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On the five-point theorems due to Lappan

by Yan Xu (Nanjing)

Abstract. By using an extension of the spherical derivative introduced by Lappan,
we obtain some results on normal functions and normal families, which extend Lappan’s
five-point theorems and Marty’s criterion, and improve some previous results due to Li
and Xie, and the author. Also, another proof of Lappan’s theorem is given.

1. Introduction. Let ∆ = {z : |z| < 1} be the unit disc in the complex
plane C. A function f meromorphic in ∆ is called normal, in the sense of
Lehto and Virtanen [5], if there exists a constant M > 0 such that

(1) (1− |z|2)f#(z) ≤M
for each z ∈ ∆ , where f#(z) = |f ′(z)|/(1+|f(z)|2) is the spherical derivative
of f .

Let D be a domain in C, and F be a family of meromorphic functions
defined in D. The family F is said to be normal in D, in the sense of Montel,
if any sequence in F has a subsequence that converges spherically locally
uniformly in D to a meromorphic function or ∞ (see [1, 8, 10]).

Marty’s criterion [7] asserts that a family F of meromorphic functions
defined in D is normal if and only if for each compact subset K of D there
exists a constant M(K) > 0 such that

(2) f#(z) ≤M(K)

for each f ∈ F and each z ∈ K.
Lappan [2, 4] reduced drastically the set on which inequality (1) or (2)

is required, and obtained the following two results, which are called the
Lappan five-point theorems relating to normal functions and normal families
respectively.

Theorem A ([2]). Let f be a meromorphic function in ∆. If there exist
a subset E of C∪{∞} containing at least five distinct points and a constant
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M(E) > 0 such that
(1− |z|2)f#(z) ≤M(E)

for each z ∈ ∆ ∩ f−1(E), then f is a normal function.

Theorem B ([4]). Let F be a family of meromorphic functions defined
in a domain D, and let E be a subset E of C∪ {∞} containing at least five
distinct points. If for each compact set K of D there exists a constant M(K)
such that

f#(z) ≤M(K) for each f ∈ F and z ∈ K ∩ f−1(E),

then F is normal in D.

Let k be a positive integer. The expression

|f (k)(z)|
1 + |f(z)|k+1

can be viewed as an extension of the spherical derivative of f , which is
introduced by Lappan (see [3]). This expression proves useful in connection
with normal functions and normal families. In [3], Lappan proved

Theorem C ([3]). If f is a normal meromorphic function in ∆, then,
for each positive integer k, there exists a constant Mk such that

(1− |z|2)k
|f (k)(z)|

1 + |f(z)|k+1
≤Mk for each z ∈ ∆.

For normal families, Li and Xie [6] obtained

Theorem D ([6]). Let k be a positive integer, and let F be a family
of meromorphic functions defined in a domain D, all of whose zeros have
multiplicity at least k. Then F is normal in D if and only if for each compact
set K of D there exists a constant M(K) such that

|f (k)(z)|
1 + |f(z)|k+1

≤M(K) for each f ∈ F and z ∈ K.

Remark 1. In fact, the condition “all zeros of f ∈ F have multiplicity
at least k” is not required in the necessity part of Theorem D, which can be
seen from the proof in [6]. The proofs (of Theorem C in [3] and Theorem D
in [6]) are completely different. In Section 3 below, we shall give another
proof of Theorem C by borrowing an idea from Li and Xie [6].

Lappan [3, Question 3] also asked: Is the converse of Theorem C true,
that is, if there exist k > 1 and a constant M such that

(1− |z|2)k
|f (k)(z)|

1 + |f(z)|k+1
≤M for each z ∈ ∆,

is f a normal meromorphic function?
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The case k = 1 was excluded since the answer is obviously affirmative
by the definition of a normal function.

In [9], the present author obtained a partial answer to the above question,
as follows.

Theorem E ([9]). Let k be a positive integer with k ≥ 2, and let f be
a meromorphic function in ∆ such that all zeros of f are of multiplicity at
least k. If there exists a constant M such that

(1− |z|2)k
|f (k)(z)|

1 + |f(z)|k+1
≤M for each z ∈ ∆,

then f is a normal function.

In this paper, by using a different method, we prove the following stronger
result.

Theorem 1. Let k be a positive integer, let f be a meromorphic function
in ∆, and suppose that there exists M > 0 such that max1≤i≤k−1 |f (i)(z)|
≤ M whenever f(z) = 0. If there exist a subset E of C ∪ {∞} containing
at least k + 4 distinct points and a constant P (E) such that

(1− |z|2)k
|f (k)(z)|

1 + |f(z)|k+1
≤ P (E) for each z ∈ ∆ ∩ f−1(E),

then f is a normal function.

