̃

is the distance function on

M̃ induced by F̃ .

It is easy to prove the following

Proposition 3.2 ([SZ]). The geometric norm ‖γ‖ defined above equals
the length of a shortest loop representing γ ∈ π1(M,p), which is a geodesic
loop.

Remark 3.3. It is easy to check that the geometric norm satisfies the
triangle inequality, since Γ acts on (M̃, F̃ ) by isometries, and the above
proposition implies that the geometric norm is independent of the choice of
point in a fiber. On the other hand, the shortest geodesic loop representing

γ ∈ π1(M,p) is just f ◦ γ̃, where γ̃ is the shortest geodesic in M̃ from p̃ to
γ(p̃) (see [SZ]). Note that the shortest geodesic loop representing an element
in π1(M,p) may not be smooth at p.

Lemma 3.4. The set ∆(λ) = {γ ∈ Γ : ‖γ‖ ≤ λ} is finite for any λ > 0.

Proof. Suppose on the contrary that the set ∆(λ0) = {γ ∈ Γ : ‖γ‖ ≤ λ0}
is infinite for some λ0 > 0. Let {γi}∞i=1 ⊂ ∆(λ0) be an infinite sequence,
and q̃i = γi(p̃). Then ‖γi‖ = d

F̃
(p̃, q̃i) ≤ λ0, which means that {q̃i}∞i=1 ⊂

B̃p̃(λ0), where B̃p̃(λ0) is the forward geodesic ball of (M̃, F̃ ) centered at
p̃ with radius λ0. Hence {q̃i}∞i=1 has a convergent subsequence, and we can
assume that {q̃i}∞i=1 itself is convergent without loss of generality. As a result,
d
F̃

(p̃, γ−1i γj(p̃)) = d
F̃

(q̃i, q̃j) can be as small as we wish when i 6= j are
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sufficiently large, or equivalently, the length of the shortest geodesic loop of
π1(M,p) corresponding to γ−1i γj can be as small as we wish when i 6= j are
sufficiently large, which implies that γ−1i γj = 1 when i 6= j are sufficiently
large, a contradiction. Thus the lemma is proved.

Definition 3.5. The counting function N(λ) of the fundamental group
Γ ∼= π1(M,p) of (M,F ) is defined by

N(λ) = ]∆(λ) = ]{γ ∈ Γ : ‖γ‖ ≤ λ}.
Γ is said to have exponential growth if

lim sup
λ→∞

logN(λ)

λ
> 0.

Γ is said to have polynomial growth of order ≤ n if N(λ) ≤ const · λn.

Remark 3.6. Let Γ ′ ⊂ π1(M,p) be any finitely generated subgroup
with a set of generators S = {γ1, . . . , γk}. The counting function n(λ) of Γ ′

considered in [A, M, SZ] is defined by

n(λ) = ]{γ ∈ Γ ′ : |γ| ≤ λ},
here |γ| is the minimum length of γ as a word in {γ1, . . . , γk}. The advantage
of our definition is that it does not demand that Γ is finitely generated. It
is clear by the triangle inequality that

‖γ‖ = d
F̃

(p̃, γ(p̃)) ≤ |γ| max
j=1,...,k

d
F̃

(p̃, γj(p̃)) ≤ A|γ|, A := max
j=1,...,k

‖γj‖,

which implies that

(3.1) n(λ) ≤ N(Aλ).

On the other hand, if M is compact, then Γ ∼= π1(M,p) is finitely generated,
and one can choose a set of generators by S = {γ ∈ Γ : ‖γ‖ ≤ 2D} with

D = diamM . For any γ ∈ Γ with ‖γ‖ > 2D, let γ̃ : [0, 1] → M̃ be the
minimal geodesic from p̃ to γ(p̃). Then γ̃ must pass through some points
of f−1(p), otherwise f ◦ γ̃ would be the shortest geodesic loop representing
γ ∈ π1(M,p), and thus

dF
(
p, f
(
γ̃
(
1
2

)))
= 1

2‖γ‖ > D,

a contradiction. Therefore, γ can be decomposed as γ = γ1 · · · γj with ‖γ‖ =
‖γ1‖+ · · ·+ ‖γj‖, where γi ∈ S, 1 ≤ i ≤ j. Consequently,

‖γ‖ ≥ j min
γ0∈S
‖γ0‖ ≥ |γ|min

γ0∈S
‖γ0‖ =:

1

B
· |γ|.

