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∂-cohomology and geometry of the boundary

of pseudoconvex domains

by Takeo Ohsawa (Nagoya)

Abstract. In 1958, H. Grauert proved: If D is a strongly pseudoconvex domain in a
complex manifold, then D is holomorphically convex. In contrast, various cases occur if
the Levi form of the boundary of D is everywhere zero, i.e. if ∂D is Levi flat. A review is
given of the results on the domains with Levi flat boundaries in recent decades. Related
results on the domains with divisorial boundaries and generically strongly pseudoconvex
domains are also presented. As for the methods, it is explained how Hartogs type extension
theorems and L2 finiteness theorem for the ∂-cohomology are applied.

Introduction. A fact lying at the basis of complex analysis of sev-
eral variables is that not every odd-dimensional orientable real manifold is
realized as the boundary of a Stein space. For instance, a real (2n − 1)-
dimensional torus bounds a Stein space if and only if n ≤ 2 by a topological
reason (cf. [O-2]).

On the other hand, although local differential geometric studies of the
boundaries of strongly pseudoconvex domains are well developed (cf. [Tn],
[C-M], [W]), relatively few things are known about their global geometric
properties. So it makes sense to study global questions of the boundaries of
pseudoconvex domains from various viewpoints (cf. [H]).

The purpose of the present note is to give a short expository account
on our recent results [O-6–12] as examples of such trials. Here we shall
be mainly concerned with certain flatness properties of the boundaries of
pseudoconvex domains in complex manifods.

As the research works directly foregoing ours, we would like to mention
[D-O-1,2,3], [LN], [Ne] and [U-2,3].

If §1 we shall review some generalizations of the Hodge theory and
Kodaira’s vanishing theorem to complete Kähler manifolds, and deduce
from them Hartogs type extension theorems on weakly 1-complete mani-
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folds. In §2, after recalling the motivating examples and theorems, we shall
make an overview of our results with outlines of their proofs based on the
facts presented in §1. Finally, in §3 we shall sketch how a finiteness of L2

∂-cohomology (cf. §1, Theorem 1.3) is applied to show the nonexistence of
Levi flat components of certain domains with pseudoconvex boundary.

1. ∂-cohomology on complete Kähler manifolds. Let M be a com-
plex manifold of dimension n and let E be a holomorphic vector bundle
over M . The rank of E may be restricted to one for the later applications.

Let Cp,q(M,E) denote the space of C∞ E-valued (p, q)-forms on M and
let ∂ : Cp,q(M,E) → Cp,q+1(M,E) be the complex exterior derivative of
type (0, 1). The E-valued ∂-cohomology group of M of type (p, q), which will
be denoted by Hp,q(M,E), is by definition the kernel of ∂ : Cp,q(M,E) →
Cp,q+1(M,E) modulo the image of ∂ : Cp,q−1(M,E) → Cp,q(M,E).

We put

Cp,q0 (M,E) = {u ∈ Cp,q(M,E) | suppu is compact}
and denote the kernel of ∂ : Cp,q0 (M,E) → Cp,q+1

0 (M,E) modulo the image

of ∂ : Cp,q−1
0 (M,E) → Cp,q0 (M,E) by Hp,q

0 (M,E).
Then there exists a canonical long exact sequence

(1) · · · → Hp,q
0 (M,E) → Hp,q(M,E) → lim−→Hp,q(M \K,E)

→ Hp,q+1
0 (M,E) → Hp,q+1(M,E) → · · · .

Here lim−→ denote the inductive limit with respect to the natural restriction
homomorphisms

Hp,q(M \K,E) → Hp,q(M \K ′, E) (K ⊂ K ′)

where K runs through the compact subsets of M .
From (1) we infer that the restriction homomorphism

Hp,q(M,E) → lim−→Hp,q(M \K,E)

is surjective if and only if the homomorphism ι : Hp,q+1
0 (M,E) →

Hp,q+1(M,E) induced from the inclusion Cp,q+1
0 (M,E) → Cp,q+1(M,E)

is injective.
It is known that ι is injective if (M,E) satisfies some differential geo-

metric conditions. Such results are important for our purposes.
From now on we assume that M and E are equipped with a complete

Kähler metric g and a C∞ Hermitian fiber metric h. Let ω be the funda-
mental form of g. By an abuse of language, we shall also call ω a Kähler
metric.