For normal families, we get

Theorem 2. Let k be a positive integer, let E be a subset of C ∪ {∞}
containing at least k + 4 distinct points, let F be a family of meromorphic
functions defined in a domain D, and suppose that for each f ∈ F there
exists M > 0 such that max1≤i≤k−1 |f (i)(z)| ≤M whenever f(z) = 0. If for
each compact subset K of D there exists a constant P (K) such that

|f (k)(z)|
1 + |f(z)|k+1

≤ P (K) for each f ∈ F and z ∈ K ∩ f−1(E),

then F is normal in D.

Remark 2. For the case k = 1, the condition “max1≤i≤k−1 |f (i)(z)|
≤ M whenever f(z) = 0” holds naturally. So, Theorem 1 is an extension
of Theorem A, and Theorem 2 is an extension of Theorem B and Marty’s
criterion. Also, Theorems 1 and 2 improve Theorem E and the sufficiency
part of Theorem D, respectively.

Remark 3. For the case k ≥ 2, the condition “there exists M > 0 such
that max1≤i≤k−1 |f (i)(z)| ≤ M whenever f(z) = 0” in Theorem 2 cannot
be omitted, as is shown by the following example. We conjecture that this
condition is also necessary in Theorem 1, but so far we have not found an
appropriate counter-example.
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Example. Let k ≥ 2, ∆ = {z : |z| < 1}, and

F = {fn(z) = nzk−1 : n = 1, 2, . . . }.

It is easy to see that fn(z) = 0⇒ max1≤i≤k−1 |f
(i)
n (z)| = (k − 1)!n→∞ as

n→∞. This means that the condition “for each f ∈ F there exists M > 0
such that max1≤i≤k−1 |f (i)(z)| ≤M whenever f(z) = 0” is not satisfied. For
each fn ∈ F and each z ∈ ∆, we have

|f (k)
n (z)|

1 + |fn(z)|k+1
= 0 ≤ 1.

But F is not normal in ∆.

Remark 4. In both Theorem 1 and Theorem 2, there is nothing special
about the value 0, so these results are valid for any fixed value replacing 0.

2. Lemmas. To prove our results, we need some lemmas. Let f be a
nonconstant meromorphic function in C. We shall use the following standard
notation of value distribution theory (see [1, 8, 10]):

T (r, f), m(r, f), N(r, f), N̄(r, f), . . . .

We denote by S(r, f) any function satisfying

S(r, f) = o{T (r, f)}
as r → ∞, possibly outside a set of finite measure. We use N̄(2(r, f) to
denote the Nevanlinna counting function of the poles of f with multiplicity
≥ 2.

Lemma 1 ([1, 10]). Let f be a nonconstant meromorphic function in C,
and let a1, . . . , aq (q ≥ 3) be distinct complex numbers (one of these can take
value ∞). Then

(q − 2)T (r, f) ≤
q∑
i=1

N̄

(
r,

1
f − ai

)
+ S(r, f).

Lemma 2 ([1, 10]). Let f be a nonconstant meromorphic function in C,
and k be a positive integer. Then

T (r, f (k)) ≤ (k + 1)T (r, f) + S(r, f).

The following is a local version of the well-known Zalcman lemma.

Lemma 3 ([11]). Let F be a family of meromorphic functions in D. If
F is not normal at a point z0 ∈ D, then there exists a sequence of functions
fn ∈ F , a sequence of complex numbers zn → z0 and a sequence of positive
numbers ρn → 0, such that fn(zn+ρnζ) spherically and uniformly converges
to a nonconstant meromorphic function on each compact subset of C.
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The next lemma reveals the close relationship between normal functions
and normal families; it can be found in [5].

Lemma 4 Let ∆ = {z : |z| < 1} be the unit disc in C. A meromorphic
function f in ∆ is normal if and only if the family F = {f(g(z)) : g ∈
Aut(∆)} is normal in ∆, where Aut(∆) is the collection of all conformal
mappings of ∆ into itself.