Therefore,

(3.2) N(λ) ≤ n(Bλ).

Now let us recall the definition of fundamental domain. See [C] for the
case of Riemannian manifolds and [SZ] for Finsler manifolds.
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Definition 3.7. Let f : M̃ → M be the universal covering mapping,
with deck transformation group Γ . We say Ω ⊂ M̃ is a fundamental domain
of the covering mapping if

(i) γ(Ω) ∩Ω = ∅ for all γ ∈ Γ \ {1};
(ii) f(Ω) = M .

Note that (i) is equivalent to γ1(Ω) ∩ γ2(Ω) = ∅ when γ1 6= γ2. Since Γ
acts transitively on the fibers f−1(p) for each p ∈M , f(Ω) = M is equivalent

to
⋃
γ∈Γ γ(Ω) = M̃ and f |γ(Ω) : γ(Ω)→ f(Ω) is a homeomorphism, for each

γ ∈ Γ . For a given forward complete Finsler manifold, one can construct a
fundamental domain by using a cut locus as follows. Let Dp be defined as
in §2. Then for each p ∈M , one has

p 7→ Dp ⊂ TpM 7→ f∗|−1p̃ (Dp) ⊂ Tp̃M̃ 7→ ẽxpp̃(f∗|−1p̃ (Dp)) =: Ω̃p̃,

which is a fundamental domain in M̃ (see [SZ]).

4. A key lemma. In this section we shall prove the following key lemma
which plays a crucial role in this paper.

Lemma 4.1. Let (M,F ) be a forward complete Finsler manifold and

f : (M̃, F̃ )→ (M,F ) denote its universal covering mapping with deck trans-
formation group Γ . Fix p ∈M and p̃ ∈ f−1(p). Then

(i) the counting function of Γ satisfies

(4.1) N(λ) ≤
volmin(B̃p̃(λ+R))

volmin(Bp(R))
, ∀λ,R > 0;

(ii) if (M,F ) has finite reversibility, that is, λF := maxx∈M λ(x) < ∞,
then

(4.2) N(λ) ≥
volmax

(
B̃p̃
(

λ
1+λF

))
volmax

(
Bp
(

λ
1+λF

)) .
Here B̃p̃(R) is the forward geodesic ball in (M̃, F̃ ) centered at p̃ with ra-
dius R.

Proof. (i) First we see from the properties of a fundamental domain that

f |
Ω̃p̃

: Ω̃p̃ → Dp is an isometric homeomorphism. Clearly, f(B̃p̃(R) ∩ Ω̃p̃)
= Bp(R) ∩Dp, where Dp = M \ C(p), as defined in §2. Since the cut locus
C(p) has zero Hausdorff measure, we have

(4.3) volmin(γ(B̃p̃(R) ∩ Ω̃p̃)) = volmin(B̃p̃(R) ∩ Ω̃p̃) = volmin(Bp(R))
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for all γ ∈ Γ and R > 0. For any γ ∈ ∆(λ) and x̃ ∈ B̃p̃(R) ∩ Ω̃p̃, it is clear
that

d
F̃

(p̃, γ(x̃)) ≤ d
F̃

(p̃, γ(p̃)) + d
F̃

(γ(p̃), γ(x̃)) = ‖γ‖+ d
F̃

(p̃, x̃) < λ+R,

from which it follows that

(4.4)
⋃

γ∈∆(λ)

γ(B̃p̃(R) ∩ Ω̃p̃) ⊂ B̃p̃(λ+R).

Now (4.1) follows from (4.3) and (4.4) together with the fact that γ1(B̃p̃(R)∩
Ω̃p̃) ∩ γ2(B̃p̃(R) ∩ Ω̃p̃) = ∅ for any γ1 6= γ2.

