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Abstract. We deal with projective limits of classes of functions and prove that: (a)
the Chebyshev polynomials constitute an absolute Schauder basis of the nuclear Fréchet
spaces E(M)([−1, 1]r); (b) there is no continuous linear extension map from Λ

(r)

(M) into

B(M)(R
r); (c) under some additional assumption on M, there is an explicit extension map

from E(M)([−1, 1]r) into D(M)([−2, 2]r) by use of a modification of the Chebyshev polyno-
mials. These results extend the corresponding ones obtained by Beaugendre in [1] and [2].

1. Introduction. It is well known that there is no continuous lin-
ear extension map from ω into C∞(R). In 1961, Mityagin [4] proved that
(a) C∞([−1, 1]) is a Fréchet nuclear space in which the Chebyshev polyno-
mials constitute an absolute Schauder basis, and (b) there is a continuous
linear extension map from C∞([−1, 1]) into C∞(R) by means of a modifica-
tion of the Chebyshev polynomials.

Since then, (non-) existence of continuous linear extension maps has been
extensively studied in the case of non-quasi-analytic classes. For instance,
we mention the results by Petzsche [5] about the Borel case, i.e. the case
n = 1 and K = {0}.

Recently Beaugendre [1], [2] has obtained similar results in the case of
some projective limits of such classes.

In this paper we deal with these questions in a more general setting,
i.e. in the case of countable intersections of classes of functions defined by
means of matrices of positive elements.
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After having obtained some inequalities, we introduce in Section 4 the
matrices m and M that allow us to define for instance the spaces B(Mj)(Ω),

E(Mj)([−1, 1]r) and Λ
(r)
(Mj)

by use of the rows of M, and next their projective

limits B(M)(Ω), E(M)([−1, 1]r) and Λ
(r)
(M).

We then prove that for every r ∈ N,

(a) E(M)([−1, 1]r) is a Fréchet nuclear space in which the Chebyshev
polynomials constitute an absolute Schauder basis;

(b) there is no continuous linear extension map from Λ
(r)
(M) into B(M)(R

r).

Under some additional assumption on M, we also obtain the existence of
a continuous linear extension map from E(M)([−1, 1]r) into D(M)([−2, 2]r),
hence into B(M)(R

r).
Finally, we prove that these results extend the corresponding ones ob-

tained by Beaugendre in [1] and [2].

2. An auxiliary inequality

Proposition 2.1. Let r, m ∈ N, Ω be an open subset of R
r and f ∈

Cm(Ω). For every s ∈ {1, . . . , r}, let moreover ωs be an open subset of R

and gs ∈ Cm(ωs) be a real function such that

(g1(t1), . . . , gr(tr)) ∈ Ω, ∀(t1, . . . , tr) ∈ ω := ω1 × · · · × ωr,

and

M := sup
1≤s≤r

sup
0≤l≤m

‖g(l)
s ‖ωs < ∞.

Then for every α ∈ N
r
0 such that 0 < |α| ≤ m, there are explicit functions

Aβ on ω such that

1

α!
(f(g1, . . . , gr))

(α)(t) =
∑

0 6=β≤α

Aβ(t)
1

β!
f (β)(g1(t1), . . . , gr(tr))

and
∑

0 6=β≤α |Aβ(t)| ≤ (1 + M)|α| for every t ∈ ω. Therefore for every

α ∈ N
r
0 such that 0 ≤ |α| ≤ m and t ∈ ω,

1

α!
|(f(g1, . . . , gr))

(α)(t)| ≤ (1 + M)|α| sup
0≤β≤α

1

β!
|f (β)(g1(t1), . . . , gr(tr))|.

Proof. Once the first assertion is established, the consequence is imme-
diate since the case α = 0 is trivial.

The case r = 1 is a direct consequence of the Faà di Bruno formula
(cf. [7]) stating that, for every s ∈ {1, . . . , m},

(f(g1))
(s)(t)

s!
=

s∑

k=1

f (k)(g1(t))

k!
Ak(t), ∀t ∈ ω1,
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where

Ak(t) =
∑

k1+···+ks=k
k1+2k2+···+sks=s

k!

k1! · · · ks!

(
g
(1)
1 (t)

1!

)k1

. . .

(
g
(s)
1 (t)

s!

)ks

with
∑

k1+···+ks=k
k1+2k2+···+sks=s

k!

k1! . . . ks!
=

(
s − 1

k − 1

)
.

It is indeed sufficient to note that
s∑

k=1

|Ak(t)| ≤
s∑

k=1

Mk

(
s − 1

k − 1

)
= M(1 + M)s−1 ≤ (1 + M)s.

To conclude by induction, we just have to prove that if the property is
true for r − 1 with r ≥ 2, then it is also true for r.

Of course we may suppose α1 6= 0. For every t1 ∈ ω1 and x2, . . . , xr ∈ R

such that (g1(t1), x2, . . . , xr) ∈ Ω, the case r = 1 provides

1

α1!
(f(g1, x2, . . . , xr))

(α1)(t1) =

α1∑

β1=1

Aβ1(t1)
1

β1!
f (β′

1)(g1(t1), x2, . . . , xr)

with β′
1 = (β1, 0, . . . , 0) and

∑α1
β1=1 |Aβ1(t1)| ≤ (1 + M)α1 for every t1 ∈ ω1.