3. Proof of theorems

Proof of Theorem 1. Suppose that f is not a normal function. Then we
can find a sequence {zn} in ∆ such that

(1− |zn|2)f#(zn)→∞
as n→∞. Define the family

G = {gn(z) = f(zn + (1− |zn|2)z) : z ∈ ∆}.
Since

g#
n (0) = (1− |zn|2)f#(zn)→∞

as n → ∞, G is not normal at z = 0. By Lemma 3, there exist functions
gn ∈ G, points ξn ∈ ∆, ξn → 0 and positive numbers ρn → 0 such that

(3) Gn(ζ) = gn(ξn + ρnζ) = f(zn + (1− |zn|2)ξn + (1− |zn|2)ρnζ)→ G(ζ)

spherically uniformly on compact subsets of C, where G(ζ) is a nonconstant
meromorphic function on C. From (3), we have

(4) G(i)
n (ζ) = ((1−|zn|2)ρn)if (i)(zn+(1−|zn|2)ξn+(1−|zn|2)ρnζ)→ G(i)(ζ)

uniformly on compact subsets of C avoiding the poles of G.
Suppose that G(ζ0) = 0. Hurwitz’s theorem implies that there exist ζn

with ζn → ζ0 such that

f(zn + (1− |zn|2)ξn + (1− |zn|2)ρnζn) = 0.

Obviously, zn + (1 − |zn|2)ξn + (1 − |zn|2)ρnζn ∈ ∆ for sufficiently large n.
Then, by the assumption of Theorem 1, we have

(5) max
1≤i≤k−1

|f (i)(zn + (1− |zn|2)ξn + (1− |zn|2)ρnζn)| ≤M.

It follows from (4) and (5) that G(i)(ζ0) = 0 for i = 1, . . . , k−1. This means
that all zeros of G, if any, have multiplicity at least k. Hence G(k) 6≡ 0.

Without loss of generality, we may assume E = {a1, . . . , ak+4}. Let
G(ζ1) − ai = 0 for some i (for otherwise, by Lemma 1, G is a constant,
a contradiction). If ai is finite, by (3) and Hurwitz’s theorem, there exists a
sequence of points ζn with ζn → ζ1 such that

(6) f(zn + (1− |zn|2)ξn + (1− |zn|2)ρnζn)− ai = 0.
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If ai = ∞, noting 1/Gn → 1/G and using Hurwitz’s theorem, we still
have (6). For brevity, set ζ̂n = zn + (1− |zn|2)ξn + (1− |zn|2)ρnζn. Clearly,
for sufficiently large n, ζ̂n ∈ ∆, and so ζ̂n ∈ ∆ ∩ f−1(E). According to the
assumption of the theorem, for sufficiently large n, we have

(1− |ζ̂n|2)k
|f (k)(ζ̂n)|

1 + |f(ζ̂n)|k+1
≤ P (E).

It follows that

|G(k)
n (ζn)|

1 + |Gn(ζn)|k+1
= ρkn(1− |zn|2)k

|f (k)(ζ̂n)|
1 + |f(ζ̂n)|k+1

(7)

≤ ρknP (E)
(

1− |zn|2

1− |ζ̂n|2

)k
.

In view of (1− |zn|2)/(1− |ζ̂n|2)→ 1 as n→∞, we deduce from (7) that

|G(k)(ζ1)|
1 + |G(ζ1)|k+1

= 0.

Noting that G(k) 6≡ 0, we conclude that ζ1 is either a multiple pole of G(ζ)
or a zero of G(k)(ζ). We have thus proved that if ζ1 is a zero of G(ζ) − ai,
then ζ1 is either a multiple pole of G(ζ) (for the case ai = ∞) or a zero of
G(k)(ζ) (for the case ai ∈ C).

By Lemma 1, we have

(8) (k + 2)T (r,G) ≤
k+4∑
i=1

N̄

(
r,

1
G− ai

)
+ S(r,G).

If all ai (i = 1, . . . , k + 4) are finite, then by the above discussion, we have

k+4∑
i=1

N̄

(
r,

1
G− ai

)
≤ N̄

(
r,

1
G(k)

)
.

Substituting this in (8), and using Lemma 2, we get

(k + 2)T (r,G) ≤ N̄(r, 1/G(k)) + S(r,G) ≤ T (r,G(k)) + S(r,G)
≤ (k + 1)T (r,G) + S(r,G),

that is, T (r,G) < S(r,G). We arrive at a contradiction since G is noncon-
stant.

If one of ai is infinite, say a1 =∞, then

N

(
r,

1
G− a1

)
≤ N̄(2(r,G),
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and
k+4∑
i=2

N̄

(
r,

1
G− ai

)
≤ N̄

(
r,

1
G(k)

)
.

Substituting the above in (8), we have

(k + 2)T (r,G) < N̄(2(r,G) + N̄(r, 1/G(k)) + S(r,G)

≤ 1
2N(r,G) + T (r,G(k)) + S(r,G)

≤ 1
2N(r,G) + (k + 1)T (r,G) + S(r,G)

≤ (k + 3/2)T (r,G) + S(r,G),

that is, 1
2T (r,G) < S(r,G), a contradiction. Theorem 1 is thus proved.

