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Continuous pluriharmoni boundary valuesby Per Åhag (Sundsvall) and Rafaª Czy» (Kraków)
Abstrat. Let Dj be a bounded hyperonvex domain in Cnj and set D = D1 ×

· · · × Ds, j = 1, . . . , s, s ≥ 3. Also let Gn be the symmetrized polydis in Cn, n ≥ 3.We haraterize those real-valued ontinuous funtions de�ned on the boundary of D or
Gn whih an be extended to the inside to a pluriharmoni funtion. As an appliation aomplete haraterization of the ompliant funtions is obtained.1. Introdution. Let Ω ⊆ Cn be a bounded domain. The overdeter-mined system of equations whih de�nes pluriharmoni funtions in Ω,

∂2u

∂zj∂zk
= 0, j, k = 1, . . . , n,has been onsidered by mathematiians for more than a entury (seee.g. [24℄). It is well-known that for a ontinuous funtion f : ∂Ω → R theredoes not always exist a pluriharmoni funtion u whih is ontinuous on Ωsuh that u|∂Ω = f . This Dirihlet problem has been extensively studied forthe ase of smoothly bounded domains, like the unit ball, stritly pseudo-onvex domains or the unit polydis. We refer to [5℄ and [17℄ for details andreferenes. We would espeially like to draw attention to the artile [4℄ andthe more reently published [6℄, [14℄, [22℄ and [23℄.We will prove a omplete haraterization of the Dirihlet problem forpluriharmoni funtions de�ned on bounded hyperonvex produt domainsand on the symmetrized polydis in Cn, n ≥ 3 (see e.g. Setion 5 for the def-inition of the symmetrized polydis). Our methods rely purely on potentialtheory. For an introdution to lassial and pluripotential theory the mono-graphs [3℄ and [21℄ are reommended. The aim of this artile is to prove thefollowing theorem:2000 Mathematis Subjet Classi�ation: Primary 31C10; Seondary 32U15.Key words and phrases: analyti dis, ompliant funtion, Dirihlet problem, Jensenmeasure, pluriharmoni funtion, symmetrized polydis.The seond-named author was partially supported by KBN grant 1 P03A 037 26.[99℄ © Instytut Matematyzny PAN, 2007



100 P. Åhag and R. Czy»Theorem A. Let Dj be a bounded hyperonvex domain in Cnj , nj ≥ 1.Set D = D1 × · · · × Ds, j = 1, . . . , s, s ≥ 3, and let Gn be the symmetrizedpolydis in Cn, n ≥ 3. If Ω ∈ {D, Gn} and f : ∂Ω → R is a ontinuousfuntion, then the following assertions are equivalent :(1) there exists a funtion u whih is pluriharmoni on Ω, ontinuous on
Ω and u|∂Ω = f ,(2) the funtion f is pluriharmoni on ∂Ω (see De�nitions 3.1 and 5.1),(3) the Perron�Bremermann envelope PBf is pluriharmoni on Ω, i.e.,

PB−f = −PBf ,(4) for every z0 ∈ ∂Ω and every Jensen measure µ with baryenter z0

f(z0) =
\

∂Ω

f dµ.The proof of Theorem A is divided into two parts, Theorem 3.3 for thease when Ω is a hyperonvex produt domain D and Theorem 5.4 for
Ω = Gn. In Setion 4 we will show, for s = n ≥ 3, that the onditionsin Theorem A hold if and only if f is subharmoni on every analyti dis dembedded in ∂D, i.e., for every injetive holomorphi funtion d : D → ∂Dthe funtion f ◦ d is subharmoni on the unit dis D ⊆ C (Theorem 4.2;see also Theorem 4.4). Theorem 4.2 will be used in the proof of Theorem Afor Ω = Gn. If n = 2 the impliation (2)⇒(1) is, in general, not true (Ex-ample 3.4 and Setion 5). But (2) is equivalent to (4), (1) is equivalent to (3),and (1) always implies (2). As an appliation of Theorem A, we obtain a fullharaterization of the so alled ompliant funtions (Corollary 3.6 and The-orem 5.4). They �rst appeared in [10℄ where the so-alled Cegrell lasseswith boundary values given by a ontinuous funtion were introdued. Forfurther information about the Cegrell lasses see e.g. [11℄ and the referenestherein.The authors would like to thank Jonas Andersson, Sªawomir Koªodziej,Evgeny A. Poletsky and Frank Wikström for their generous help and en-ouragement.2. De�nitions and basi fats. Throughout this artile, Dj is abounded domain in Cnj and we set(2.1) D = D1 × · · · × Ds,where j = 1, . . . , s. Let n = n1 + · · · + ns. Then D is a bounded domain in
Cn with the (2n − 1)-real dimensional boundary ∂D given by

∂D =

s⋃

j=1

D1 × · · · × Dj−1 × ∂Dj × Dj+1 × · · · × Ds.



Continuous pluriharmoni boundary values 101The boundary ∂D an also be expressed as
⋃

1≤j1<···<jk≤s
k∈{1,...,s}

D1 × · · · × Dj1−1 × ∂Dj1 × Dj1+1 × · · ·

× Djk−1 × ∂Djk
× Djk+1 × · · · × Ds =:

⋃

|J |=k
1≤k≤s

ΛJ ,

where J is the inreasing multi-index, 1 ≤ j1 < · · · < jk ≤ s, of length k;also we will use the notation Λ̂J for the open set in Cn−nJ given by
D1 × · · · ×Dj1−1 × ∂̂Dj1 ×Dj1+1 × · · · ×Djk−1 × ∂̂Djk

×Djk+1 × · · · ×Ds ,where nJ = nj1 + · · ·+ njk
. The distinguished boundary ∂D+ of D is de�nedby ∂D+ = ∂D1 × · · · × ∂Ds, so ∂D+ = ΛJ when J = {1, . . . , s}.Reall that a bounded domain Ω ⊆ Cn is alled hyperonvex if thereexists a plurisubharmoni exhaustion funtion ϕ : Ω → (−∞, 0) suh thatthe losure of {z ∈ Ω : ϕ(z) < c} is ompat in Ω for every c ∈ (−∞, 0).A bounded hyperonvex domain Ω, viewed as a domain in R2n, is alwaysregular with respet to the Dirihlet problem for the Laplae operator. TheHartogs triangle, {(z1, z2) ∈ C2 : |z1| < |z2| < 1}, shows that not everyregular, bounded pseudoonvex domain is hyperonvex.Proposition 2.1. Let Dj be a bounded domain in Cnj , j = 1, . . . , s, andset n = n1 + · · · + ns. Then D = D1 × · · · × Ds ⊆ Cn is hyperonvex if andonly if eah Dj is hyperonvex in Cnj .Proof. Assume that D is hyperonvex in Cn, i.e., there exists a plurisub-harmoni exhaustion funtion ϕ for D. Fix (z0