By identifying h with a section of the bundle Hom(E,E∗), where E
denotes the conjugate of E and E∗ the dual to E, we put ∂h = h−1 ◦ ∂ ◦ h.
Here ∂ denotes the complex exterior derivative of type (1, 0). Recall that the
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curvature form Θh of h is by definition an element of C1,1(M,Hom(E,E))
which satisfies

(2) Θh ∧ u = (∂∂h + ∂h∂)u

where u runs through the C∞ E-valued forms on M . (E, h) is said to be
flat if Θh = 0.

Let T 1,0M (resp. T 0,1M) denote the holomorphic (resp. antiholomor-
phic) tangent bundle of M .

We put
Θ̃h = (Id(T 0,1M)∗ ⊗h) ◦Θh

by identifyingΘh with an element of C0,0(M,Hom(T 1,0M⊗E, (T 0,1M)∗⊗E)).

Then Θ̃h is a Hermitian form on the fibers of T 1,0M ⊗ E. We say (E, h) is

Nakano semipositive (resp. Nakano seminegative) if Θ̃h is semipositive (resp.
seminegative) everywhere.

If E is the trivial bundle M×C and h(z)(ζ, ζ) = e−ψ(z)|ζ|2 for (z, ζ) ∈ E,
for some real-valued C∞ function ψ on M , we have Θh = ∂∂ψ. In this case
(E, h) is flat (resp. Nakano semipositive) if and only if ψ is pluriharmonic
(resp. plurisubharmonic). By an abuse of notation, we shall identify ∂∂ψ
with the Levi form, i.e. the complex Hessian of ψ.

Let ϑh (resp. ϑ) denote the formal adjoint of ∂ (resp. ∂h) with respect
to g and h.

An element u ∈ Cp,q(M,E) is said to be harmonic if u is square in-
tegrable with respect to g and h and satisfies the equations ∂u = 0 and
ϑhu = 0.

We put

Hp,q(M,E) = {u ∈ Cp,q(M,E) | u is harmonic}.
The space Hp,q(M,E) depends on the choice of g and h in general, but
in some cases it is canonically isomorphic to the space Hp,q(M,E) by the
homomorphism induced from the inclusion map (cf. [O-3]). For our purpose
here, the following specialized form is sufficient.

Theorem 1.1. Let (M, g) and (E, h) be as above. Suppose that there

exists a C∞ plurisubharmonic exhaustion function ϕ on M whose Levi form

has everywhere at least n − k + 1 positive eigenvalues outside a compact

subset of M . Then there exists a C∞ convex increasing function λ on R

such that the space Hn,q(M,E) with respect to the metrics g and he−λ(ϕ) is

canonically isomorphic to Hn,q(M,E) if q ≥ k.

For the proof of the case where rankE = 1 and Θ̃h > 0 outside a compact
subset of M , see [O-1]. The general case is similar.

Remark. A theory with a scope wider than Theorem 1.1 was developed
in [O-3, Chap. 2] to describe a condition for the isomorphism Hp,q(M,E) ≃
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Hp,q(M,E), by combining the methods of Andreotti–Vesentini [A-V] and
Hörmander [Hö].

Definition 1.1. M is said to be weakly 1-complete if M is equipped
with a C∞ plurisubharmonic exhaustion function ϕ : M → R.

Theorem 1.2. Let (M,ϕ) be a noncompact and connected weakly

1-complete manifold equipped with a complete Kähler metric g, and let (E, h)
be a Nakano semipositive vector bundle over M . If ∂∂ϕ has everywhere at

least n− k + 1 positive eigenvalues outside a compact subset of M , then

(3) Hn,q(M,E) = 0 for q ≥ k.

