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Abstract. We deal with projective limits of classes of functions and prove that: (a)
the Chebyshev polynomials constitute an absolute Schauder basis of the nuclear Fréchet
spaces Ewn)([—1,1]"); (b) there is no continuous linear extension map from AE&) into
By (R"™); (c) under some additional assumption on 91, there is an explicit extension map
from oy ([—1,1]") into Dany([—2,2]") by use of a modification of the Chebyshev polyno-
mials. These results extend the corresponding ones obtained by Beaugendre in [1] and [2].

1. Introduction. It is well known that there is no continuous lin-
ear extension map from w into C*°(R). In 1961, Mityagin [4] proved that
(a) C*°([—1,1]) is a Fréchet nuclear space in which the Chebyshev polyno-
mials constitute an absolute Schauder basis, and (b) there is a continuous
linear extension map from C*°([—1, 1]) into C>°(R) by means of a modifica-
tion of the Chebyshev polynomials.

Since then, (non-) existence of continuous linear extension maps has been
extensively studied in the case of non-quasi-analytic classes. For instance,
we mention the results by Petzsche [5] about the Borel case, i.e. the case
n=1and K = {0}.

Recently Beaugendre [1], [2] has obtained similar results in the case of
some projective limits of such classes.

In this paper we deal with these questions in a more general setting,
i.e. in the case of countable intersections of classes of functions defined by
means of matrices of positive elements.
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After having obtained some inequalities, we introduce in Section 4 the
matrices m and 9 that allow us to define for instance the spaces B MJ.)(Q),

&, ([—1,1]") and AE;\)/IJ-) by use of the rows of 91, and next their projective

limits B (£2), oy ([—1,1]") and Ag;t)‘

We then prove that for every r € N,
(a) Eomy([=1,1]") is a Fréchet nuclear space in which the Chebyshev
polynomials constitute an absolute Schauder basis;

(r)

(b) there is no continuous linear extension map from A(;ﬁ) into Bgy) (R").

Under some additional assumption on 91, we also obtain the existence of
a continuous linear extension map from Egyy([—1,1]") into Doy ([—2,2]"),
hence into Bgp) (R").

Finally, we prove that these results extend the corresponding ones ob-
tained by Beaugendre in [1] and [2].

2. An auxiliary inequality

ProOPOSITION 2.1. Let r,m € N, {2 be an open subset of R" and f €
C™(82). For every s € {1,...,r}, let moreover ws be an open subset of R
and gs € C™(ws) be a real function such that

(gi(t1),-- s 0r(tr)) € 82, Y(t1,...,t;) Ew:i=wi X -+ X wy,

and
M:= sup sup ||g¥|.. < .
1<s<r 0<i<m
Then for every o € Njj such that 0 < |a| < m, there are explicit functions
Ag on w such that

)OO = 3 A0 5 Do) (e)

@ 0#£6<a

and 3 0.5<0 A1) < (1 + M)lel for every t € w. Therefore for every
a € Nj such that 0 < |a] <m and t € w,

101 )01 < @+ sup 1D ga(t0). )
o! 0<B<a

Proof. Once the first assertion is established, the consequence is imme-
diate since the case a = 0 is trivial.
The case r = 1 is a direct consequence of the Faa di Bruno formula
(cf. [7]) stating that, for every s € {1,...,m},
(8)(¢ SR (aq (t
(f(g1))'¥(#) _Zf (91(1)) A

s! k!
k=1

k(t), VtEwl,
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where
_ k! O RO
Aw(t) = 2. kll---k5!< 1! U
ky ko =k
k1+2ko+---+sks=s
with

k1++ks:k
k1+2ka+---+sks=s

It is indeed sufficient to note that
S S
s—1
A< Mk = M(1+ M1 <1+ M)>5.
S 0] < M) = M <

To conclude by induction, we just have to prove that if the property is
true for r — 1 with r > 2, then it is also true for r.