Now we set γ = (α2, . . . , αr). In the case γ = 0, we have

1

α!
(f(g1, . . . , gr))

(α)(t) =
1

α1!
(f(g1, g2(t2), . . . , gr(tr)))

(α1)(t1)

and it suffices to set Aβ(t) = Aβ1(t1) for every β ∈ N
r
0 such that 0 6= β ≤ α.

If γ 6= 0, the commutativity of the derivatives yields

(f(g1, . . . , gr))
(α)(t)

α!
=

α1∑

β1=1

Aβ1(t1)

β1!

(f (β′

1)(g1(t1), g2, . . . , gr))
(γ)(t2, . . . , tr)

γ!
.

Then we apply the case r − 1 to get

(f (β′

1)(g1(t1), g2, . . . , gr))
(γ)(t2, . . . , tr)

γ!

=
∑

0 6=η≤γ

Aη(t2, . . . , tr)
f (β1,η)(g1(t1), . . . , gr(tr))

η!

with
∑

0 6=η≤γ |Aη(t2, . . . , tr)| ≤ (1 + M)|γ|. So the formula is correct if we
set

Aβ(t1, . . . , tr) =

{
0 if β1 = 0 or (β2, . . . , βr) = 0,

Aβ1(t1)A(β2,...,βr)(t2, . . . , tr) otherwise,
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since then

∑

0 6=β≤α

|Aβ(t)| =

α1∑

β1=1

|Aβ1(t1)|
∑

0 6=η≤(β2,...,βr)

|Aη(t2, . . . , tr)| ≤ (1 + M)|α|.

3. The Chebyshev polynomials. For every n ∈ N0, the Chebyshev

polynomial Tn is the polynomial of degree n on R which coincides with the
function cos(n arccos(x)) on the interval [−1, 1].

The following information about |T
(p)
n (x)| will be used. For T0 = χR, the

situation is clear. For every n ∈ N, the V. A. Markov inequality ([6, 1.3.35
and 1.5.6]) states that

|T (p)
n (x)| ≤ T (p)

n (1) =
n2

1

n2 − 12

3
· · ·

n2 − (p − 1)2

2p − 1
≤

n2p

p!

for every p ∈ N0 and x ∈ [−1, 1]. We need the following slight extension of
this inequality.

Proposition 3.1. For every n ∈ N and p ∈ N0, one has

|T (p)
n (x)| ≤ e

n2p

p!
, ∀x ∈

[
− 1 −

1

1 + n2
, 1 +

1

1 + n2

]
.

Proof. As Tn is a polynomial of degree n, we only need to consider the
case p ≤ n. Since every x ∈ [0, 1 + 1/(1 + n2)] can be written as x = y + z
with y ∈ [0, 1] and z ∈ [0, 1/(1 + n2)], the Taylor formula provides the

equality T
(p)
n (x) =

∑n−p
k=0 T

(p+k)
n (y)zk/k!, which leads to

|T (p)
n (x)| ≤

n−p∑

k=0

n2p

(p + k)!

n2k

(1 + n2)k

1

k!
≤

n2p

p!

∞∑

k=0

1

k!
.

Hence the conclusion follows, since a similar argument works for the elements
of the interval [−1 − 1/(1 + n2), 0].

As we will deal with functions defined on subsets of R
r, the following

considerations will be very useful.

Notation. For every γ ∈ N
r
0, Tγ designates the polynomial defined

on R
r by Tγ(x) = Tγ1(x1) · · ·Tγr(xr) for every x ∈ R

r.

Then for every f ∈ C∞([−1, 1]r), f(cos(t1), . . . , cos(tr)) is a periodic
C∞-function on R

r. So its Fourier development is
∑

γ∈Nr
0

aγ(f) cos(γ1t1) · · · cos(γrtr)
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with

(1) aγ(f) =
1

2r(γ)

1

πr

\
[−π,π]r

f(cos(t1), . . . , cos(tr)) cos(γ1t1) · · · cos(γrtr) dt,

where r(γ) is the number of components of γ which are equal to 0. Moreover
the derivatives of this series converge absolutely and uniformly on R

r to the
corresponding derivatives of the function f(cos(t1), . . . , cos(tr)). Therefore
we get

f(x) = f(x1, . . . , xr) =
∑

γ∈Nr
0

aγ(f)Tγ(x)

and the derivatives term by term of this series converge absolutely and
uniformly on [−1, 1]r to the corresponding derivatives of f .

An estimate of the numbers |aγ(f)| can be obtained as follows.

Notation. Given γ ∈ N
r
0, we set γ∗ = (γ∗

1 , . . . , γ∗
r ) with γ∗

s = γs if
γs 6= 0 and γ∗

s = 1 if γs = 0.
Moreover we set γα = (γ∗

1)α1 . . . (γ∗
r )αr for every α ∈ N

r
0.

Then, by integration by parts, for every α ∈ N
r
0, formula (1) leads to

|aγ(f)| =
1

2r(γ)

1

πr

1

γα

∣∣∣
\

[−π,π]r

(f(cos(t1), . . . , cos(tr)))
(α) ∗(t) dt

∣∣∣

with

∗(t) =

{
cos

sin

}
(γ1t1) . . .