Proof of Theorem 2. Suppose that F is not normal at z0 ∈ D. Then
applying Lemma 3 directly, there exist functions fn ∈ F , points zn → z0
and positive numbers ρn → 0 such that

gn(ζ) = fn(zn + ρnζ)→ g(ζ)

spherically uniformly on compact subsets of C, where g(ζ) is a nonconstant
meromorphic function in C.

Using fn, gn, and g as in the proof of Theorem 1, we can derive the same
contradiction as in that proof by essentially the same argument. We omit
the details.

Next, by borrowing an idea from Li and Xie [6], we give another proof
of Theorem C.

Another proof of Theorem C. If k = 1, there is nothing to prove. Suppose
that the conclusion of Theorem C is not valid. Then, for a positive integer
k ≥ 2, we can find {zn} ⊂ ∆ such that

(9) (1− |zn|2)k
|f (k)(zn)|

1 + |f(zn)|k+1
→∞

as n→∞. Define the family

G = {gn(z) = f(zn + (1− |zn|)z) : z ∈ ∆}.
Obviously, hzn(z) = zn + (1− |zn|)z is a conformal mapping of ∆ into itself
for each n. Since f is normal in ∆, Lemma 4 implies that G is a normal family
in ∆. Thus there exists a subsequence of {gn} (denoted also by {gn}) such
that {gn(z)} converges spherically locally uniformly in ∆ to a meromorphic
function h(z) (possibly identically infinite).

We distinguish two cases.

Case 1: h(0) 6= ∞. Then there exists 1 > δ > 0 such that h(z) is
holomorphic in ∆δ = {z : |z| ≤ δ}, and hence gn(z) (for sufficiently large n)
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are holomorphic in ∆δ, and gn(z)→ h(z) uniformly in ∆δ. It follows that

|g(k)
n (z)|

1 + |gn(z)|k+1
→ |h(k)(z)|

1 + |h(z)|k+1

uniformly in ∆δ. Obviously, there exists Q > 0 such that

max
z∈∆δ

|h(k)(z)|
1 + |h(z)|k+1

≤ Q.

Then for sufficiently large n,

max
z∈∆δ

|g(k)
n (z)|

1 + |gn(z)|k+1
≤ Q+ 1.

In particular, for sufficiently large n,

|g(k)
n (0)|

1 + |gn(0)|k+1
= (1− |zn|)k

|f (k)(zn)|
1 + |f(zn)|k+1

≤ Q+ 1,

which contradicts (9).

Case 2: h(0) = ∞. There exists 1 > δ1 > 0 such that 1/h(z) and
1/gn(z) (for sufficiently large n) are holomorphic in ∆δ1 = {z : |z| ≤ δ1},
and 1/gn(z) → 1/h(z) uniformly in ∆δ1 . Let Q1 = 1 + maxz∈∆δ1

|1/h(z)|.
Then, for sufficiently large n,

(10) max
z∈∆δ1

1
|gn(z)|

≤ Q1.

By Cauchy’s formula for derivatives, for sufficiently large n, we get∣∣∣∣( 1
gn(z)

)(l)∣∣∣∣ =
∣∣∣∣ l!2πi

�

|z|=δ1

1
gn(ζ)

(ζ − z)l+1
dζ

∣∣∣∣(11)

≤ l!Q1

(δ1 − δ2)l
(l = 1, . . . , k)

for each z ∈ ∆δ2 = {z : |z| ≤ δ2}, where 0 < δ2 < δ1. An elementary
calculation yields

(12)
g
(k)
n

gk+1
n

= − 1
gk−1
n

(
1
gn

)(k)

+ P

(
g′n
g2
n

,
g′′n
g3
n

, . . . ,
g
(k−1)
n

gkn

)
,

where P (w1, . . . , wk−1) is a polynomial in w1, . . . , wk−1 with integer coeffi-
cients. From (10)–(12) we conclude that, for sufficiently large n and each
z ∈ ∆δ2 ,

|g(k)
n (z)|

1 + |gn(z)|k+1
≤
∣∣∣∣ g(k)

n (z)
gn(z)k+1

∣∣∣∣ ≤ C(k, δ1, δ2)Q1,

where C(k, δ1, δ2) is a constant depending only on k, δ1 and δ2.
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Letting z = 0 and noting that

|g(k)
n (0)|

1 + |gn(0)|k+1
= (1− |zn|2)k

|f (k)
n (zn)|

1 + |fn(zn)|k+1
,

we arrive at a contradiction of (9). This completes the proof of Theorem C.
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