1 , . . . , ẑj, . . . , z
0
s ) ∈ D1 × . . . ×

D̂j × · · · × Ds. Then
ϕj(ζ) = ϕ(z0

1 , . . . , z
0
j−1, ζ , z0

j+1, . . . , z
0
s )is an exhaustion funtion for Dj . Hene, Dj is hyperonvex in Cnj . Forthe onverse, assume that every Dj is hyperonvex in Cnj and ϕj is anexhaustion funtion for Dj. De�ne ϕ(ζ1, . . . , ζs) = max{ϕ1(ζ1), . . . , ϕs(ζs)}for (ζ1, . . . , ζs) ∈ D. Then ϕ is a plurisubharmoni exhaustion funtion for Dand thus D is hyperonvex in Cn.Definition 2.2. Let Ω ⊆ Cn be a bounded domain and let µ be anon-negative, regular Borel measure on Ω. Then µ is a Jensen measure withbaryenter at z ∈ Ω if

u(z) ≤
\
Ω

u dµ

for every ontinuous funtion u : Ω → [−∞,∞), not identially −∞, suhthat u ∈ PSH(Ω). Here PSH(Ω) is the lass of all plurisubharmoni fun-



102 P. Åhag and R. Czy»tions de�ned on Ω. The set of all Jensen measures with baryenter at z willbe denoted by Jz.De�nition 2.2 di�ers slightly from the lassial de�nition of Jensen mea-sure, sine it allows the measure to have support in Ω, and also sine itembraes Jensen measures for boundary points. If Ω is a bounded hyperon-vex domain and µ ∈ Jz, z ∈ ∂Ω, then suppµ ⊆ ∂Ω (Theorem 3.4 in [30℄).The Perron�Bremermann envelope for a funtion f : ∂Ω → R is de�ned by
PBf (z) = sup{w(z) : w ∈ PSH(Ω), lim sup

ζ→ξ, ζ∈Ω
w(ζ) ≤ f(ξ) ∀ξ ∈ ∂Ω}.Theorem 2.3. Let Ω ⊆ Cn be a bounded domain and let f : ∂Ω → R bea ontinuous funtion. If

lim inf
z→ξ, z∈Ω

PBf (z) = lim sup
z→ξ, z∈Ω

PBf (z) = f(ξ)for every ξ ∈ ∂Ω, then PBf ∈ C(Ω).Proof. See [29℄.Theorem 2.4. Assume that Ω ⊆ Cn is a bounded domain and that
f : ∂Ω → R is a ontinuous funtion. The following assertions are thenequivalent :(1) for every ξ ∈ ∂Ω,(2.2) lim

z→ξ, z∈Ω
(PBf + PB−f )(z) = 0,(2) there exists a ontinuous funtion F : Ω → R suh that for every

z0 ∈ ∂Ω and every µ ∈ Jz0
,
f(z0) =

\
Ω

F dµ,

(3) the envelopes PBf and PB−f belong to C(Ω); moreover , for every
z0 ∈ ∂Ω and every µ ∈ Jz0

,(2.3) f(z0) =
\
Ω

PBf dµ and −f(z0) =
\
Ω

PB−f dµ.Proof. (3)⇒(2): Take F = PBf .(2)⇒(1): Lemma 3.3 in [30℄ implies that there exist u, v ∈ PSH(Ω) ∩
C(Ω) suh that

lim
z→ζ, z∈Ω

u(z) = f(ζ) and lim
z→ξ, z∈Ω

v(z) = −f(ξ)for all ζ, ξ ∈ ∂Ω, hene (2.2) is satis�ed.(1)⇒(3): First we will prove that assumption (2.2) implies that
lim

z→ζ, z∈Ω
PBf (z) = f(ζ) and lim

z→ξ, z∈Ω
PB−f (z) = −f(ξ)



Continuous pluriharmoni boundary values 103for all ζ, ξ ∈ ∂Ω. Assume now that this is not the ase, for example thereexists ξ ∈ ∂Ω suh that lim supz→ξ PBf (z) < f(ξ). This yields
0 = lim

z→ξ, z∈Ω
(PBf + PB−f ) (z) = lim sup

z→ξ, z∈Ω
(PBf + PB−f )(z)

≤ lim sup
z→ξ, z∈Ω

PBf (z) + lim sup
z→ξ, z∈Ω

PB−f (z)

< f(ξ) − f(ξ) = 0,a ontradition, hene lim supPBf = f and lim supPB−f = −f on ∂Ω. As-sume now that there exists ζ ∈ ∂Ω suh that lim infz→ζ PBf (z) < f(ζ).Then there exists a sequene [zj] in Ω whih onverges to ζ suh that
limj→∞ PBf (zj) < f(ζ), hene

0 = lim
j→∞

(PBf + PB−f ) (zj) = lim inf
j→∞

(PBf + PB−f )(zj)

= lim
j→∞

PBf (zj) + lim inf
j→∞

PB−f (zj) < f(ζ) − f(ζ) = 0,a ontradition one more. Now it follows by Theorem 2.3 that PBf , PB−f ∈
C(Ω). Fix z0 ∈ ∂Ω and take µ ∈ Jz0

; then
f(z0) = PBf (z0) ≤

\
Ω

PBf dµ.Thus
f(z0) ≤ inf

{ \
Ω

PBf dµ : µ ∈ Jz0

}
.Setting µ = δz0

shows that
f(z0) = inf

{ \
Ω

PBf dµ : µ ∈ Jz0

}
.In a similar manner the orresponding formula an be obtained for −f andtherefore

sup
{ \

Ω

−PB−f dµ : µ ∈ Jz0

}
= − inf

{ \
Ω

PB−f dµ : µ ∈ Jz0

}
= f(z0).The maximum priniple for plurisubharmoni funtions and assumption (2.2)yield

inf
{ \

Ω

PBf dµ : µ ∈ Jz0

}
= f(z0) ≥ sup

{ \
Ω

PBf dµ : µ ∈ Jz0

}
.Thus, for every z0 ∈ ∂Ω and every µ ∈ Jz0

we have
f(z0) =

\
Ω

PBf dµ.With the same methods the orresponding result an be proved for −f ,hene (2.3) is true and the proof is omplete.