{
cos

sin

}
(γrtr),

hence

(2) |aγ(f)| ≤ α!
2r+|α|−r(γ)

γα
sup

0≤δ≤α
sup

x∈[−1,1]r

|f (δ)(x)|

δ!

by Proposition 2.1.

4. The matrix m. To any sequence m = (mp)p∈N0 of positive num-
bers, we associate as usual the sequence M = (Mp)p∈N0 defined by Mp =
m0 · · ·mp for every p ∈ N0.

Throughout the paper, m designates a matrix

m = (mj,p) j∈N

p∈N0

such that the sequences mj = (mj,p)p∈N0 satisfy the following conditions:
for every j ∈ N,

(m1) mj,0 = 1 and mj,p ≥ 1 for every p ∈ N;
(m2) mj,p/p ≤ mj,p+1/(p + 1) for every p ∈ N; in particular the sequence

(Mj,p/p!)p∈N0 is increasing and Mj,p ≥ p! for every p ∈ N0;
(m3) mj,p ≥ mj+1,p for every p ∈ N0;
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(m4) for every A > 0, there is Aj > 1 such that

Mj+1,2(p+1) ≤ AjA
−pp!Mj,p, ∀p ∈ N0.

Conditions (m1) and (m2) are standard. Condition (m3) is necessary to
introduce the projective limits defined in the next section. Condition (m4)
is not standard: it provides links between the spaces defining these projec-
tive limits. Let us note at once that it leads to the following two conse-
quences.

Proposition 4.1. For every j ∈ N and B > 0, there is c > 0 such that

Mj,p/p! ≥ cBp+1 for every p ∈ N0.

Proof. Indeed, by condition (m4) with A = B/4, we get

Mj,p

p!
≥

Ap

Aj

Mj+1,2(p+1)

(p!)2
≥

Ap

Aj
(2p + 1)

(2p)!

(p!)2
≥

(4A)p

Aj
.

Notation. For every j ∈ N and γ ∈ N
r
0, set Mj,γ = Mj,γ1 · · ·Mj,γr .

Proposition 4.2. For every j, r ∈ N such that r ≥ 2, there is a constant

Bj,r > 1 such that Mj+r−1,|δ| ≤ B
|δ|
j,rMj,δ for every δ ∈ N

r
0.

Proof. When r = 2, this is equivalent to establishing that, for every
j ∈ N, there is Bj > 1 such that Mj+1,p+q ≤ Bp+q

j Mj,pMj,q for every
p, q ∈ N0 such that p ≥ q. For A = 1, condition (m4) provides a constant
Cj ∈ ]0, 1[ such that CjMj+1,2(p+1) ≤ p!Mj,p for every p ∈ N0, hence

Mj,pMj,q ≥
Cj

p!

Mj+1,2(p+1)

(2(p + 1))!
(2(p + 1))!q! ≥

Cj

p!

Mj+1,p+q

(p + q)!
(2p)!q!

≥ Cj
Mj+1,p+q

2p+q

(2p)!

p!2
≥

(
Cj

2

)p+q

Mj+1,p+q.

The case r ≥ 3 is then immediate:

Mj+r−1,|δ| ≤ B
|δ|
j+r−2,2Mj+r−2,δ1+···+δr−1Mj,δr

≤ · · · ≤ (Bj+r−2,2 . . . Bj,2)
|δ|Mj,δ1 · · ·Mj,δr

.

5. Some spaces

The Fréchet spaces Λ
(r)
(Mj)

and Λ
(r)
(M). For every j, r ∈ N, the Fréchet

space Λ
(r)
(Mj)

is the vector space of indexed families a = (aγ)γ∈Nr
0

of elements

of K such that

|a|j,h := sup
γ∈Nr

0

|aγ |

h|γ|Mj,|γ|

< ∞, ∀h > 0,

endowed with the system of norms {|·|j,1/m : m ∈ N}.
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For every r ∈ N, the space Λ
(r)
(M) is then defined as the projective limit of

the sequence (Λ
(r)
(Mj)

)j∈N; {|·|j,1/j : j ∈ N} is of course a fundamental system

of norms for this space.

The Fréchet spaces B(Mj)(Ω) and B(M)(Ω). Given an open subset Ω
of R

r, the Fréchet space B(Mj)(Ω) is the vector space of functions f ∈ C∞(Ω)
such that

‖f‖Ω,j,h := sup
α∈Nr

0

‖Dαf‖Ω

h|α|Mj,|α|

< ∞, ∀h > 0,

endowed with the countable system of norms {‖·‖Ω,j,1/m : m ∈ N}.

The Fréchet space B(M)(Ω) is then defined as the projective limit of the
sequence (B(Mj)(Ω))j∈N.

The space D(M)(K). Given a compact subset K of R
r, the Fréchet space

D(M)(K) is the topological subspace of B(M)(R
r) consisting of the elements

with support contained in K.

The Banach spaces Bj,r and the Fréchet spaces E(M)([−1, 1]r). The Ba-

nach space Bj,r is the vector space of functions f ∈ C∞([−1, 1]r) such that

‖f‖j,r := sup
α∈Nr

0

j|α|‖Dαf‖[−1,1]r

Mj,|α|
< ∞,

endowed with the norm ‖·‖j,r.

