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On deviations from rational functions of
entire functions of finite lower order

by E. CiEcHANOWICZ and I. I. MARCHENKO (Szczecin)

Abstract. Let f be a transcendental entire function of finite lower order, and let ¢,
be rational functions. For 0 < v < oo let

™y
f~v<0.5

B(n) := { sin 7y Br=Ee
Ty if vy > 0.5.

We estimate the upper and lower logarithmic density of the set

{rs 32 tog" max|f(:) ~ ()| < BO)T(r £}

1<v<k

The theory of value distribution of meromorphic functions was introduced
in the 1920’s in the papers of the Finnish mathematician Rolph Nevanlinna.
The fundamental role in this theory is played by two functions. The first of

them,
2m

1 .

- (S) log™ | f(re?)| do for a = oo,
m(r, a, f) = 1 2m 1

— \ log"|—7—|dO f

27 (S] i f(ret?) —a or a # oo,

measures the mean proximity of f(z) to the value a (here log™z =
max(log z,0)). The second one,

N(rya, f) = S n(t,a, f) —n(0,a, f)] % +n(0,a, f)logr,
0

counts the a-points of f(z) (here n(t,a, f) is the number of a-points of f(z)
in the disc {z : |z| < t}, counted together with their multiplicity).
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The first fundamental theorem of Nevanlinna states that the sum of those
two functions is to some degree independent of the choice of a € C, that is,
for a fixed f and r — oo, choosing a different value a changes the sum
m(r,a, f)+ N(r,a, f) by a bounded term.

THEOREM A ([13]). For a meromorphic function f(z) and for a point
a € C the following equality holds:

(1) m(r,a, f)+ N(r,a, f) =T(r, )+ O(1) (r — o0).

The function T'(r, f) := m(r,00, f) + N(r,00, f) is called Nevanlinna’s
characteristic function of the meromorphic function f(z).

The second fundamental theorem of Nevanlinna shows that for most val-
ues a the main role in the invariant sum (1) is played by the counting function

N(r,a, f).
THEOREM B ([13]). Let {ax}{_, C C be a finite set. Then

> m(r,ax, f) < 2T(r, f) + O(log(rT(r, f)))
k=1

for r — oo, except possibly for r in a set of finite linear measure.

The quantity
e as f)
oa, f) = Hminf =772
is called Nevanlinna’s defect of the meromorphic function f(z) at the point
a € C. We refer to the set D(f) = {a € C: d(a, f) > 0} as the set of defective
values of f(z). The first fundamental theorem of Nevanlinna implies that
0 <é(a, f) <1forall a € C. The second fundamental theorem, on the other
hand, means that the set D(f) is at most countable and > = d(a, f) < 2.
In 1986 the following extension of the second fundamental theorem of
Nevanlinna was shown by G. Frank and G. Weissenborn.

THEOREM C ([5]). Let f(z) be a transcendental meromorphic function.
Then for any distinct rational functions q1(2),...,qk(z) we have

k
1
m(r, f) + Zlm<r f_—q> < (24 o())T(r, f)

for r — oo, except possibly for r in a set of finite linear measure.
Also in 1986 N. Steinmetz proved a more general result.

THEOREM D ([16]). Let f(z) be a nonconstant meromorphic function
and let {al,}',jzl be a set of pairwise distinct meromorphic functions such
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that for 1 <v < k we have T(r,a,) = o(T(r, f)) as r — oo. Then

k

1

m(r,f)+ m\r, S(Q-FO(l))T(T,f)
I; < f_al/>

for r — oo, except possibly for r in a set of finite linear measure.

In 1969 Petrenko raised a question: how will Nevanlinna’s theory change
if we measure the proximity of a meromorphic function f(z) to a value a
applying a different metric? In order to find the answer he introduced the
function of deviation:

|m|ax10g+ |f(2)] for a = oo,
E(Ta a, f) = - 1
max log™ 7‘ for a # oc.
Hr 8 ) —a 7
The quantity
. . L(T, a, f)
G(a, f) = liminf ————=
( f) 00 T(T‘, f)

is called the magnitude of deviation and 2(f) = {a € C : B(a, f) > 0} the
set of positive deviations of f(z).