Sketch of proof (see also [G-R] and [T]). By Theorem 1.1 there ex-
ists a C∞ convex increasing function λ such that Hn,q(M,E) is isomor-
phic to Hn,q(M,E) with respect to g and he−λ(ϕ). By the Nakano semi-
positivity of (E, h) and the assumption on ∂∂ϕ, it is easy to see from a
Bochner–Weitzenböck type formula of Nakano (cf. [N]) that each element
α of Hn,q(M,E) (q ≥ k) is zero outside a compact subset of M . Since M
is noncompact and connected, α is identically zero on M by Aronszajn’s
unique continuation theorem (cf. [A]).

The equality (3) means that the ∂-equation ∂u = v is solvable for any
C∞ ∂-closed E-valued (n, q)-form v on M .

If dimHn,q(M,E) < ∞, then for any finitely many ∂-closed C∞

E-valued forms vj (j = 1, . . . ,m) with m > dimHn,q(M,E), there exists a
nontrivial linear combination

∑
cjvj (cj ∈ C) for which the equation

u =
m∑

j=1

cjvj

is solvable. We shall later apply such a weak solvability in a refined form.
To state such a refined variant of the finite-dimensionality of Hn,q(M,E),
let us recall the notion of the L2 ∂-cohomology.

Let Lp,q(2)(M,E) denote the space of measurable E-valued (p, q)-forms

on M which are square integrable with respect to g and h. For any u ∈
Lp,q

(2)
(M,E) the derivative ∂u is defined in the distribution sense. Then the

E-valued L2 ∂-cohomology group Hp,q
(2)(M,E) is defined as the space of ∂-

closed elements of Lp,q
(2)

(M,E) modulo the subspace

{∂w ∈ Lp,q(2)(M,E) | w ∈ Lp,q−1
(2) (M,E)}.

Theorem 1.3 (cf. [O-10, Corollary 1.2]). Let (M, g) be a connected com-

plete Kähler manifold of dimension n and let (E, h) be a holomorphic Hermi-

tian line bundle over M . Assume that there exists a compact set K ⊂M such

that on each connected component of M \K either iΘdV⊗h ≥ ω everywhere
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or −iΘh ≥ ω everywhere. Then dimH0,q
(2)(M,E) < ∞ for 1 ≤ q ≤ n − 1.

Here dV denotes the volume form of g as a fiber metric of the anticanonical

bundle K∗

M =
∧n T 1,0M .

Now let us recall the Hartogs type extension theorems.

Theorem 1.4. Let (M,ϕ) and (E, h) be as in Theorem 1.3. Then

(4) H0,q
0 (M,E∗) = 0 for q ≤ n− k.

Proof. By Serre’s duality theorem we obtain (4) from (3).

Corollary 1.1. In the above situation, the natural restriction homo-

morphisms

H0,q(M,E∗) → lim−→H0,q(M \K,E∗)

are surjective for q ≤ n− k − 1.

From now on we assume that (E, h) is a flat vector bundle. Then the
exterior multiplication by ωm induces a homomorphism

ωm : Hp−m,q−m(M,E) → Hp,q(M,E)

which is bijective if p+ q = n+m (the Lefschets isomorphism).
Combining this classical fact with a harmonic representability as in The-

orem 1.1, we obtain the following.

Theorem 1.5 (cf. [O-2], [O-T], [D]). Let (M,ϕ) be a weakly 1-complete

manifold of dimension n equipped with a Kähler metric g, and let (E, h)
be a flat Hermitian vector bundle over M . Assume that ∂∂ϕ has at least

n − k + 1 positive eigenvalues outside a compact subset of M . Then ωm

induces an isomorphism between Hp−m,q−m
0 (M,E) and Hp,q(M,E) for 1 ≤

m ≤ p+ q − k + 1.

Corollary 1.2. In the above situation, the natural homomorphism

Hp,q
0 (M,E) → Hp,q(M,E)

is surjective if p+ q ≥ n+ k.