The Fréchet space E(M)([−1, 1]r) is then defined as the projective limit
of the sequence (Bj,r)j∈N.

6. Study of the space E(M)([−1, 1]r)

Proposition 6.1. For every j, r ∈ N, there is a constant Bj,r > 1 such

that , for every α, γ ∈ N
r
0,

|aγ(f)| ≤ 2r
2|α|B

|α|
j,r

γα
Mj,α‖f‖j+r−1,r, ∀f ∈ Bj+r−1,r.

In particular , for every j, r ∈ N, (Tγ , aγ(·))γ∈Nr
0

is a biorthogonal system in

Bj+r−1,r.

Proof. For every f ∈ Bj+r−1,r and α, δ ∈ N
r
0 such that δ ≤ α, we clearly

have
1

δ!
‖f (δ)‖[−1,1]r ≤

1

δ!
‖f‖j+r−1,r

Mj+r−1,|δ|

(j + r − 1)|δ|

≤ B
|δ|
j,r

Mj,δ

δ!
‖f‖j+r−1,r ≤ B

|α|
j,r

Mj,α

α!
‖f‖j+r−1,r
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for some constant Bj,r > 1 independent of f (if r = 1, any number Bj,1 > 1
is suitable; if r ≥ 2, we use Proposition 4.2). So the announced inequality is
an immediate consequence of the estimate (2) of |aγ(f)|.

The particular case is clear: it is a fact that aγ(Tδ) is equal to 1 if γ = δ
and to 0 otherwise. Moreover the established inequality implies that the
linear functionals aγ(·) are continuous on Bj+r−1,r.

Proposition 6.2. For every j, r ∈ N, the canonical injection from

Bj+r,r into Bj,r is nuclear.

Proof. For every β, γ ∈ N
r
0, we use the V. A. Markov inequality to es-

timate the derivatives of Tγ , and Proposition 6.1 with the special value
α = (2β1 + 2, . . . , 2βr + 2) to estimate |aγ(f)|. We thus get a constant
Bj+1,r > 1 such that

j|β||aγ(f)| ‖DβTγ‖[−1,1]r

Mj,|β|
≤

j|β|2r22|β|+2rB
2|β|+2r
j+1,r

Mj,|β|

1

γ∗2
1 · · · γ∗2

r

Mj+1,α

β!
‖f‖j+r,r

for every f ∈ Bj+r,r.

For A = 4jB2
j+1,r, condition (m4) provides a constant Aj > 1 such that

Mj+1,2(p+1) ≤ AjA
−pp!Mj,p, ∀p ∈ N0.

This leads to the following estimate:

Mj+1,α

β!
=

Mj+1,2(β1+1)

β1!
· · ·

Mj+1,2(βr+1)

βr!
≤ Ar

jA
−|β|Mj,β ≤ Ar

jA
−|β|Mj,|β|.

Therefore we get

(3) |aγ(f)| ‖Tγ‖j,r ≤ Cj,r
1

γ∗2
1 . . . γ∗2

r

‖f‖j+r,r, ∀f ∈ Bj+r,r,

with Cj,r = 23rAr
jB

2r
j+1,r > 0 and we conclude at once since the series∑

γ∈Nr
0
(γ∗2

1 · · · γ∗2
r )−1 converges.

Together with inequalities (3), Propositions 6.1 and 6.2 lead to the fol-
lowing result.

Theorem 6.3. For every r ∈ N, the family (Tγ , aγ(·))γ∈Nr
0
is an absolute

Schauder basis in the Fréchet nuclear space E(M)([−1, 1]r).

Notation. As E(M)([−1, 1]) is a Fréchet nuclear space, the tensor prod-
ucts

E(M)([−1, 1]) ⊗̂ε
r
· · · ⊗̂ε E(M)([−1, 1])

and

E(M)([−1, 1]) ⊗̂π
r
· · · ⊗̂π E(M)([−1, 1])

coincide. To shorten notation, let us designate them by
⊗̂rE(M)([−1, 1]).
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Proposition 6.4. For every integer r ≥ 2, the Fréchet nuclear spaces⊗̂rE(M)([−1, 1]) and E(M)([−1, 1]r) coincide.

Proof. Let E denote the tensor product

E(M)([−1, 1])⊗
r
· · · ⊗E(M)([−1, 1]).

By Theorem 6.3, we already know that E is a dense vector subspace of
E(M)([−1, 1]r).

We first prove that on E the π-topology is finer than the topology induced
by E(M)([−1, 1]r). For every j ∈ N, it is well known that the set Uj of linear
combinations

l∑

s=1

bsfs,1(x1) · · · fs,r(xr) =
l∑

s=1

bsfs,1 ⊗ · · · ⊗ fs,r(x)

with l ∈ N, b1, . . . , bl ∈ K such that
∑l

s=1 |bs| ≤ 1, and fs,k ∈ E(M)([−1, 1])
such that ‖fs,k‖j,1 ≤ 1 for all s ∈ {1, . . . , l} and k ∈ {1, . . . , r}, is a neigh-
bourhood in E endowed with the π-topology. To conclude it is then enough
to verify that, for every j ∈ N, Uj is a subset of the closed unit semi-ball
of E(M)([−1, 1]r) for the semi-norm ‖·‖j,r. This is straightforward: for every

element f =
∑l

s=1 bsfs,1 ⊗ · · · ⊗ fs,r of Uj , one just has to note that, for

every s ∈ {1, . . . , l},

‖fs,1 ⊗ · · · ⊗ fs,r‖j,r ≤ ‖fs,1‖j,1 · · · ‖fs,r‖j,1 ≤ 1.