104 P. Åhag and R. Czy»Remark. Let Ω ⊆ Cn be a bounded domain. The following are thenequivalent:(1) Ω is B-regular,(2) property (2.2) holds for every ontinuous funtion f : ∂Ω → R,(3) Jz0
= {δz0

} for every z0 ∈ ∂Ω, where δz0
denotes the Dira measureat z0.(See e.g. Corollary 3.8 in [30℄ for the equivalene between (1) and (3)).3. Pluriharmoni boundary values on hyperonvex produt do-mains. Let Ω be an open set in Cn. A funtion u : Ω → R is said to be pluri-harmoni on Ω if u and −u are plurisubharmoni on Ω. Let PH(Ω) denotethe lass of all pluriharmoni funtions on Ω. Then PH(Ω) ⊆ PSH(Ω) ⊆

SH(Ω) and PH(Ω) ⊆ H(Ω). If n = 1, then the inlusions are equalities,and if n > 1, they are proper. We now de�ne what it means for a funtionto be plurisubharmoni and pluriharmoni on the boundary of a boundedhyperonvex produt domain.Definition 3.1. Let D ⊆ Cn be a bounded hyperonvex produt do-main as in (2.1). An upper semiontinuous funtion u : ∂D → R ∪ {−∞}is plurisubharmoni if u is plurisubharmoni on every Λ̂J , i.e., for all k ∈
{1, . . . , s − 1}, 1 ≤ j1 < · · · < jk ≤ s and (zj1 , . . . , zjk

) ∈ ∂Dj1 × · · · × ∂Djk
,the funtion de�ned by

(z1, . . . , ẑj1 , . . . , ẑjk
, . . . , zs) 7→ u(z1, . . . , zj1 , . . . , zjk

, . . . , zs)is plurisubharmoni on the open set Λ̂J ⊆ Cn−nJ , where nJ = nj1 + · · ·+njk
.The identially −∞ funtion is by �at not onsidered as plurisubharmoni.In a similar manner a ontinuous funtion u : ∂D → R is pluriharmoni if itis pluriharmoni on eah Λ̂J .Example 3.2. Let P be the unit polydis in Cn, n ≥ 2, and onsiderthe funtion f : ∂P → R de�ned by

f(z) = f(z1, . . . , zn) =

{
0 if |zj| = 1 for every j,

1 otherwise.Then f is harmoni on every analyti dis embedded in ∂P , but it is notpluriharmoni on ∂P in the sense of De�nition 3.1 sine it is not ontinuouson ∂P . Moreover, there does not exist a pluriharmoni funtion h suh that
h|∂D = f .Theorem 3.3. Let Dj be a bounded hyperonvex domain in Cnj , j =
1, . . . , s, s ≥ 3, set D = D1×· · ·×Ds, n = n1 + · · ·+ns, and let f : ∂D → Rbe a ontinuous funtion. The following are then equivalent :



Continuous pluriharmoni boundary values 105(1) there exists a funtion u whih is pluriharmoni on D, ontinuouson D and u|∂D = f ,(2) f is pluriharmoni on ∂D in the sense of De�nition 3.1,(3) the Perron�Bremermann envelope PBf is pluriharmoni on D,i.e.,
PB−f = −PBf ,(4) for every z0 ∈ ∂D and every Jensen measure µ with baryenter z0,
f(z0) =

\
∂D

f dµ.Proof. (1)⇒(2): Let k ∈ {1, . . . , s − 1}, J be an inreasing multi-index,
1 ≤ j1 < · · · < jk ≤ s, and let (ξj1 , . . . , ξjk

) ∈ ∂Dj1 × · · · × ∂Djk
. De�ne thefuntion fξ1,...,ξk

: Λ̂J → R by
fξ1,...,ξk

(z1, . . . , ξ̂j1, . . . , ξ̂jk
, . . . , zs) = f(z1, . . . , ξj1 , . . . , ξjk

, . . . , zs).Take z0 ∈ Λ̂J and let z̃0 = (z1, . . . , ξj1 , . . . , ξjk
, . . . , zs) ∈ ΛJ and in the sameway take X ∈ Cn−nJ and let X̃ = (X1, . . . , Xjl

, . . . , Xn), where Xjl
= 0for l = 1, . . . , nJ . Choose r > 0 suh that Br = {z̃0 + ζrX̃ : ζ ∈ C, |ζ| < 1}

⊆ ΛJ . Let Djl
∋ ξm

jl
→ ξjl

as m → ∞, for 1 ≤ l ≤ k, and let z̃m
0 =

(z1, . . . , ξ
m
j1

, . . . , ξm
jk

, . . . , zs) ∈ D. For eah m de�ne um(ζ) = u(z̃m
0 + ζrX̃).Then um is harmoni on the unit dis in C, by the assumption that u ∈

PH(D) ∩ C(D). Moreover, um onverges uniformly to fξ1,...,ξk
as m → ∞.Thus, fξ1,...,ξk

is harmoni on Br and therefore pluriharmoni on ΛJ .(2)⇒(1): Assume that f : ∂D → R is a ontinuous funtion and set
u(z1, . . . , zs) =

\
∂D+

f(t1, . . . , ts) dωz1
(t1) · · · dωzs(ts) ,where ωzj

is the harmoni measure relative to Dj and zj. Then u is s-harmoni on D, ontinuous on D and u|∂D = f . We now show that u ispluriharmoni on D. Let z0 = (z1, . . . , zs) ∈ D, X = (X1, . . . , Xs) ∈ Cn(Xj ∈ Cnj ) be suh that Xs = 0 and hoose r > 0 suh that {z0 + ζX :
ζ ∈ C, |ζ| < r} ⊆ D. Let Br = B(0, r) ⊂ C be the Eulidean ball withentre 0 and radius r. For any w1 ∈ D1, . . . , ws−1 ∈ Ds−1, ws ∈ ∂Ds, w′ =
(w1, . . . , ws−1), X ′ = (X1, . . . , Xs−1), ζ ∈ Br, t′ = (t1, . . . , ts−1), where
tj ∈ Dj , 1 ≤ j ≤ s − 1 de�ne

dω′
w′+ζX′(t′) = dωw1+ζX1

(t1) · · · dωws−1+ζXs−1
(ts−1).The assumption that f is pluriharmoni in the sense of De�nition 3.1 impliesin partiular that f is pluriharmoni on D1 × · · · × Ds−1 × {ws}, hene