By the Serre duality we obtain

Corollary 1.3. In the above situation, the natural homomorphism

Hp,q
0 (M,E∗) → Hp,q(M,E∗)

is injective if p+ q ≤ n− k.

Thus we obtain the following Hartogs type extension theorem.

Theorem 1.6. Let (M,ϕ) and (E, h) be as in Theorem 1.5. Then the

restriction homomorphism

Hp,q(M,E∗) → lim−→Hp,q(M \K,E∗)

is surjective if p+ q ≤ n− k − 1.
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2. Domains with Levi flat or divisorial boundary. Let D be a rel-
atively compact domain in a complex manifold X. H. Grauert [G-1] showed
thatD is holomorphically convex if ∂D is C2-smooth and everywhere strong-
ly pseudoconvex. From this it follows immediately that D is holomorphically
convex if ∂D is the support of an effective divisor A such that [A]|∂D is am-
ple. Here an effective divisor is by definition a formal linear combination of
finitely many 1-codimensional subvarieties with nonnegative integral coef-
ficients, and its support is the union of these subvarieties. [A] denotes the
holomorphic line bundle associated to the divisor A. (D is actually bimero-
morphically equivalent to a Stein space with isolated singularities under such
conditions.)

We want to know what happens if, in contrast with the above situation,
one of the following conditions is satisfied.

1) ∂D locally admits pluriharmonic defining functions.
2) ∂D is the support of an effective divisor A such that [A]|∂D is topo-

logically trivial.

A compact real hypersurface S ⊂ X of class C2 is said to be Levi flat

if the holomorphic tangent vectors of S are annihilated by the Levi form of
the defining function of S. If S is real-analytic, then it is clear that S is Levi
flat if and only if it is locally defined by pluriharmonic functions.

We shall assume throughout this section that ∂D is either a Levi flat
real-analytic hypersurface or a complex-analytic subset of codimension one.

Here are some of the motivating examples:

(i) Let X be a complex 2-torus defined as C2 modulo

Z

(
1

0

)
+ Z

(
0

1

)
+ Z

(
i

i

)
+ Z

(√
2 i

i

)

and let

D =

{[(
z

w

)]
∈ X

∣∣∣∣ 0 < Re z < 1/2

}
.

Then (X,D) satisfies 1). It is easy to see that D admits no noncon-
stant holomorphic functions (cf. [G-2]).

(ii) Let X = P1 × (C∗/Z), where C∗ = C \ {0} and the action of Z

on C∗ is defined by m · z = emz for m ∈ Z and z ∈ C∗, and let
D = {(ζ, [z]) ∈ X | Re(ζz) > 0}. Then (X,D) satisfies 1). It is easy
to see that D is biholomorphically equivalent to the product of C∗

and the domain e−2π2

< |w| < 1 in C. In particular, D is a Stein
manifold (cf. [O-4]).

(iii) Let C be a compact Riemann surface of genus ≥ 1 and let B → C
be a holomorphic line bundle of degree 0 such that Bm is not trivial
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for any m ∈ Z \ {0}. Let X be the compactification of B obtained
by adding the section at infinity, and let D = B. Then (X,D)
satisfies 2). It is easy to see that D is not holomorphically convex.

(iv) Let C be a compact Riemann surface of genus ≥ 1 and let L → C
be a holomorphic affine line bundle of degree 0 which admits no
holomorphic sections. Let X be the compactification of L obtained
by adding the section at infinity, and let D = L. Then (X,D)
satisfies 2). It is not difficult to see that D is a Stein manifold.

Questions arising from these examples are:

(a) Is there any natural criterion to distinguish the Stein and non-Stein
(X,D) satisfying 1) or 2)?

(b) How do these examples carry over to more general cases?