It is easy to notice that for all @ € C we have 6(a, f) < ((a, f). Therefore
D(f) C £2(f). In the case of meromorphic functions of finite lower order

A := liminf 710g T(r, f)
r—00 log r

the properties of 3(a, f) strongly resemble the properties of d(a, f). Petrenko
himself obtained a sharp upper estimate for 5(a, f) and also an estimate for

Zaé@ 6(a7 f)

TuEOREM E ([15]). If f(z) is a meromorphic function of finite lower
order A, then for all a € C we have

TA )
lg(a7 f) S B(A) = { Sinﬂ')\ Zf )\ S 057 (2)
A if A> 0.5, 3)
> Bla, f) < 816m(A+ 1)

acC
The value B() is called Paley’s constant. In 1932 Paley [14] conjectured
that (3) holds for any entire function f(z) and a = oo. This was proved by
Govorov [8] in 1969. It should be mentioned that (3) follows from a result of
Gol’dberg and Ostrovskif [7].
In 1990 Marchenko and Shcherba obtained a sharp estimate of the sum
of deviations, which is an analogue of the estimate of the sum of defects.
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THEOREM F ([12]). If f(z) is a meromorphic function of finite lower
order \, then

> Bla, f) <2B(N).
acC
Let us now recall the definitions of the lower and upper logarithmic den-
sity of a set. Let £ C (0,00) be a measurable set. The quantities

_ dt
logdens F = lim sup S —,
R—oco 108 R
EN[1,R)
1 dt
logdens £ = hm inf S —
R—oo IOg R
EN[1,R]

are called respectively the upper and lower logarithmic density of the set E.
In 1998 Marchenko gave the following analogue of the second fundamental
theorem of Nevanlinna.

THEOREM G ([11]). Let f(z) be a meromorphic function of finite lower
order \ and of order o. Let {a,}k_, be a finite set of distinct complex num-
bers. For 0 <~y < oo put

k
Ev(y) = {r: Y £0na, £) < 2BO)T(r )}
v=1

Then
logdens E1(y) > 1 —A/y and logdens E1(y) >1—0/7.

Moreover, in [11] it is shown that for an entire function f(z) the estimates
from Theorem G also hold for the set

k
Ba(y) = {r: Y £ an, £) < BOT(r, )}
v=1

Let now {q, }*_, be a finite set of distinct rational functions and let f be
a transcendental entire function of finite lower order. We put

e ﬁ(hqu)
Blqw, f) = hgg)lfw,

where L(r,q,, ) = ﬁ(r 00, 7= q ) Our main result is the following theorem.

THEOREM 1. Let f(z) be a transcendental entire function of finite lower
order \ and of order o, and let 0 < v < oc. Let also {q,(2)}F_, be distinct
rational functions. Put

k

B(y) = {r: 3 Lira. f) < BO)T( 1)}

v=1
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Then
logdens E(y) > 1—MA/y and logdensE(vy) >1— o/7.
Write 991 for the set of all rational functions.

COROLLARY. Let f(z) be a transcendental entire function of finite lower
order . The set {q € M : B(q, f) > 0} is at most countable. Moreover, for
any distinct rational functions {q,(z)} we have

> Blaw, f) < B(N).

1. Auxiliary results. In order to prove Theorem 1 we need a version
of the lemma on the logarithmic derivative, which follows from Lemma 4
of [11].

LEMMA 1. Let f(z) be a meromorphic function. Then, except possibly
for v in a set of finite linear measure, for k =1,2,... we have

k) _ R
log™ M(r, T) =O(log(rT(r,f))) (r— o)

where M (r, f) = max, —, | f(2)| and %) s the kth derivative of f.