Now we prove that on E , the ε-topology is weaker than the topology
induced by E(M)([−1, 1]r). For any elements u1, . . . , ur of the topological

dual of E(M)([−1, 1]) and f ∈ E(M)([−1, 1]r), set

〈f, u1 ⊗ · · · ⊗ ur〉 :=
∑

γ∈Nr
0

aγ(f)〈u1, Tγ1〉 · · · 〈ur, Tγr〉.

For every j ∈ N, let moreover Vj denote the polar set of

{f ∈ E(M)([−1, 1]) : ‖f‖[−1,1],j,1/j ≤ 1}

in the topological dual of E(M)([−1, 1]). If u1, . . . , ur ∈ Vj , we get

|〈f, u1 ⊗ · · · ⊗ ur〉| ≤
∑

γ∈Nr
0

|aγ(f)| ‖Tγ1‖j,1 · · · ‖Tγr‖j,1

with

‖Tγ1‖j,1 · · · ‖Tγr‖j,1 = sup
α∈Nr

0

j|α|‖DαTγ‖[−1,1]r

Mj,α
≤ sup

α∈Nr
0

B
|α|
j,r j|α|‖DαTγ‖[−1,1]r

Mj+r−1,|α|

for some Bj,r > 1 independent of γ by Proposition 4.2. So if mj,r is an
integer such that mj,r > j + r − 1 and mj,r > jBj,r, we have

‖Tγ1‖j,1 · · · ‖Tγr‖j,1 ≤ ‖Tγ‖mj,r,r
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for every γ ∈ N
r
0. Now we apply inequality (3) to get

|〈f, u1 ⊗ · · · ⊗ ur〉| ≤ Cmj,r,r‖f‖mj,r,r

∑

γ∈Nr
0

1

γ∗2
1 · · · γ∗2

r

for every f ∈ E(M)([−1, 1]r), for some constant Cmj,r,r > 0 independent of f .
Therefore u1 ⊗ · · · ⊗ ur is a continuous linear functional on E(M)([−1, 1]r)
and

{u1 ⊗ · · · ⊗ ur : u1, . . . , ur ∈ Vj}

is an equicontinuous subset of the topological dual of E(M)([−1, 1]r).

Hence the conclusion follows, since the topologies ε and π coincide on E .

7. Non-extension result. It is clear that the restriction map

R : B(M)(R
r) → Λ

(r)
(M), f 7→ (Dγf(0))γ∈Nr

0
,

is well defined, linear and continuous.

Proposition 7.1. For every r ∈ N, there is no continuous linear exten-

sion map from Λ
(r)
(M) into B(M)(R

r).

Proof. We proceed by induction on r.

Case r = 1. Suppose that there is a continous linear extension map T

from Λ
(1)
(M) into B(M)(R). Then there are r, s ∈ N, h, k ∈ ]0, 1] and H, K > 1

such that

‖Ta‖R,1,1 ≤ H|a|s,h and ‖Ta‖R,s+1,1 ≤ K|a|r,k

for every a ∈ Λ
(1)
(M). For every p ∈ N0, denote by ep the pth unit vector of

Λ
(1)
(M) and set χp := Tep. We then have

‖χp‖R,1,1 ≤
H

hpMs,p
and ‖χp‖R,s+1,1 ≤

K

kpMr,p
.

Moreover for every x > 0, the Taylor development provides some y ∈ ]0, x]
such that

χ(p)
p (x) = χ(p)

p (0) +
xp

p!
χ(2p)

p (y) = 1 +
xp

p!
χ(2p)

p (y),

hence

|χ(p)
p (x) − 1| ≤

xp

p!
‖χp‖R,s+1,1Ms+1,2p ≤

xp

p!

KMs+1,2p

kpMr,p
.

So if we define τp > 0 by τp
p = p!kpMr,p/(2KMs+1,2p), we get

|χ(p)
p (x) − 1| ≤

τp
p

p!

KMs+1,2p

kpMr,p
=

1

2
, ∀x ∈ ]0, τp],
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hence ℜχ
(p)
p (x) ≥ 1/2 and therefore ℜχp(x) ≥ xp/(2p!) for every x ∈ ]0, τp].

This leads to

kpMr,p

4KMs+1,2p
=

τp
p

2p!
≤ ℜχp(τp) ≤ ‖χp‖R,1,1M1,0 ≤

H

hpMs,p
.

Now we note that condition (m4) applied with A = 1 provides a constant
Bs > 0 such that Ms+1,2(p+1) ≤ Bsp!Ms,p for every p ∈ N. So the preceding
inequalities lead to

Mr,p

p!
≤

4HKMs+1,2p

p!hpkpMs,p
≤

4HK

p!hpkp

Ms+1,2(p+1)

Ms,p
≤

4HK

hpkp
Bs

and we obtain the existence of some B > 0 such that Mr,p/p! ≤ Bp+1 for
every p ∈ N0. As by Proposition 4.1, there is c > 0 such that Mr,p/p! ≥
c(2B)p+1 for every p ∈ N0, we arrive at the contradiction c(2B)p+1 ≤ Bp+1

for every p ∈ N0.