As for these questions, an intensive study was done by T. Ueda [U-2,3]
for case 2). According to [U-2], D is bimeromorphically equivalent to a Stein
space if ∂D is a smooth complex curve whose neighbourhood in X is not
formally equivalent to that of the zero section of the normal bundle of ∂D
in X. For case 1), although no counterpart of the Ueda theory is known,
it was proved that the disc bundles over compact Riemann surfaces aris-
ing from noncommutative representations of the fundamental groups to the
automorphism group of the disc are bimeromorphically equivalent to Stein
spaces (cf. [D-O-2]). Note that holomorphic disc bundles over compact com-
plex manifolds are naturally regarded as domains with Levi flat boundaries
in the associated P1-bundles.

The latter assertion is essentially contained in the following, which may
provide some insight into the general case.

Theorem 2.1 (cf. [D-O-2]). Every holomorphic disc bundle over a com-

pact Kähler manifold is weakly 1-complete.

Sketch of proof. Let M be a compact Kähler manifold and D = {z ∈ C |
|z| < 1}. Since the automorphism group of D contains no nontrivial com-
plex Lie subgroup, every holomorphic D-bundle D → M has locally con-
stant transition functions, so that D is associated with a homomorphism
from π1(M), the fundamental group of M , to Aut(D), say ̺. Then it is not
difficult to see from the theory of Eells and Sampson [E-S] that D admits a
harmonic section s if the image of ̺ is not commutative. Here D is endowed
with the Poincaré metric. By a computation of Siu [S-1] we know that s is
pluriharmonic, i.e. the restriction of s to any germ of complex curve in M is
harmonic. It is then readily seen that the distance measured fiberwise from
s(M) is exhaustive and plurisubharmonic on D\s(M), which suffices to con-
clude that D is weakly 1-complete in this case. If the image of ̺ is commuta-
tive, it is easy to see that D is weakly 1-complete by the Hodge theory on M .
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Remark. The Kähler assumption on M cannot be removed, for there
exists a D-bundle over a Hopf manifold H = Cn \ {0}/Z (n ≥ 2) which is
biholomorphically equivalent to the product of Cn \ {0} and an annulus as
in the above example (ii) (cf. [D-F-2]).

From Theorem 2.1 and the above remark one might think that the less X
is Kählerian, the less D becomes pseudoconvex. However, this is not the case
because the Hopf manifold H contains a Stein domain Ω = {[(z1, . . . , zn)] ∈
H | Re z1 > 0} and the pair (X,D) = (H, Ω) satisfies 1). This construction
of the domain Ω turned out to be a special case of that of Stein domains
in principal complex 1-torus bundles over projective algebraic manifolds
(cf. [Ne] and [O-6, Supplement]).

As for domains in Kähler manifolds, we recently proved the following.

Theorem 2.2 (cf. [O-7]). Let X be a compact Kähler manifold and let

D ⊂ X be a domain such that ∂D is a real-analytic Levi flat hypersur-

face in X. Then X \ ∂D has no C∞ plurisubharmonic exhaustion function

whose Levi form has everywhere at least three positive eigenvalues outside a

compact subset of D. In particular , X \ ∂D is not Stein if dimX ≥ 3.

Outline of proof. Suppose that there existed such an exhaustion function
ψ on X \ ∂D. Then, since the local defining functions of ∂D can be chosen
to be the real part of holomorphic functions by assumption, there exists a
holomorphic function of codimension one, on a neighbourhood of ∂D, which
is tangent to ∂D. Letting N be the normal bundle of this foliation say F ,
one can find a holomorphic N -valued 1-form γ on a neighbourhood of ∂D
such that the holomorphic tangent bundle of F is Ker γ.

Since N is topologically trivial, we deduce from Corollary 1.1, applied for
(M,ϕ) = (X\∂D,ψ) and E = (X\∂D)×C, that there exists a topologically

trivial holomorphic line bundle Ñ over X which extends N .
Since X is Kählerian, Ñ admits a flat structure. Hence, by applying

Theorem 1.6 for (M,ϕ) = (X \ ∂D,ψ) and E = Ñ∗|X \ ∂D, one can extend

γ holomorphically to an Ñ -valued 1-form.
Therefore, F locally consists of the level sets of holomorphic functions

Fα which satisfy the transition relations

(5) Fα = eiθαβFβ + cαβ (θαβ ∈ R, cαβ ∈ C).