We first prove Theorem 1 for linear functions, then for all polynomials,
and finally we handle the general case.
So assume that f(z) is a transcendental entire function of finite lower

order A and that for 1 <v <k,
pu(2) = ayz+ b,

are polynomials of degree deg(p,) < 1 such that for v # n we have a, # a,
or b, # b,. Choose Sy > 0 such that if |2| > Sy, then p,(2) # py,(2) for all
1<v,n<k,v+#n. For v#nwe put

Cvn = min [pu(2) = py(2)] >0, min ey =c>0.

Let {R,} be a sequence of positive numbers such that

logT log T
A — fiming 08T S) _ o Jog TR, )
T—00 ogr n—oo log Rn

For n > ny we consider the set
G = {z: 80 < |2 < Ru, |fP(2)] < 1/RYTY,
where ng is chosen in such a way that for n > ng we have

(4) T(3R,, f) < R)™1 and 207%/R, < c/4.
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Now for 1 < v < k we write G, , for the set of those connected components
of GG, which contain a point z; such that

(5) |f(21) —ayz1 — by| < ¢/4
and a point zo such that
(6) f M (22) — an| < 1/RH

We are going to show that for v # 7 the sets G, and G, are disjoint.
We apply the method introduced by Weitsman [17]. Let I(¢) be the length of
the level line |f()(2)| = t in the disc |z| < R,. The rule of line and square
(see [9]) gives

TR
| ©) g < 2m’R2,
0

where

It follows easily that

1 . f(2 . f(2)
_ | = ZSO w J
n(Rn, 7@ teW’) n<Rn, e ) 10g2 <2Rn, e'?, ; )

< o7 (2. 1) ot
gi[ T(2Rn, f?) + log* }+O()

Applying the lemma on the logarithmic derivative to the entire functions
fM) and f we obtain

T(2Rn, f®)) = m(2Rn, f) < m(2Ry, fP/ V) + m(2R,, 1Y)
< m2Ry, O/ V) +m(2Rn, Y/ f) + m(2Rn, f)
< 510gT(3Rn, fV) + 5log T(3Rn, f) + T(2Rn, f)
< 3T(3Rn, f).
Therefore

17T 1
b0 =5 ) (e for ) 2

iQSﬂ L (T@R.. @) +10gt 1) 4 0(1)| d
~ 2w | [log2 " & 3 ¢
< 10;( (2R, f?)+log* >+O( ) < g3 <3T(3Rn,f)+log+ %)
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Let now 71 = 1/R)** and 4o = 27v;. Then

22 ﬁ FE0) log 2 G
w2 S 6 ) B Sm ) e S

This way we get

72 12 2 P2
l 2 Ry 1
| ®) T <3T (3R, f) + log™ >
T gL
2 2R2
T <3T (3R, f) + (A +4) log Rn>.
Moreover
72 2(t) —logm (A+4) log Rn
| — - dt = | e hat= | 12(e7t) dt.
71 —log v2 (A+4) log Ry, —log 2

Thus there exists a € [(A+4) log R,, —log 2, (A+4) log R,] such that I(e™®) <
AT Ry /T (3Ry, f). We put
G'={z:8) <|z| < Ry, log|fP(2)| < —a}.

It is easy to see that G, C G, C G'. Let z € G,,,. Then there exists a
connected component G of G, such that z € G C G, C G, C G'. We
connect points z and z3 by a line I' C G’ whose length is not greater than
the length of the boundary of G’. Thus we have

£0) =1 e)| = § 1O ) o] < [ 1O )] | <47 B TR, ) .
r r (@
It follows that for z € Gy, .,
(7) 1D (2) — au] < 1FD(2) = FO(z2)] + If(l)(Z2) — ay|
(4rRy/T(3Ry, f) + 1) )\+4

Next, we connect z and z; by a line I C G’ whose length is not greater
than the length of the boundary of G’. This way we get

®) 1f() = fe) —alz= =)l = || (FD© —a,) dg
I
< | 1FY©) = ay] |dg]
I
(47 R /T (3R, f) + M—Vg(f’“ﬁ
<207r27T<3R”’f ).