(ii) By the properties of a fundamental domain, for any ỹ ∈ B̃p̃(R)

there are x̃ ∈ Ω̃p̃ and γ ∈ Γ such that γ(x̃) = ỹ. Furthermore, d
F̃

(p̃, x̃) =
dF (f(p̃), f(x̃)) = dF (f(p̃), f(γ(x̃))) = dF (f(p̃), f(ỹ)) ≤ d

F̃
(p̃, ỹ) < R, which

implies that x̃ ∈ B̃p̃(R) ∩ Ω̃p̃. On the other hand, for γ ∈ Γ such that
γ(x̃) = ỹ, we have

‖γ‖ = d
F̃

(p̃, γ(p̃)) ≤ d
F̃

(p̃, ỹ) + d
F̃

(γ(x̃), γ(p̃))

< R+ λFdF̃ (γ(p̃), γ(x̃)) < (1 + λF )R,

and consequently

(4.5) B̃p̃(R) ⊂
⋃

γ∈∆((1+λF )R)

γ(B̃p̃(R) ∩ Ω̃p̃).

Similar to (4.3), we have

volmax(γ(B̃p̃(R) ∩ Ω̃p̃)) = volmax(B̃p̃(R) ∩ Ω̃p̃) = volmax(Bp(R)),

which together with (4.5) implies (4.2).

5. Ricci curvature and topology. Our first result concerns the growth
of the fundamental group for Finsler manifolds with nonnegative Ricci cur-
vature.

Theorem 5.1. Let (M,F ) be a forward complete Finsler n-manifold
with nonnegative Ricci curvature. If there exists p ∈ M such that
volmin(Bp(R)) ≥ CRk for some constant C and 0 ≤ k ≤ n, then π1(M)
has polynomial growth of order ≤ n − k. In particular, the fundamental
group of any forward complete noncompact Finsler manifold with nonneg-
ative Ricci curvature and finite uniformity constant must have polynomial
growth of order ≤ n− 1.

Proof. Fix p̃ ∈ f−1(p). For any R > 0, by Theorem 2.2(iii) and (4.1) one
has

N(R) ≤
volmin(B̃p̃(2R))

volmin(Bp(R))
≤ 2nµ(p)n/2 vol(Bn0 (1))

C
Rn−k,
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which means that Γ ∼= π1(M) has polynomial growth of order ≤ n−k. Now
suppose that M is noncompact with nonnegative Ricci curvature and finite
uniformity constant. Then µF := supx∈M µ(x) < ∞, and by the definition
of ν, Proposition 2.1 and Theorem 2.3 we see that

volmin(Bp(R)) ≥ 1

νF
volmax(Bp(R)) ≥ c(p)

µnF
R,

where νF := supx∈M ν(x). Thus π1(M) has polynomial growth of order
≤ n− 1.

By (3.1) we see that when F is Riemannian, Theorem 5.1 implies the
corresponding results in [M, A], while it improves the corresponding results
in [S2, SZ] for general Finsler metrics. Combining this with Theorem 1.3
in [A], we have

Theorem 5.2. Let (M,F ) be a forward complete Finsler n-manifold
with nonnegative Ricci curvature. If there exists p ∈ M such that
volmin(Bp(R)) ≥ CRk for some constant C and 0 ≤ k ≤ n, then the first
Betti number satisfies b1(M) ≤ n − k. In particular, b1(M) ≤ n − 1 for
any forward complete noncompact Finsler manifold (M,F ) with nonnega-
tive Ricci curvature and finite uniformity constant.

It is also clear that when k = n in Theorem 5.1, π1(M) is finite. We can
consider a more general situation. Let (M,F ) be a forward complete Finsler
manifold with RicM ≥ (n− 1)c. Then by Theorem 2.2(iii),

α(p) := lim sup
R→∞

volmin(Bp(R))

vol(Bnc (R))
≤ µ(p)n/2.

Clearly, α(p) > 0 when c > 0.

Definition 5.3. Let (M,F ) be a forward complete Finsler manifold
with RicM ≥ (n − 1)c, c ≤ 0. Then (M,F ) is said to have large volume
growth at p ∈M if

α(p) = lim sup
R→∞

volmin(Bp(R))

vol(Bnc (R))
> 0.

Theorem 5.4. Let (M,F ) be a forward complete Finsler manifold with
RicM ≥ (n− 1)c, c ≤ 0. If (M,F ) has large volume growth at some p ∈M ,
then

(5.1) ]π1(M) ≤ µ(p)n/2/α(p),

so π1(M) is finite. Consequently, if α(p) > µ(p)n/2/2 for some p ∈M , then
M is simply connected.