It follows from (5) that there exist a neighbourhood U ⊃ ∂D and a
neighbourhood V of the diagonal of U × U such that |Fα(z) − Fβ(w)| is a
well defined continuous function on V , say d(z, w).

Then we put

δ(z) = inf{d(z, w) | (z, w) ∈ V ∩ (U × ∂D)}
and choose a sufficiently small positive number ε so that δ−1(ε) is compact.
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Since ψ is continuous, there exists a point z0 ∈ δ−1(ε) where ψ|δ−1(ε)
attains its maximum. If we choose U sufficiently small in advance, then
ψ|F−1

α (Fα(z0)) will attain its maximum at z0.
But this contradicts the assumption that ∂∂ψ has at least three positive

eigenvalues near ∂D.

Corollary 2.1 (cf. [LN]). The complex projective space Pn with n ≥ 3
admits no real-analytic Levi flat hypersurfaces.

Proof. If there were such a hypersurface S, then Pn \S would be a Stein
manifold (cf. [F] or [Tk]). But this contradicts Theorem 2.2.

Note. In view of the proof of Theorem 2.2, the smoothness assumption
on ∂D is actually superfluous. It is easy to see that the same conclusion
holds if ∂D is locally the zero of a pluriharmonic function.

Remark. Similarly to Corollary 2.1, we can show that there exist no
real-analytic Levi flat hypersurfaces in X if X is one of the following mani-
folds:

(i) Grassmann manifold of dimension ≥ 3 (cf. [U-1]).
(ii) A hypersurface of degree ≤ 3 in Pn with n ≥ 4 (cf. [O-12]).
(iii) A complete intersection of type (2, 2) in Pn with n ≥ 5 (cf. [O-12]).

Now we shall pursue an analogue of Theorem 2.2 for those (X,D) which
satisfy 2).

First we note that the Kähler condition cannot be removed also in this
case.

Example. Let X = (Cn \ {0})/Z (n ≥ 2), where two points z, w ∈
Cn \ {0} are identified if and only if




z1
...

zn


 =




e
. . .

0

e

e e
0

0 e




m




w1

...

wn




for some m ∈ Z. Then we put D = {[z] ∈ X | zn = 0}. Then [∂D]|∂D =
∂D×C and D is a Stein manifold because it is a covering space of (C∗)n by

(z1, . . . , zn) 7→ (z1/zn, . . . , zn−2/zn, e
2πizn−1/zn , zne

−zn−1/zn).

Therefore the counterpart of Theorem 2.2 is

Theorem 2.3. Let X be a compact Kähler manifold and let D be a

domain in X. Suppose that ∂D is a complex-analytic subset of codimension

one and there exists an effective divisor A with support ∂D such that the line
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bundle [A]|∂D is topologically trivial. Then D admits no C∞ pluriharmonic

exhaustion function whose Levi form has everywhere at least three positive

eigenvalues outside a compact subset of D. In particular , D is not Stein if

dimX ≥ 3.

For the proof, see [O-11].
Theorem 2.3 tells us that the complement of an effective divisor with

topologically trivial normal bundles can be pseudoconvex only in a very
restrictive way. In that sense, the following result of B. Totaro detects a
similar phenomenon.

Theorem 2.4 (cf. [To]). Let X be a smooth complex projective vari-

ety. Let A1, . . . , Ar, r ≥ 3, be connected effective divisors (not zero) that

are pairwise disjoint and whose rational cohomology classes lie in a line in

H2(X,Q). Then there is a map f : X → C with connected fibers to a smooth

curve C such that A1, . . . , Ar are all positive rational multiples of fibers of f .
In fact , there is only one map f with these properties.

As works done in a similar spirit, we also mention the results of Napier
and Ramachandran [N-R-1,2] concerning the ends of weakly 1-complete
Kähler manifolds.