1

πr2

\
Br

f(w′ + ζX ′, ws) dλ(ζ) = f(w′, ws) =
\

∂D+

f dωw1
· · · dωws ,



106 P. Åhag and R. Czy»and
f(w′ + ζX ′, ws) =

\
∂D1×···×∂Ds−1

f(t′, ws) dω′
w′+ζX′ .Therefore,

1

πr2

\
Br

u(z0 + ζX) dλ(ζ) =
1

πr2

\
Br

\
∂D+

f(t′, ts) dω′
z′+ζX′(t′) dωzs(ts) dλ(ζ)

=
\

∂Ds

1

πr2

\
Br

\
∂D1×···×∂Ds−1

f(t′, ts) dω′
z′+ζX′(t′) dλ(ζ) dωzs(ts)

=
\

∂Ds

1

πr2

\
Br

f(z′ + ζX ′, ts) dλ(ζ) dωzs(ts) =
\

∂Ds

f(z′, ts) dωzs(ts)

=
\

∂D1×···×∂Ds

f(t1, . . . , ts) dωz1
(t1) · · · dωzs(ts) = u(z0),whih proves that u is pluriharmoni on D1 × · · · × Ds−1 × {zs} for all

zs ∈ Ds. By repeating the same argument for X ∈ Cn suh that Xk = 0,
1 ≤ k ≤ s − 1, we reah the onlusion that for eah k �xed, 1 ≤ k ≤ s, thefuntion u is pluriharmoni on

D1 × · · · × {zk} × · · · × Ds ⊆ D ,for all zk ∈ Dk. This means that u is pluriharmoni on D sine
Lu(z1, . . . , zs)(X1, . . . , Xs)

=
1

s−2

s∑

j=1

L(u ◦ ̺j)(z1, . . . , zj−1, zj+1, . . . , zs)(X1, . . . , Xj−1, Xj+1, . . . , Xs)

− 1

s − 2

n1+···+ns∑

k=1

∂2u

∂zk∂zk
(z1, . . . , zs)|Xk|2 = 0,where (z1, . . . , zs)∈D, X =(X1, . . . , Xs)∈Cn, Xj ∈Cnj , ̺j(z1, . . . , ẑj , . . . , zs)

= (z1, . . . , zj , . . . , zs), Lu is the Levi form of u, Xj ∈ Cnj and s ≥ 3.(2)⇒(3): Assume that f : ∂D → R is pluriharmoni. The proof of(2)⇒(1) shows that the funtion u de�ned by
u(z1, . . . , zs) =

\
∂D+

f(t1, . . . , ts) dωz1
(t1) · · · dωzs(ts)is pluriharmoni on D, ontinuous on D and u|∂D = f . Hene (ddcu)n = 0and therefore u = PBf (see e.g. [7℄). By the same arguments the funtion vde�ned by

v(z1, . . . , zs) =
\

∂D+

(−f(t1, . . . , ts)) dωz1
(t1) · · · dωzs(ts)



Continuous pluriharmoni boundary values 107is pluriharmoni on D, ontinuous on D and v|∂D = −f . Thus v = PB−f(see e.g. [7℄), whih implies that PB−f = −PBf on D, by the onstrutionof u and v.(3)⇒(4): This is a diret onsequene of Theorem 2.4.(4)⇒(2): Fix k ∈ {1, . . . , s−1} and let J , 1 ≤ j1 < · · · < jk ≤ s, be an in-reasing multi-index. Take z0 ∈ Λ̂J and let z̃0 = (z1, . . . , ξj1 , . . . , ξjk
, . . . , zs)

∈ ΛJ , where (ξj1, . . . , ξjk
) ∈ ∂Dj1 × · · · × ∂Djk

. In the same way take
X ∈ Cn−nJ and let X̃ = (X1, . . . , Xjl

, . . . , Xn), where Xjl
= 0 for l =

1, . . . , nJ . Choose r > 0 suh that A = {z̃0 + ζX̃ : ζ ∈ C, |ζ| < r} ⊆ ΛJ . If
µ0 = (2πr)−1dλ, where λ is the Lebesgue measure on A, then µ0 ∈ Jz̃0

and
supp µ0 ⊆ A. Thus,

f(z̃0) =
\

∂D

f dµ0 =
\
A

f dµ0by assumption, and therefore f is harmoni in A, whih implies that it isharmoni in ΛJ .Example 3.4 below shows that for n = 2 the impliation (2)⇒(1) inTheorem 3.3 is, in general, not true. The onstrution of the funtion u inthis example is due to Poletsky ([25℄).Example 3.4. Let D2 = {(z, w) ∈ C2 : |z| < 1, |w| < 1} be the unitpolydis in C2 and let f : ∂D2 → R be de�ned by
f(ζ, ξ) = Re(ζξ).Then f is pluriharmoni on ∂D2 in the sense of De�nition 3.1; we will provethat ondition (1) in Theorem 3.3 is not true for f . Let u be a funtionde�ned on D2 by

u(z, w) =
Re(zw)(2 − |z|2 − |w|2)

1 − |zw|2 − (1 − |z|2)(1 − |w|2)
1 − |zw|2 .Then u ∈ C∞(D2) ∩ C(D2) and lim(z,w)→(ζ,ξ) u(z, w) = Re(ζξ) for every

(ζ, ξ) ∈ ∂D2. We have
uzz(z, w) =

∂2u

∂z∂z
(z, w) =

(1 − |w|2)2|1 − zw|2
(1 − |z|2|w|2)3 ,

uzw(z, w) =
∂2u

∂z∂w
(z, w) =

(1 − |z|2)(1 − |w|2)(1 − zw)2

(1 − |z|2|w|2)3 ,

uzw(z, w) =
∂2u

∂z∂w
(z, w) =

(1 − |z|2)(1 − |w|2)(1 − zw)2

(1 − |z|2|w|2)3 ,

uww(z, w) =
∂2u

∂w∂w
(z, w) =

(1 − |z|2)2|1 − zw|2
(1 − |z|2|w|2)3 .