Proof. By the definition of α(p), we can choose a sequence {Ri}∞i=1 such
that
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lim
i→∞

volmin(Bp(Ri))

vol(Bnc (Ri))
= α(p),

which together with (4.1) and Theorem 2.2 yields

N(λ)≤
volmin(B̃p̃(λ+Ri))

volmin(Bp(Ri))
≤ µ(p)n/2 vol(Bnc (λ+Ri))

volmin(Bp(Ri))
→ µ(p)n/2

α(p)
(i→∞)

for all λ > 0. Hence we have (5.1).

Remark 5.5. When c = 0 and (M,F ) is Riemannian, Theorem 5.4 was
proved in [A, L].

The following result can be easily verified by using Theorem 2.2 and
(4.1).

Theorem 5.6. Let (M,F ) be a compact Finsler manifold with RicM ≥
(n− 1)c > 0. Then

]π1(M) ≤ Λ vol(Sn(c))

volmin(M)
,

where Sn(c) is the n-sphere of constant curvature c, and

Λ = min
p∈M

µ(p)n/2.

Moreover, M must be simply connected if volmin(M) > Λ vol(Sn(c))/2.

Lemma 5.7. Let (M,F ) be a compact Finsler manifold with χ(M) 6= 0,
where χ(M) denotes the Euler characteristic. Then there exists p ∈M such
that µ(p) = 1.

Proof. Suppose on the contrary that µ(p) 6= 1 for any p ∈M ; this means
that the tangent space (TpM,Fp) is non-Euclidean for each p ∈M . We may
find a unit maximal vector Xp ∈ TpM such that

det(gij(p,Xp)) = max
Yp∈TpM\{0}

det(gij(p, Yp)).

Since gij(p, Y ) is smooth on TM \ {0}, we can choose Xp so that it depends
smoothly on p, and we obtain a unit vector field on M which implies that
χ(M) = 0, a contradiction. So the lemma is proved.

By Theorem 5.6 and Lemma 5.7 we clearly have

Theorem 5.8. Let (M,F ) be a compact Finsler manifold with RicM ≥
(n− 1)c > 0 and χ(M) 6= 0. Then

]π1(M) ≤ vol(Sn(c))

volmin(M)
.

Moreover, M must be simply connected if volmin(M) > vol(Sn(c))/2.
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6. Flag curvature and fundamental group

Theorem 6.1. Let (M,F ) be a forward complete Finsler n-manifold
with finite reversibility. If one of the following two conditions holds:

(i) the flag curvature of M satisfies K(V ;W ) ≤ −a2 < 0 and
volmax(Bp(R)) ≤ c exp((n − 1)bR) for some p ∈ M , c > 0 and
0 < b < a;

(ii) the flag curvature of M is nonpositive, the Ricci curvature of M
satisfies RicM ≤ −a2 < 0, and volmax(Bp(R)) ≤ c exp(bR) for some
p ∈M , c > 0 and 0 < b < a.

Then π1(M) has exponential growth.

Proof. We shall assume (i); (ii) can be handled similarly. It is clear by
the curvature assumption that the injectivity radius of the universal covering
space (M̃, F̃ ) is infinite, which together with (4.2) and Theorem 2.2 yields

logN(λ)

λ
≥

log
(
volmax

(
B̃p̃
(

λ
1+λF

)))
λ

−
log
(
volmax

(
Bp
(

λ
1+λF

)))
λ

≥
log
(
vol
(
Bn−a2

(
λ

1+λF

)))
λ

− (n− 1)b

1 + λF
−

n
2 logµ(p) + log c

λ
.

Recaling that

vol(Bn−a2(R)) = vol(Sn−1(1))

R�

0

(
sinh at

a

)n−1
dt

>
vol(Sn−1(1))

2n−1an−1

R�

1

exp((n− 1)at)(1− exp(−2at))n−1 dt

>
(
1− exp(−2a)

)n−1 vol(Sn−1(1))

(n− 1)2n−1an
(
exp((n− 1)aR)− exp((n− 1)a)

)
for all R > 1, we have

logN(λ)

λ
≥ (n− 1)(a− b)

1 + λF
− C

λ
, ∀λ > 1 + λF ,

where C is a constant. Hence,

lim sup
λ→∞

logN(λ)

λ
≥ (n− 1)(a− b)

1 + λF
> 0,

so π1(M) has exponential growth.

Remark 6.2. It is clear by (3.2) that Theorem 6.1 improves the corre-
sponding results in [M, SZ, WX].
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