R)?
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Now, taking into consideration the inequalities (4)—(8), we can estimate
|f(2) —pu(2)| for z € Gy, .. For n > ng we get

£ (2) = pu(2)] < |F(2) = f(21) = au(z = 20) [ + | f(21) = pu(21)] < ¢/2.

This shows that G, , NGy, =0 for v # 1.
Now for 1 < v < k and n > ng we consider the functions

1
log ———,
Unp(2) = | f@(2)]
(A+4)logR,, z¢& Gp,.

z € Gy,

Each uy,,(2) is a §-subharmonic function in Sy < |2| < R,. Let us recall the
definition and basic properties of Baernstein’s function 7™. For a complex
number z = re’® we put [1]:

* _ - ip d
m*(z, uny) = ‘;o'u%e o S Un,(re'?) dp,
T*(z,upn,y) = m*(z, Un,v) + N(r,un),
where r € (Sp, Ry,), 0 € [0,7], |E| is Lebesgue’s measure of the set E and

N(r,un,) counts the zeros of f)(2) in Gy, N{z: |z| < r}. Write @y, (2)
for the circular symmetrization of u, ,(2). It is easy to notice that

6
1
m* Z Un,v :_Sun,u
7TO

From Baernstein’s theorem (see [1]) the function 77(z,uy ) is subharmonic
on

D:{rew:So<r<Rn,n>n0,O<0<7T},

continuous on D U (=R, Sp) U (So, R,,) and logarithmically convex in r €
(So, Ry,) for each fixed 6 € [0, 7]. What is more, for r € (Sp, Ry),
T*(ryuny) = N(run,),  THre™ un,) = T(r un),
0, . Up,p (re?
%T (re? up,) = 7%1/; )
where T'(7, uy,,,) is the Nevanlinna characteristic of wuy, , (2).
For a(r) a real-valued function of a real variable r we consider the oper-
ator

for 0 < 6 <,

h —hy _
La(r) = lim inf a(re™) + a(re™") 204(7“)'
h—0 h?

If a(r) is twice differentiable in r, then
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As T*(re® u,,) is a convex function of logr, for Sy < r < R,, and 6 € [0, 7]
we have
LT*(re® u,,) > 0.

LEMMA 2. For almost all 0 € [0, 7] and almost all r € (Sp, Ry,),
- 1 Oy, (re'?)
LT* i6 . > - PN 7
(re”, upy) > - 20

The proof of this lemma can be conducted along the same lines as the
proof of Lemma 1 in [11].
We now put [12]

k

T3 (2, f) == ZT*(z,un,y).

v=1
It follows from the definition of the operator L and from the logarithmic
convexity of each T*(z, uy,,) that

k
LT3 (2, f) > > LT*(2,un,) > 0.

v=1
Moreover, Lemma 2 implies that
k —~ .
1 Ot (re'?)
LT} > —— —e 7
O(Z7f)-— ﬂ_;;; o0

For 7 > 0 we choose numbers o and 1 such that
T T m
0 < mi = <Y< — —q.
<a< 1n(7r,27_), 27_1#_27_ «

We set

k k
1 1 .
hn(r,7) == — g Un,p (1) COSTY — - E Up,p(re'®) cosT(a+ 1)
v=1 v=1

k
—7sinT(a 4+ )Ty (re', f) 4+ 7sin 1 Z N(r,uny).

v=1

LEMMA 3. Let A= {r:Sp <r < Ry, hn(r,7) > 0}. Then

TX % <logT(2R,, f) +loglog R, + O(1) (n — o0).
A
Proof. We put [4, 6]
o(r) = S Ti (re, f) cos (0 + 1) db.
0
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As T§(r,0,upy) is a convex function of logr, applying Fatou’s lemma we
obtain

(9) Lo(r)