Finally, we would like to make additional comments on 2-dimensional
domains with Levi flat boundaries.

(i) There exists a Kummer surface which contains a domain D such
that ∂D is Levi flat and D is bimeromorphically equivalent to a
Stein space (cf. [O-8]).

(ii) It remains open whether there exists no real analytic Levi flat hy-
persurfaces in P2. (The proofs that appeared in [O-5], [S-3], [I] and
[C-S-W] are not complete.) A similar nonexistence question arises
in classifying real-analytic Levi flat hypersurfaces in complex tori
which is also open (cf. [O-6,9]). Nonexistence in P2 will follow from
the nonexistence of Levi flat surfaces in 2-tori which do not contain
any complex line segments.

3. Generically strongly pseudoconvex domains. Let (X,D) be as
in §2. We shall supplement Grauert’s theorem and the results in §2 by adding
a remark on the intermediate case.

Definition. ∂D is said to be generically strongly pseudoconvex at x0 ∈
∂D if ∂D is C2-smooth at x0 and x0 is contained in the closure of the set
of strongly pseudoconvex points of ∂D. D is said to be generically strongly

pseudoconvex if ∂D is everywhere generically strongly pseudoconvex.

Generically strongly pseudoconvex domains arise naturally as the worm
domains of Diederich–Fornæss type (cf. [D-F-1], [D-O-1,3]).
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We note that D is generically strongly pseudoconvex if ∂D is connected,
real-analytic, pseudoconvex and generically strongly pseudoconvex at some
point.

In [D-O-1] the following was proved.

Theorem 3.1. Let D be a relatively compact domain in a two-dimen-

sional complex manifold X. If ∂D is connected , real-analytic, pseudoconvex

and strongly pseudoconvex at some point , then D is holomorphically convex.

It is easy to see from the proof of Theorem 3.1 that one can replace the
assumption by the real-analytic everywhere generic strong pseudoconvexity
of ∂D, dropping the connectedness assumption. A question is whether or
not ∂D may have both generically pseudoconvex and Levi flat components.

Concerning this point, we recently obtained the following.

Theorem 3.2. Let X be a connected complex manifold of dimension 2
which admits a nonconstant meromorphic function, and let D ⊂ X be a

relatively compact domain with real-analytic pseudoconvex boundary. If ∂D
is strongly pseudoconvex at some point , then D is generically strongly pseu-

doconvex.

Sketch of proof. Suppose that the union of the Levi flat components
of ∂D, say ∂0D, were nonempty. Then, for any nonconstant meromorphic
function f on X, the line bundle L = [f−1(0)] admits a fiber metric h whose
curvature form Θ is positive on a neighbourhood of ∂0D.

Similarly to [D-O-1] one can find a C∞ exhaustion function ψ on D and
a C∞ convex increasing function λ on R with the following properties.

(i) There exists a complete Hermitian metric g onD whose fundamental
form ω coincides with i(Θ+∂∂ψ) outside a compact subset of D such
that ω2 > ̺−2(iΘ)2 near ∂0D for some defining function ̺ of ∂D.

(ii) There exists a neighbourhood W ⊃ ∂D \ ∂0D such that

iΘdV⊗h−1 exp(−λ(ψ)) > ω and
\

W∩D

e−λ(ψ)ω2 <∞.

Then, by applying Theorem 1.3 to E = L∗ with fiber metric
h−1 exp(−λ(ψ)) near ∂D \ ∂0D and h−1eψ near ∂0D, one has the

finite-dimensionality of H0,1
(2) (D,L

∗). Hence, by exploiting the ex-

istence of a strongly pseudoconvex boundary point in ∂D \ ∂0D,
one can produce as in [G-1] a nonzero holomorphic section of L∗

over D which is square integrable on U ∩D with respect to ω2 for
some neighbourhood U ⊃ ∂0D. But this contradicts the estimate
ω2 > ̺−2(iΘ)2.

Open question. Can one remove the assumption on the existence of
nonconstant meromorphic functions on X from Theorem 3.2?
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