General case. Suppose that for some r > 1, there is a continuous linear

extension map S from Λ
(r)
(M)

into B(M)(R
r). Of course, the map V : Λ

(1)
(M)

→ Λ
(r)
(M) defined by

(V a)γ =

{
0 if (γ2, . . . , γr) 6= 0,

(aγ1 , 0, . . . , 0) otherwise,

is well defined, linear and continuous. Moreover the map R1 from B(M)(R
r)

into B(M)(R) defined by (R1f)(t) = f(t, 0, . . . , 0) for every t ∈ R is also well
defined, linear and continuous. Therefore the map R1 ◦ S ◦ V is continuous

and linear from Λ
(1)
(M) into B(M)(R). As it is clearly an extension map, we

have arrived at a contradiction.

8. Conditions (m5) and (m′
5)

Definition. (a) The matrix m satisfies condition (m5) if there is some
α > 1 such that

∑∞
p=1 pα/mj,p < ∞ for every j ∈ N.

(b) The matrix m satisfies condition (m′
5) if there is some β > 2 such

that limp→∞ p!β/Mj,p = 0 for every j ∈ N.

Proposition 8.1. The matrix m satisfies condition (m5) if and only if

it satisfies condition (m′
5).

Proof. We will prove that if m satisfies (m5) with α > 1, then it sat-
isfies (m′

5) with β = 1 + α. For every j ∈ N, the sequence (m′
j,p)p∈N0

defined by m′
j,0 = 1 and m′

j,p = p−αmj,p for every p ∈ N is non-quasi-
analytic. Therefore the Denjoy–Carleman theorem (cf. [3, Theorem 1.3.8])
gives

∑∞
p=1 1/Lj,p < ∞ if we set

Lj,p = inf{(M ′
j,k)

1/k : k ≥ p}, ∀p ∈ N.
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As (1/Lj,p)p∈N is a decreasing sequence of positive numbers, this leads to
p/Lj,p → 0. The conclusion is then clear since

p!1+α

Mj,p
≤

ppp!α

Mj,p
=

pp

M ′
j,p

≤

(
p

Lj,p

)p

, ∀p ∈ N.

If m satisfies (m′
5) with β > 2, the following argument proves that it

satisfies (m5) for any α ∈ ]1, β − 1[. Let j ∈ N and choose γ ∈ ]2, β[. An
immediate application of the Stirling formula gives limp→∞ pγp/(p!)β = 0,
hence limp→∞ pγp/Mj,p = 0. So there is pj ∈ N such that pγp < Mj,p, hence
pγ < mj,p for every p ≥ pj . Choosing now α > 1 such that γ − α > 1,
we get

pα

mj,p
=

pγ

mj,p

1

pγ−α
<

1

pγ−α
, ∀p ≥ pj ,

hence
∑∞

p=1 pα/mj,p < ∞.

9. Extension results

Construction. If the matrix m satisfies condition (m5) with α > 1, we
make the following choices.

a) The integers pj and the numbers np and Np. We first choose a strictly
increasing sequence (pj)j∈N of positive integers such that

∞∑

p=pj+1

pα

mj+1,p
< 2−j , ∀j ∈ N.

We then define the sequence (np)p∈N0 as follows:

np =






1 if p = 0,

p−αm1,p if p ∈ {1, . . . , p1},

p−αmj+1,p if p ∈ {pj + 1, . . . , pj+1} and j ∈ N.

Of course we then set Np = n0 · · ·np for every p ∈ N0.

Note that, for every j ∈ N, there is clearly a constant cj > 1 such that
np ≤ cjp

−αmj,p for every p ∈ N0, hence

(4) Np ≤ cp
jp!−αMj,p, ∀p ∈ N0.

b) The functions Sn. For a :=
∑∞

p=1 1/np, a slight enhancement of prop-
erty 1.3.5 of [3] provides the existence of a function ϕ ∈ D([−a, a]) such
that 0 ≤ ϕ ≤ 1 as well as ϕ(p)(0) = δp,0 and ‖ϕ(p)‖R ≤ 2pNp for every
p ∈ N0.
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For every n ∈ N0, we then set vn(x) = ϕ(a(1 + n2)x) for every x ∈ R

and define the function un on R by setting

un(x) :=






0 if x < −1 − 1/(1 + n2),

vn(x + 1) if −1 − 1/(1 + n2) ≤ x ≤ −1,

1 if −1 < x < 1,

vn(x − 1) if 1 ≤ x ≤ 1 + 1/(1 + n2),

0 if 1 + 1/(1 + n2) < x.

Finally, for every n ∈ N0, we set Sn := Tnun. It is a direct matter to
verify that Sn belongs to C∞(R), is an extension of Tn|[−1,1] and has its

support contained in [−1 − 1/(1 + n2), 1 + 1/(1 + n2)].

c) The functions Sγ. Now everything is set up to introduce the following
functions: for every γ ∈ N

r
0, we define the function Sγ on R

r by

Sγ(x) = Sγ1(x1) · · ·Sγr(xr), ∀x ∈ R
r.