L S T (re®, f) cos (0 + ) db
0

v

| LTy (re®, 1) cos (6 + ) db > 0.
0

It follows that o(r) is a convex function of logr, so ro’ (r) is increasing on
(S0, Ry). Therefore for almost all r € (Sp, Ry,),

d
La(r)—rﬂra (r),
where o” (7) 1s the left derivative of o(r) at r. Lemma 2 and inequality
h " (r) is the left derivati f o(r) L 2 and i lity (9)

imply that for almost all r € (Sy, Ry,),

d 17 a'zz ¢
Lo(r)=r o ro’ - (S) ; cos T(0 + ) db

If for r € (So, Ry) there are neither zeros nor poles of f(z) on the circle
|z| = r, the function u,, , (re'?) satisfies the Lipschitz condition in . There-
fore 1, (re'?) also satisfies the Lipschitz condition on [0, 7] (see [9]). This
means that 1, , (re’) is absolutely continuous on [0, 7]. Integrating twice by
parts we obtain

a ko i0
1 n,v
T 00
0v=1
1 .
= - Zlum,,(re yeosT(a+ 1) — — ;un v(1) cos T
‘ k
+ 715 (re'®, f)sinT(a + ) — 7 Z N(r, up,)sinty — 7’20'(7“)
v=1

= —hp(r,7) — T30 (7).
From this, and from the monotonicity of @y, (re), we have
(10) hn(r,7) 4+ 720(r) > 0 for r € (Sp, Ry).
This way for almost all r € (Sp, R,,) we obtain the inequality
d
m ra’ (r) > hp(r,7) + 720 (r).

We divide this inequality by r” ! and integrate by parts over [r, R,] (see [10])
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to obtain
Rn R, Rn 4
X t7'+1 dt < S t_at t)dt+ 7° X PR (t) dt
T T T
a(t)\ ™
< < > R SO <r<R,
-
We now apply the method of P. Barry [2, 3]. Set
R
"y (t,7)
o(r) = — | ZT+1 dt, So<r <Ry,
T
From the above considerations we have
o' (R,) _o(R,)  o.(r) o)
(11) b(r) > — o -7 R + 1 + 7 s

We now put
o' (Ry) o(Ry)
R;'Lfl +7 RT '

n

v(r) =17 | () +

Thus from (11) we obtain
Y(r) >re’(r)+71o(r), So<r <R,
By the above and (11) we get

i (r) = Tp(r) + hy(r,7) > 770’ (1) + 720 (1) + hp(r, T)
> 7ro’ (r) > 0.

The function T (re', f) is increasing for r € (So, R,) and hence o(r) is
increasing on (Sy, Ry,). Therefore ro’ (r) > 0 for all r € (Sy, R,). Moreover,
o(r) > 0 for all r € (Sp, Ry,). This way we have

P(r) > raL(r) +71o(r) > 0.

If r € A then r¢/(r) > 7¢(r) > 0. Therefore ¢'(r)/1(r) > 7/r. Conse-
quently,

(12) T

I QA V(Ra)
AN[1,Ry) AL, Ry W(r) ¥(S0)

But ¥(R,) = R0’ (R,) 4+ 70(Ry). The definition of o(r) implies that

)
") dr = log

Ry,
dr < S
So

«

o(r) = STS(reie, f)cosT(0+)do < LiéTa‘(reie, f)de
0

0
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What is more,
k

Ti(z, f) = T (re, f) = ZT* (2,tnp) = > _(m*(2,uny) + N(r,upn,))

v=1
< T(r,f( )) + k(X +4)log Ry,
<2T(r,f)+k(A+4)logR,,.
Therefore we have
o(r) <2rxT(r, f)+ k(A4 4)log R,,.
From the monotonicity of ra’ (r) we get
2r
ro’ (r) < S o (t)dt <o(2r) <2nT2r, f) + wk(A+ 4)log R,.
This way from (12) we obtain
| &< log V(B
r ¥ (So)

=log[Rno’ (Ry) + To(Ry)] + O(1)
<logT(2R,, ) +loglog R, + O(1), n — oo,

<log¥(Ry) + O(1)

r
AN[LR,]

and the proof of Lemma 3 is complete.