108 P. Åhag and R. Czy»Sine uzz ≥ 0, uww ≥ 0 and
det

(
uzz(z, w) uzw(z, w)

uzw(z, w) uww(z, w)

)
= 0,it follows that u is a maximal plurisubharmoni funtion on D2 and u =

PBf (see e.g. [7℄). We will next obtain an expliit formula for PB−f . Let
F (z, w) = (−z, w). Then −Re(zw) = Re(zw) ◦ F and PB−f = PBf ◦ F .Thus,

PB−f (z, w) =
−Re(zw)(2 − |z|2 − |w|2)

1 − |zw|2 − (1 − |z|2)(1 − |w|2)
1 − |zw|2and we see that PBf + PB−f 6= 0, hene PBf is not pluriharmoni on D2and therefore ondition (1) in Theorem 3.3 is not true for f .Definition 3.5. A ompliant funtion is a ontinuous funtion f : ∂Ω→Rwith the following two properties:

• lim
z→ξ, z∈Ω

(PBf + PB−f ) (z) = 0 for every ξ ∈ ∂Ω,
•
\
Ω

(ddc(PBf + PB−f ))n < ∞,
where (ddc · )n is the omplex Monge�Ampère operator. Let CP(∂Ω) denotethe lass of ompliant funtions on ∂Ω.Let u be a holomorphi funtion de�ned in a neighbourhood of Ω and let
f = Re(u) on ∂Ω. Then f is an elementary example of a ompliant funtion.For further information and examples see [2℄. Corollary 3.6 below followsimmediately from Theorem 3.3.Corollary 3.6. Let Dj be a bounded hyperonvex domain in Cnj , j =
1, . . . , s, s ≥ 3, and set D = D1 × · · · × Ds. Then CP(∂D) = PH(∂D).Example 3.7 below shows that there exists a ompliant funtion f forwhih PBf is not pluriharmoni. Note that when n ≥ 3 this is not possible(Theorem 3.3).Example 3.7. Let f be de�ned as in Example 3.4. Condition (2) in The-orem A is satis�ed for f and therefore so is ondition (4). From Theorem 2.4it follows that

lim
z→ξ, z∈Ω

(PBf + PB−f )(z) = 0for every ξ ∈ ∂Ω. By some straightforward alulations we get
(ddc(PBf + PB−f ))2 = 128

(1 − |z|2)2(1 − |w|2)2
(1 − |z|2|w|2)4 dλ2
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D2

(ddc(PBf + PB−f ))2 = 128
\

D2

(1 − |z|2)2(1 − |w|2)2
(1 − |z|2|w|2)4 dλ2(z, w) =

64π2

3
,

where λ2 is the Lebesgue measure on C2. Thus, f is ompliant.We end this setion by proving a su�ient ondition for a ontinuousfuntion de�ned on ∂D2 to be ompliant.Proposition 3.8. If f : ∂D2 → R is a pluriharmoni funtion in thesense of De�nition 3.1 whih satis�es
∞∑

k1,k2=0

√
k1k2 |ak1,k2

| < ∞,

then f is ompliant. Here
ak1,k2

=
\

∂D×∂D

wk1

1 wk2

2 f(w1, w2) dσ(w1) dσ(w2),where dσ is the normalized Lebesgue measure on ∂D.Proof. For any integers k, l ≥ 1 let fk,l = Re(ζkξl) and gk,l = Im(ζkξl).Then Example 3.7 shows that\
D2

(ddc(PBfk,l
+ PB−fk,l

))2 =
\

D2

(ddc(PBgk,l
+ PB−gk,l

))2

= kl
\

D2

(ddc(PBf1,1
+ PB−f1,1

))2 =
64π2kl

3
,

and therefore fk,l and gk,l are ompliant. Let
u(z1, z2) =

\
∂D×∂D

(1 − |z1|2)(1 − |z2|2)
|w1 − z1|2|w2 − z2|2

f(w1, w2) dσ(w1) dσ(w2),

Then u is 2-harmoni on D, ontinuous on D and u|∂D = f . Note that u is, ingeneral, not pluriharmoni. There exists a holomorphi funtion U de�nedon D2 suh that
u(z1, z2) = Re(U) +

∞∑

k1,k2=0

ak1,k2
zk1

1 zk2

2 +

∞∑

k1,k2=0

ak1,k2
zk1

1 zk2

2(see e.g. [26℄), hene
f(z1, z2) = Re(U) +

∞∑

k1,k2=0

bk1,k2
Re(zk1

1 zk2

2 ) +
∞∑

k1,k2=0

ck1,k2
Im(zk1

1 zk2

2 ),
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= Re(ak1,k2

) and ck1,k2
= −Im(ak1,k2

). Now it follows from [2℄that
( \

D2

(ddc(PBf + PB−f ))2
)1/2

≤
∞∑

k1,k2=0

|bk1,k2
|
( \

D2

(ddcv(fk1,k2
))2
)1/2

+
∞∑

k1,k2=0

|ck1,k2
|
( \

D2

(ddcv(gk1,k2
))2
)1/2

≤ 8π√
3

∞∑

k1,k2=0

√
k1k2 (|bk1,k2

| + |ck1,k2
|) ≤ 16π√

3

∞∑

k1,k2=0

√
k1k2 |ak1,k2

| < ∞,where v(fk1,k2
) = PBfk1,k2

+PB−fk1,k2
and v(gk1,k2

) = PBgk1,k2
+PB−gk1,k2

.Thus, f is ompliant.4. Plurisubharmoni boundary values and analyti diss. In thissetion we will prove a haraterization of plurisubharmoni funtions de-�ned on the boundary in terms of analyti diss. Let Ω ⊆ Cn be a boundeddomain. By an analyti dis embedded in ∂Ω we mean an injetive, holo-morphi funtion d : D → ∂Ω, where D is the unit dis in C.Proposition 4.1. Let D = D1 × · · · × Dn ⊂ Cn, n ≥ 2, be a boundedhyperonvex domain, where Dj ⊆ C, 1 ≤ j ≤ n. Then for every analyti dis
d : D → ∂D there exist k ∈ {1, . . . , n − 1} and an inreasing multi-index J ,
1 ≤ j1 < · · · < jk ≤ n, suh that

d(D) ⊆ D1 × · · · × ∂Dj1 × · · · × ∂Djk
× · · · × Dn = ΛJ .Proof. Let d : D → ∂D be an analyti dis. Then d(D) is a onnetedmanifold of real dimension 2 so d(D) * ∂D+. Assume that d(D)∩ ∂D+ 6= ∅.Then there exist w ∈ d(D) ∩ ∂D+ and zj ∈ d(D) ∩ (∂D \ ∂D+) suh that