It is clear that Sγ belongs to C∞(Rr), is an extension of Tγ |[−1,1]r and has
its support contained in [−2, 2]r. A lot more can be said.

Lemma 9.1. If the matrix m satisfies condition (m5), then there is a

constant b > 1 such that ‖S
(p)
0 ‖R ≤ bp+1Np and ‖S

(p)
n ‖R ≤ (bn2)p+1Np for

every n ∈ N and p ∈ N0.

Proof. For every n ∈ N, x ∈ R such that |x| ≤ 1+1/(1+n2) and p ∈ N0,
Proposition 3.1 and the preceding construction lead to

|S(p)
n (x)| ≤

p∑

l=0

(
p

l

)
|T (l)

n (x)| |u(p−l)
n (x)|

≤

p∑

l=0

(
p

l

)
e

n2l

l!
2p−lNp−la

p−l(1 + n2)p−l.

As the series
∑∞

p=0 1/np converges, we have np ≥ 1 for p large; this implies
the existence of a constant c > 1 such that Nq ≤ cNp for every p, q ∈ N such
that q ≤ p. Therefore we get

‖S(p)
n ‖R ≤ ceNp

p∑

l=0

(
p

l

)
n2l(2a(1 + n2))p−l

≤ ceNp(n
2 + 2a(1 + n2))p, ∀n ∈ N, p ∈ N0.

As it is clear that we also have

‖S
(p)
0 ‖R = ‖u

(p)
0 ‖R ≤ (2a)pNp, ∀p ∈ N0,

we conclude at once.
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Proposition 9.2. If the matrix m satisfies condition (m5), then there is

q ∈ N such that , for every j, r ∈ N, there is a constant Dj,r,q > 0 such that

‖Sγ‖Rr ,j,1/j ≤ Dj,r,q‖Tγ‖j+q+2r,r, ∀γ ∈ N
r
0.

In particular , for every γ ∈ N
r
0, the extension Sγ of Tγ |[−1,1]r belongs to

D(M)([−2, 2]r).

Proof. Let us first remark that, for every j ∈ N, condition (m4) applied
with A = 1 provides a constant Ej > 1 such that

(5) Mj+1,2(p+1) ≤ Ejp!Mj,p, ∀p ∈ N0,

hence

(6) M2
j+1,p ≤ Mj+1,2(p+1) ≤ Ejp!Mj,p, ∀p ∈ N0.

Now we fix q by the following observation: as the matrix m satisfies (m5),
there is λ > 1 such that

∑∞
p=1 pλ/mj,p < ∞ for every j ∈ N, so we can choose

q ∈ N with 2−q < λ − 1.
Next, for every j, r ∈ N, we proceed as follows. First of all, to shorten

notation, we set ‖Tγ‖∗ = ‖Tγ‖j+q+2r,r for every γ ∈ N
r
0. Then we recall that

Proposition 6.1 provides some B = Bj+q+r+1,r > 1 depending only on j, r
and q such that

(7) 1 = |aγ(Tγ)| ≤ 2r (2B)|β|

γβ
Mj+q+r+1,β‖Tγ‖∗, ∀β, γ ∈ N

r
0.

So, for every α ∈ N
r
0, using successively Lemma 9.1, inequality (4) and (7)

with β = (2(α1 + 1), . . . , 2(αr + 1) and setting A = 8bcj+q+rB
2, we obtain

‖S(α)
γ ‖Rr =

r∏

k=1

‖S(αk)
γk

‖R ≤ Ar‖Tγ‖∗

r∏

k=1

Aαk

αk!λ
Mj+q+r,αk

Mj+q+r+1,2(αk+1).

Now for every k ∈ {1, . . . , r}, we use (5) and (6) to get

Mj+q+r,αk
Mj+q+r+1,2(αk+1) ≤ αk!

2Ej+q+rEj+q+r−1Mj+q+r−1,αk

and then we note that a repeated use of inequalities of type (6) leads to

Ej+q+r−1
Mj+q+r−1,αk

αk!
≤ Ej+q+r−1E

2−1

j+q+r−2

(
Mj+q+r−2,αk

αk!

)2−1

≤ · · ·

≤ Ej+q+r−1E
2−1

j+q+r−2 · · ·E
2−q

j+r−1

(
Mj+r−1,αk

αk!

)2−q

.

Setting E = Ej+q+r
∏q

k=0 E2−k

j+q+r−1−k and putting all this information to-
gether yields

‖S(α)
γ ‖Rr ≤ (AE)r‖Tγ‖∗

r∏

k=1

Aαk

αk!λ−3

(
Mj+r−1,αk

αk!

)2−q

,
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hence

j|α|‖S
(α)
γ ‖Rr

Mj,|α|
≤ ‖S(α)

γ ‖Rr

r∏

k=1

jαk

Mj,αk

≤ ‖S(α)
γ ‖Rr

r∏

k=1

jαk

Mj+r−1,αk

≤ (AE)r‖Tγ‖∗

r∏

k=1

(jA)αk

αk!λ−1−2q

(
αk!

2

Mj+r−1,αk

)1−2−q

.