2. Proof of Theorem 1. We show the estimate for the upper logarith-
mic density of E(). The proof for the lower logarithmic density is similar,
with R, replaced by any positive number R, and the lower order A replaced
by the order .

We start with the following sum:

k
L(r,py, 1 max ——————
2 Lpesf) -t O — )]

v=1

zlo :
- & f(rei) —p,(reit)|’

where r € (Sp, Ry,) and p, are polynomlals with deg(p,) < 1for 1 <v <k.
If | f(re®) — py(re®”)| > c/4 then

1 4

- i <logt =

F0re®) = pu(re)] = '8

Let now | f(re®) — p,(re')| < c¢/4. Then we have

| (f = p) P (re)
(f = po)(re?)

log™

+log™

< log

1
logt _
8 N = p)(re®)] =

1
FO(re) |
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or
1

(f =)V (rei®) |

1 (f = p) D (re®)
|(f = pu)(rei®)] (f — pv)(ret)
If ’f(z) (Teie”)! > 1/R,){+4, we obtain

1 f(Q)(TeieV)
T p)0re) T p)e®)

If, on the other hand, |f®(re’)| < 1/R)}* we have either (for
|(f = p) P (re)| > 1/R)H)

<log™ +log™

log™

log™ | < log™ + (A +4)logR,,.

(f = p) M (re™)
(f - py)<rez’0u)

< log™ + (A +4)log Ry,

log™

1
|(f = po)(re))|
or (if |(f —pu) M (re®™)| < 1/R3+)

10g+ < an,z/(r)‘

1
F@ o)
It follows from the inequalities above that in general for r € (Sp, R,) and
1 < v <k we have

log™t

(f —py)(1)>

< Up (1) + log™ M(r, 7
—DPv

(f _ pu)(2)
f—pv

1
|(f = pu)(re?®)]|
4
+log™ M<r, > + (A +4)log R, +1log™ —.
&

This way we obtain

y - : — o)
(13) Z ﬁ(r7 Pv, f) S Z ﬁn,y(r) + Zlog+ _Z\J(r7 M)
v=1 v=1

v=1 f_pl/
b — )@ 4
+ ZlogJr M(r, (ff_ip;;)> + k(A +4)log R, + klog™ e

v=1

Now, in the case v < A the assertion of the theorem is obvious, so let

v > A. We choose A < 7 < v and set & = min(mw,7/27) and ¢ = 7/27 — a.
Then we have

. r k k
sin T - T . in
hn(r,7) = - Un,p (1) — — (TD (re’) — cosTa Z N(r,uy, l,))}
tv=1 v=1
sinra [ T
> Nn Y T e
-7 _yzlu ’ (r) sinta (re )}
sinTa k
> Unw(r) — B(r)T(r, f@) — B(r)wk(\ +4) 10an]
T

v=1
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We now consider the set

A= {r € (So, R Zun v )T(r, f®)—B(r)wk(A+4) log Ry, > 0}.
If r € Ay, then h,(r, T) > 0 and by Lemma 3,

n
dt
T S " <logT(2Ry, f) + loglog R,, + O(1).
A1ﬂ[1,Rn]
If r ¢ Ay, then
k
U (r) < B(1)T(r, fP) + B(r)mk(\ + 4) log R,,.
v=1

Thus for r € [So, Ry] \ A1 from (13) we get

k
Z L(r,py, f) < B(T)T(r, fP) 4+ (B(r)m + 1)k(\ + 4) log Ry,

2)
Zlog+M< ff p; > Zlog"'M( ff p,,) )—l—klog+
v v=1 -

Applying Lemma 1 we find that, except possibly for r in a set of finite linear
measure, for r € [So, Ry] \ 41,

k
> L(r,py, f) < B(r)T(r, f) + o(T(r, f)) + O(log Ry,).
=1

Choose £(R) — 0 such that T(R*"), f)/log R — oo as R — oo, and put

Sp = RZ(R"), where {R,,} is the sequence from (4). Let also r € [Sy, Ry].
Then from the definition of S,, we get

TR, )
log R,
for r € [Sy, Ry), which implies that log R,, = o(T'(r, f)) (n — o).