Πj(zj) ∈ Dj, where Πj is the standard projetion on the jth oordinate.Therefore there exist ζ1, ζ2 ∈ D suh that Πj ◦ d(ζ1) ∈ ∂Dj and Πj ◦ d(ζ2) ∈
Dj , whih is impossible sine Πj ◦ d is an open map. Thus d(D)∩ ∂D+ = ∅.Now sine d(D) is onneted there exist k ∈ {1, . . . , n−1} and an inreasingmulti-index J , 1 ≤ j1 < · · · < jk ≤ n, suh that d(D) ⊆ ΛJ .Theorem 4.2 will be a prominent tool in Setion 5.Theorem 4.2. Let D = D1 × · · · × Dn ⊂ Cn, n ≥ 2, be a boundedhyperonvex domain, where Dj ⊆ C, 1 ≤ j ≤ n, and let f : ∂D → R be aontinuous funtion. The following are then equivalent :(1) f is plurisubharmoni in the sense of De�nition 3.1,(2) f is subharmoni on every analyti dis d embedded in ∂D, i.e., f ◦dis subharmoni on D ⊆ C,(3) there exists u ∈ PSH(D) ∩ C(D) suh that u|∂D = f .



Continuous pluriharmoni boundary values 111Proof. (2)⇒(1): Let k ∈ {1, . . . , n − 1}, J an inreasing multi-index,
1 ≤ j1 < · · · < jk ≤ n, and (ξj1, . . . , ξjk

) ∈ ∂Dj1 × · · · × ∂Djk
. De�ne

fξ1,...,ξk
: Λ̂J → R by

fξ1,...,ξk
(z1, . . . , ξ̂j1 , . . . , ξ̂jk

, . . . , zn) = f(z1, . . . , ξj1 , . . . , ξjk
, . . . , zn).Take z0 ∈ Λ̂J and let z̃0 = (z1, . . . , ξj1 , . . . , ξjk

, . . . , zs) ∈ ΛJ ; moreover, take
X ∈ Cn−k and let X̃ = (X1, . . . , Xjl

, . . . , Xn), where Xjl
= 0 for l = 1, . . . , k.Choose r > 0 suh that {z̃0 +ζrX̃ : ζ ∈ C, |ζ| < 1} ⊆ ΛJ . De�ne d : D → ΛJby d(ζ) = z̃0 +ζrX̃ . Then d is an analyti dis embedded in ΛJ . Thus f ◦d issubharmoni on D by assumption, hene fξ1,...,ξk

is plurisubharmoni on Λ̂J .(1)⇒(2): Let d be an analyti dis embedded in ∂D. Proposition 4.1shows that there exists a k ∈ {1, . . . , n − 1} and an inreasing multi-index
J , 1 ≤ j1 < · · · < jk ≤ n, suh that d(D) ⊆ ΛJ . By de�nition, f is plurisub-harmoni on Λ̂J , whih implies that f ◦ d is subharmoni on D.(3)⇒(1): See the proof of Theorem 3.3.(1)⇒(3): Just take u = PBf . Observe also that Jz0

= {δz0
} for all

z0 ∈ ∂D+, so by (1) we get, for all z ∈ ∂D,
f(z) = inf

{ \
∂D

f dµz : µz ∈ Jz0

}
.Therefore Theorem 3.5 in [30℄ implies that u ∈ PSH(D) ∩ C(D) and

u|∂D = f .Remark. In [8℄ Bªoki proved the equivalene of (2) and (3) in the asewhen D is the unit polydis in Cn. See also [28℄ and for the ase when n = 2,Example 3.6 in [30℄.The following is well-known (f. e.g. the proof of Corollary 2.10 in [9℄).Lemma 4.3. Let Ω be a bounded domain in Cn with C1-boundary and
h : D → Ω a holomorphi funtion. If u ∈ PSH(Ω) ∩ C(Ω), then u ◦ h issubharmoni on D.Proof. By [18℄ there exists a sequene [uj] of smooth plurisubharmonifuntions de�ned on a neighbourhood of Ω whih onverges uniformly to
u on Ω as j → ∞. Hene, uj ◦ h subharmoni on D and therefore u ◦ h issubharmoni on D, sine uj ◦h onverges uniformly on Ω to u◦h as j → ∞.Remark. It is not known to the authors if Lemma 4.3 is valid for moregeneral domains.Theorem 4.4. Let D = D1×· · ·×Ds be a bounded hyperonvex produtdomain, where eah Dj is a bounded hyperonvex domain in Cnj with C1-boundary , 1 ≤ j ≤ s and s ≥ 2. For every ontinuous funtion f : ∂D → Rthe following assertions are equivalent :



112 P. Åhag and R. Czy»(1) f is plurisubharmoni in the sense of De�nition 3.1,(2) f is subharmoni on every analyti dis d embedded in ∂D, i.e., f ◦dis subharmoni on D.Proof. The impliation (2)⇒(1) follows as in the proof of Theorem 4.2.For the onverse let d : D → ∂D be an analyti dis. Assume that d(D) ∩
∂D+ 6= ∅ and d(D) ∩ (∂D \ ∂D+) 6= ∅. Then there exist j and z1 ∈ ∂Dj,
z2 ∈ Dj suh that z1, z2 ∈ d(D). Hene, d(D) ∩ ∂Dj 6= ∅ and d(D) ∩ Dj 6= ∅,whih ontradits Corollary 2.10 in [9℄, sine Dj is a hyperonvex domainwith C1-boundary. Thus either d(D) ⊆ ∂D+ or d(D) ⊂ ∂D \∂D+. If d(D) ⊆
∂D \ ∂D+, then there exists a k ∈ {1, . . . , s − 1} and an inreasing multi-index J , 1 ≤ j1 < · · · < jk ≤ s, suh that d(D) ⊆ ΛJ , sine d(D) isa onneted manifold of real dimension 2. Therefore f ◦ d is subharmoniby (1). Similarly, if d(D) ⊆ ∂D+, then there exists 1 ≤ j ≤ s suh that
d(D) ⊆ ∂Dj. This implies that f ◦ d is subharmoni by Lemma 4.3.5. Pluriharmoni boundary values on the symmetrized polydis.In this setion we prove Theorem A for the ase when Ω is the symmetrizedpolydis Gn. Let πn = (πn,1, . . . , πn,n) : Cn → Cn, n ≥ 1, be de�ned asfollows:

πn,k(z1, . . . , zn) =
∑

1≤j1<···<jk≤n

zj1 · · · zjkfor 1 ≤ k ≤ n. Then πn is a proper holomorphi mapping with multipliity n!,and so also is πn|Dn : Dn → πn(Dn). Moreover, πn(∂Dn) = ∂(πn(Dn)). Here
Dn denotes the unit polydis in Cn and ∂Dn = ∂D × · · · × ∂D. We referto [19℄ and [27℄ for information about proper holomorphi mappings. Letnow Gn = πn(Dn). The domain Gn is alled the symmetrized polydis. In [16℄it was proved there exists a plurisubharmoni funtion ϕ : Ω → (−∞, 0)suh that the losure of the set {z ∈ Ω : ϕ(z) < c} is ompat in Ω forevery c ∈ (−∞, 0), i.e., Gn is a hyperonvex domain. It is worth mentioningthat G2 is the �rst non-trivial example of a domain on whih the Lempertfuntion, the Kobayashi distane and the Charathéodory distane oinideand whih is not exhausted by domains biholomorphi to onvex domains(see e.g. [1℄, [12℄, [13℄, [15℄ and [16℄).Let I be an inreasing multi-index, 1 ≤ i1 < · · · < ik ≤ n; we will write
i ∈ I to mean that i ∈ {i1, . . . , ik}. Let δI denote the set
πn(D1 × · · ·×Di1−1 × ∂Di1 ×Di1+1 × · · ·×Dik−1 × ∂Dik ×Dik+1 × · · ·×Dn),where the index only refers to the position. Then δI = δJ if I and J are ofthe same length. This implies that

∂Gn =

n⋃

k=1

πn(∂D × · · · × ∂D︸ ︷︷ ︸
k times ×D × · · · × D︸ ︷︷ ︸

n − k times ) =:

n⋃

k=1

δk.



Continuous pluriharmoni boundary values 113Note that it was proved in [16℄ that δn = πn((∂D)n) is the Shilov boundaryof Gn. We are now in a position to de�ne plurisubharmoni and plurihar-moni funtions on ∂Gn (see De�nition 3.1 for the ase when the domain ofde�nition is the boundary of a hyperonvex produt domain).Definition 5.1. An upper semiontinuous funtion u : ∂Gn → R ∪
{−∞} is plurisubharmoni if u is plurisubharmoni on every δk for k ∈
{1, . . . , n − 1}, i.e., for all k ∈ {1, . . . , n − 1} and w1, . . . , wk ∈ ∂D, thefuntion de�ned by(5.1) (z1, . . . , zn−k) 7→ u ◦ πn(w1, . . . , wk, z1, . . . , zn−k)is plurisubharmoni on Dn−k. The identially −∞ funtion is not onsideredplurisubharmoni. In a similar manner a ontinuous funtion u : ∂Gn → Ris pluriharmoni if u is pluriharmoni on every δk for k ∈ {1, . . . , n − 1}.The following property of the symmetrized polydis proved by Edigarianand Zwonek is an important tool in the proof of our main theorem.Proposition 5.2. Let A be a domain in Cm, m ≥ 1, and let ϕ : A → Cnbe a holomorphi funtion. Then the following holds :(a) if ϕ(A) ⊆ δn, then ϕ is onstant ,(b) if ϕ(A) ⊆ ∂Gn, then there exists a k, 1≤ k ≤ n, suh that ϕ(A)⊆ δk.Proof. See Lemmas 4 and 5 in [16℄.Lemma 5.3. Let n ≥ 2, and let f : ∂Gn → R be a ontinuous funtion.The following onditions are then equivalent :(1) there exists u ∈ PSH(Gn) ∩ C(Gn) suh that u|∂Gn

= f ,(2) f is plurisubharmoni in the sense of De�nition 5.1,(3) f is subharmoni on every analyti dis d embedded in ∂Gn, i.e., f ◦dis subharmoni on D.Proof. First note that the equivalene of (2) and (3) follows immediatelyfrom Proposition 5.2 and De�nition 5.1. We next prove (3)⇒(1): �rst, wede�ne g = f ◦ πn : ∂Dn → R. This is a ontinuous funtion on ∂Dn. Byassumption (3), g is subharmoni on every analyti dis d embedded in ∂Dn.Theorem 4.2 implies that there exists a funtion s whih is pluriharmonion Dn, ontinuous on D
n and s|∂Dn = g. Let ϕ : Gn → R be de�ned by

ϕ(w) = max{s(z) : z ∈ π−1
n (w)}.From [20℄ it follows that ϕ is plurisubharmoni on Gn and ϕ|∂Gn

= f byonstrution. Walsh's theorem (see [29℄) implies that PBf ∈ PSH(Gn) ∩
C(Gn). Hene, (1) follows by letting u = PBf .The �nal step is to prove (1)⇒(2). Let fw1,...,wk

: Dn−k → R ∪ {−∞} bede�ned as in (5.1); we need to prove that this funtion is plurisubharmoniunder the assumption that there exists u ∈ PSH(Gn) ∩ C(Gn) suh that
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u|∂Gn

= f . Let k ∈ {1, . . . , n − 1}, w1, . . . , wk ∈ ∂D and take a sequene
[(wm

1 , . . . , wm
k )]∞m=1 in Dn−k whih onverges to (w1, . . . , wk) as m → ∞.Moreover, let [um] be the sequene of real-valued funtion on Dn−k de�ned by
um(z1, . . . , zn−k) = u ◦ πn(wm