Finally, on the one hand the sequence (p/mj,p)p∈N of positive numbers is de-
creasing and satisfies

∑∞
p=1 p/mj,p < ∞; this implies lim p2/mj,p = 0, hence

lim p!2/Mj,p = 0. On the other hand, the sequence ((jA)p/p!λ−1−2−q

)p∈N

converges to 0. These two facts and the last inequality together provide the
existence of a constant Dj,r,q > 0 such that

j|α|‖S
(α)
γ ‖Rr

Mj,|α|
≤ Dj,r,q‖Tγ‖∗, ∀α ∈ N

r
0,

hence the conclusion.

Theorem 9.3. If the matrix m satisfies condition (m5), then for every

r ∈ N,

T : E(M)([−1, 1]r) → D(M)([−2, 2]r), f 7→
∑

γ∈Nr
0

aγ(f)Sγ ,

is a continuous linear extension map.

Proof. This is a direct consequence of Theorem 6.3 and Proposition 9.2.

10. Application

Proposition 10.1. If Φ : [0,∞[ → [0,∞[ is an increasing and convex

function such that Φ(0) = 0 and limt→∞ Φ(t)/t = ∞, then the matrix m =
(mj,p)j∈N, p∈N0 defined by mj,0 = 1 and

mj,p = peΦ(p/8j)−Φ((p−1)/8j)

for every j, p ∈ N satisfies conditions (m1) to (m4).

If moreover Φ satisfies limp→∞ Φ(t)/(t log(t)) = ∞, then m also satis-

fies (m5).

Proof. By Proposition 7.1 of [8], we know that m satisfies (m1) to (m3).

Let us prove that it also satisfies (m4). For every p ∈ N, as we have(
2p+2

p

)
≤ 22p+2, p + 1 ≤ 2p and p + 2 ≤ 2p+1, we get (2p + 2)! ≤ 23+4pp!2. So

for every j, p ∈ N, we have

Mj+1,2(p+1) = (2p + 2)!eΦ(2(p+1)/8j+1) ≤ 23+4pp!2eΦ(p/(2·8j))

since Φ is an increasing function. As also 2Φ(t) ≤ Φ(2t) for every t ≥ 0, this
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leads to

Mj+1,2(p+1) ≤ 27pp!2eΦ(p/8j)e−Φ(p/(2·8j)) = 27pp!Mj,pe
−φ(p/(2·8j))

for every j, p ∈ N. Now the condition limΦ(t)/t = ∞ implies for ev-
ery A > 0 the existence of some pA ∈ N such that Φ(p/(2 · 8j)) ≥

p(log(A) + log(27)), hence e−Φ(p/(2·8j)) ≤ A−p2−7p for every p ≥ pA. So
altogether we have

Mj+1,2(p+1) ≤ A−pp!Mj,p, ∀p ≥ pA;

hence the conclusion.

Finally, we prove that if Φ satisfies limΦ(t)/(t log(t)) = ∞, then m sat-
isfies (m′

5) with β = 3. Indeed, for every j ∈ N, the supplementary condi-
tion provides limΦ(8−jp)/(p log(p)) = ∞, hence there is pj ∈ N such that
Φ(8−jp) ≥ 3p log(p) for every p ≥ pj . So for every p ≥ pj we certainly
have

p!3

Mj,p
=

p!2

eΦ(p/8j)
≤ p2pe−Φ(p/8j) ≤ e−p log(p)

and we conclude at once.

Let Φ be a real, increasing and convex function on [0,∞[ such that
Φ(0) = 0 and limt→∞ Φ(t)/t = ∞.

The notations have been modified several times: the spaces I4,Φ({0}),
I4,Φ([−1, 1]) and I4,Φ(R) introduced in [1] become IΦ({0}), IΦ([−1, 1]) and
IΦ(R) in [2]. If one considers the matrix m associated to Φ in Proposi-

tion 10.1, they coincide respectively with the spaces Λ̂(M), Ê(M)([−1, 1]) and

B̂(M)(R) of [8] and with the spaces Λ
(1)
(M), E(M)([−1, 1]) and B(M)(R) in this

paper.

Let us also recall that in [8], it is proven that there are spaces B(M)(R) for
which there is no function Φ such that B(M)(R) = IΦ(R). So Proposition 7.1
and Theorems 6.3 and 9.3 provide enhancements of the following results of
Beaugendre.

Theorem 10.2. Let Φ be a real , increasing and convex function on the

interval [0,∞[ such that Φ(0) = 0 and limt→∞ Φ(t)/t = ∞.

(a) ([1, Proposition 3.1.1]) There is no continuous linear extension map

from Λ
(1)
(M) into B(M)(R).

(b) ([2, Theorem 3.6]) The family (Tn, an(·))n∈N0 is an absolute Schau-

der basis in E(M)([−1, 1]).
(c) ([2, Theorem 4.3]) If Φ also satisfies limt→∞ Φ(t)/(t log(t)) = ∞,

then there is a continuous linear extension map from E(M)([−1, 1])
into B(M)(R) by means of a modification of the Chebyshev polynomi-

als.
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[7] S. Roman, The formula of Faà di Bruno, Amer. Math. Monthly 87 (1980), 805–809.
[8] J. Schmets and M. Valdivia, Extension properties in intersections of non quasi-

analytic classes, Note Mat., to appear.

Institut de Mathématique
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