Therefore for r € Sy, R,] \ A1, except possibly for r in a set of finite
linear measure, we have

T(r,f) > T(Sn, f) =logR,

k
D Lo, f) < (B(r) + o()T(r, ) < BOT(r, f)  (n— o0),
v=1

This, together with (13), leads to the estimate
dt dt dt
| == | —>r | —+0(1)
E(y)N[1,Ry] E(y)N[Sn,Rn] [Sn.Rn]\A1
>71(1—¢e(Rp))log Ry, —logT(3R,, f) —loglog R,, + O(1)

T
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as n — oo. We divide this inequality by log R,;:
_log T(3Ry, f) _ loglog R,, + o(1)
Tlog R, Tlog R, '

1 dt
s (1—
log Ry, S t — (1 =&(Fn))

E(7)N[So,Rn]

From the definition of {R,,} we obtain, for 7 < ,
logdens E(y) > 1— \/T.
Letting 7 — v we get
logdens E(y) > 1 — A/7.
Thus we obtain the statement for polynomials with deg(p,) < 1.

This result can be extended to polynomials of higher degrees the following
way. Let {p,}%_, be a set of distinct polynomials such that deg(p,) < d for
1 < v <k, and d > 1. We define the numbers Sy, ¢ and the sequences
{R,}, {Sn} as before. For n > ngy we consider the set

_[atl
Gn={2:80 <|z| < Ry, £ (2)] < Rn[ : (A+1)+d+2]}’

where ng is chosen in such a way that for n > ng we have
[(2d + 2)4F! 4 (2d 4 2)Yn?+t ¢
< -.
R, 4

Now for 1 < v < k we write G, ,, for the set of those connected components
of GG,, which contain a point z; such that

|f(21) = pu(21)] < c/4
and points 2g, ..., z411 such that for j =2,...,d+1,
[4EL (A +1)+d+2]

T(3R,, f) < R)! and

1197 0(z) =V (z) < Ra
The fact that the sets G, and Gy, are disjoint for v # 7 can be shown

in a similar way to the case of polynomials of degree deg(p,) < 1. Thus for
1 <v <k and n > ng we may consider the functions

1
Wa z € Gpy,

d+1
%(A+1)+d+2 log R, z¢ Gh,.

log
(14) Unp(2) ==

Lemmas 2 and 3 also hold for the functions u, ,(z) defined in (14). The
rest of the proof of Theorem 1 can be done analogously to the case when
deg(py) < 1.

Let now {q,(z)}%_, be a set of distinct rational functions and let f(z) be
a transcendental entire function of finite lower order. We choose a polynomial
p(z) such that for 1 < v < k each p,(z) := p(z) - ¢,(2) is a polynomial. We
also set F'(2) :=p(2) - f(2).
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As in the previous case, for r € (Sp, R,,) we consider the sum

k k
1
L(r,q,, f) = 1 max ;———~—————.
Vz::l (7q f) Zog ‘z|ar ’f( )—ql,(z)|

v=1

We have

O maX ! = O+maXL
3o s e ~ B B

k
1
< 1 —_—
—; o8 X (P o (2

+ klog™ max |p(2)|.
|2|=r

We obtain
k

k
D L0 ) < 3L F) +olT(RS) (= o0)

v=1

As we have already obtained the statement for polynomials, we may
apply all the previous estimates to the transcendental entire function F'(z)
and distinct polynomials p,(z) and thus complete the proof of Theorem 1.
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