1 , . . . , wm
k , z1, . . . , zn−k).Then um is pluriharmoni on Dn−k, and ontinuous up to the boundary.The sequene [um] onverges uniformly to fw1,...,wk

on Dn−k as m → ∞, andtherefore f is plurisubharmoni in the sense of De�nition 5.1.Theorem 5.4. Let n ≥ 3. If f : ∂Gn → R is ontinuous, then thefollowing assertions are equivalent :(1) there exists a funtion u whih is pluriharmoni on Gn, ontinuouson Gn and u|∂Gn
= f ,(2) f is pluriharmoni on ∂Gn in the sense of De�nition 5.1,(3) f is harmoni on every analyti dis d embedded in ∂Gn, i.e., f ◦d isharmoni on D for every injetive, holomorphi funtion d : D → Gnwith d(D) ⊆ ∂Gn,(4) the Perron�Bremermann envelope PBf is pluriharmoni on Gn, i.e.,

PB−f = −PBf ,(5) for every z0 ∈ ∂Gn and every Jensen measure µ with baryenter z0,
f(z0) =

\
∂Gn

f dµ,(6) f is ompliant on ∂Gn.Proof. The equivalene of (1), (2) and (3) follows immediately fromLemma 5.3, and (5)⇔(6) and (4)⇒(5) follow from Theorem 2.4.To prove (5)⇒(2), let k ∈ {1, . . . , n − 1} and z0 ∈ δk. Take any omplexline l through z0, and r > 0 suh that z0 + rD ⊂ l ∩ δk. Sine the Lebesguemeasure λ on D is a Jensen measure at z0 we have by assumption
f(z0) =

\
z0+rD

f dλ,whih implies that f is harmoni at z0 and therefore f is pluriharmonion ∂Gn.To omplete the proof we need to prove that (1), (2) and (3) imply (4).We proeed as in the proof of Lemma 5.3 by de�ning g = f ◦πn : ∂Dn → R.Then g is pluriharmoni on ∂Dn and therefore PBg is pluriharmoni on Dnand ontinuous on D
n by Theorem 3.3. De�ne

ϕ(w) = max{PBg(z) : z ∈ π−1
n (w)}.From [20℄ it follows that ϕ ∈ PSH(Gn) ∩ C(Gn) and ϕ|∂Gn

= f , hene
ϕ ≤ PBf ∈ PSH(Gn) ∩ C(Gn). Therefore PBf ◦ πn ∈ PSH(Dn) and
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(PBf ◦ πn)|∂Dn = g. Thus, for z ∈ π−1

n (w) we get (PBf ◦ πn)(z) ≤ PBg(z)and therefore PBf (w) ≤ ϕ(z), whih implies that ϕ = PBf .Next we prove that PBf = −PB−f . Note that PBg = −PB−g, sine
PBg is pluriharmoni on Dn and ontinuous on Dn and

PBf (w) = max{PBg(z) : z ∈ π−1
n (w)}

= max{−PB−g(z) : z ∈ π−1
n (w)}

= −min{PB−g(z) : z ∈ π−1
n (w)}.In a similar manner we get PB−f (w) = max

{
PB−g(z) : z ∈ π−1

n (w)
}. Com-bining these two representations we obtain

0 ≥ PBf (w) + PB−f (w) = max{PB−g(z) : z ∈ π−1
n (w)}

− min{PB−g(z) : z ∈ π−1
n (w)} ≥ 0,whih shows that PBf = −PB−f and ompletes the proof.By using Example 3.4 it is possible to onstrut a ontinuous funtion

f : ∂G2 → R suh that (2) of Theorem 5.4 holds but not (1); and by usingExample 3.7 it is possible to show that the impliation (6)⇒(4) is, in general,not true for n = 2. If f : ∂G2 → R is a pluriharmoni funtion in the senseof De�nition 5.1, then\
D2

(ddc(PBf◦π2
+ PB−f◦π2

))2 = 2
\

G2

(ddc(PBf + PB−f ))2,

and by Theorem 4.2 for every (ζ, ξ) ∈ ∂G2 we have
lim

(z,w)→(ζ,ξ)
(z,w)∈G2

(PBf + PB−f )(z, w) = 0.

By using Proposition 3.8, this yieldsProposition 5.5. If f : ∂G2 → R is a pluriharmoni funtion in thesense of De�nition 5.1 whih satis�es
∞∑

k1,k2=0

√
k1k2 |bk1,k2

| < ∞,then f is ompliant on G2. Here
bk1,k2

=
\

∂D×∂D

wk1

1 wk2

2 f(w1 + w2, w1w2) dσ(w1) dσ(w2),where dσ is the normalized Lebesgue measure on ∂D.In [26℄, Rudin haraterizes those real-valued ontinuous funtions on
∂D2 whih an be extended to a pluriharmoni funtion on D2. Using Rudin'sresult we obtain a similar result for ∂G2.



116 P. Åhag and R. Czy»Proposition 5.6. Let f : ∂G2 → R be ontinuous. The following arethen equivalent :(1) there exists a funtion u whih is pluriharmoni on G2, ontinuouson G2 and u|∂G2
= f ,(2) f satis�es bk1,k2
= 0 for any k1, k2 ∈ N, where bk1,k2

is de�ned asin Proposition 5.5.Proof. (1)⇒(2): By assumption, PBf is pluriharmoni on G2 and there-fore PBf◦π2
is pluriharmoni on D2, sine PBf◦π2

= (PBf ) ◦ π2. Rudin'sharaterization in [26℄ yields(5.2) \
∂D×∂D

wk1

1 wk2

2 f ◦ π2(w1, w2) dσ(w1) dσ(w2) = 0for any k1, k2 ∈ N, and therefore (2) holds.(2)⇒(1): Let f satisfy ondition (2). Then (5.2) holds for any k1, k2 ∈ N.Rudin's haraterization again shows that PBf◦π2
is pluriharmoni on D2and therefore

0 =
\

D2

(ddc(PBf◦π2
+ PB−f◦π2

))2 = 2
\

G2

(ddc(PBf + PB−f ))2.Hene, (ddc(PBf + PB−f ))2 = 0 on G2, whih implies that PBf+PB−f = 0on G2 (see e.g. [7℄). Thus PBf is the desired funtion and the proof isomplete.
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