Of course we may suppose a; # 0. For every t1 € wi and xo,...,z, € R
such that (g1(t1),z2,...,x,) € £2, the case r = 1 provides

1 - 1
- (f(gla T, ... 7$T))(al)(t1) = Z Aﬁl (tl) 2. f(ﬁl)(gl(tl)ax% cee >$T)
a! = B!
with 8] = (41,0,...,0) and >23'_, [Ag, (t1)] < (1 + M) for every {1 € wy.
Now we set v = (aa, ..., ). In the case v = 0, we have
! () 1 (o)
o Flan 9]0 () = o (g1, 02(t2) - 90 (80))) (1)

and it suffices to set Ag(t) = Ag, (t1) for every 8 € Nj such that 0 # 5 < a.
If v # 0, the commutativity of the derivatives yields

(f(gl’ s 7g7“))(a)(t) _ il: Aﬁl (tl) (f(ﬁi)(gl(tl),gz, e 791“))(7)(7527 ceey tr)
| | | ’
ol ] 51! ~!
Then we apply the case » — 1 to get
(f(ﬁi)(gl(tl)v g2,... agr))(’Y)(t% s 7t7“)
~!
= Z An(t27 s 7t7“)
0#n<~vy

with 3o, < [Ap(te, .. t)] < (1 + M)N!. So the formula is correct if we
set -

f(,ﬁl,??) (gl(tl)v ce 7gT(tT))
il

0 ifﬁlzoor(/BQW‘wﬁT‘):Oa

A coytp) =
a(te, ... t) {Aﬁl(tl)A(ﬁ%mﬁr)(tQ,,,,,tr) otherwise,



230 J. Schmets and M. Valdivia

since then
aq
STAsI= Y Ag )l D Ay(te,. ) S 1+ M) a
0#£8<a =1 0#n<(B2,---,06r)

3. The Chebyshev polynomials. For every n € Ny, the Chebyshev
polynomial T, is the polynomial of degree n on R which coincides with the
function cos(n arccos(z)) on the interval [—1,1].

The following information about \qup )(x)\ will be used. For Ty = xR, the
situation is clear. For every n € N, the V. A. Markov inequality (]6, 1.3.35
and 1.5.6]) states that

2 02 _ 12 n2 _ = 1)2 n2p
T <71y " T

for every p € Ny and = € [—1, 1]. We need the following slight extension of
this inequality.

PROPOSITION 3.1. For every n € N and p € Ny, one has

2p 1 1
(») n- 1
T\ (x)|§ep!, Vee|—1 1+n2’1+1+n2 .

Proof. As T, is a polynomial of degree n, we only need to consider the
case p < m. Since every z € [0,1+ 1/(1 + n2)] can be written as x =y + 2
with y € [0,1] and 2z € [0,1/(1 + n?)], the Taylor formula provides the

equality T (z) = Sorch TP ()2 /), which leads to

) <X p2 n2k 1 n2p
TP < el
T (x)‘—;(mk) T kzokz'

Hence the conclusion follows, since a similar argument works for the elements
of the interval [-1 — 1/(1 +n?),0]. =

As we will deal with functions defined on subsets of R", the following
considerations will be very useful.

NOTATION. For every v € Nj, T, designates the polynomial defined
on R" by T, (z) = Ty, (x1) - - - T, (z,) for every x € R".

Then for every f € C*([-1,1]"), f(cos(t1),...,cos(ty)) is a periodic
C®°-function on R". So its Fourier development is

> ay(f) cos(nta) - - cos(ypty)

veNG
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with

(1) ay(f) = —

or(v)

1
— S f(cos(t1),...,cos(ty)) cos(vity) - - - cos(v,t,) dt,

[_Trvﬂ-]r
where r(7) is the number of components of v which are equal to 0. Moreover
the derivatives of this series converge absolutely and uniformly on R" to the
corresponding derivatives of the function f(cos(t1),...,cos(t,)). Therefore
we get

f@)=flzr,...,2) = Y ay(f)Ty(x)
v€Ng

and the derivatives term by term of this series converge absolutely and
uniformly on [—1,1]" to the corresponding derivatives of f.

An estimate of the numbers |a(f)| can be obtained as follows.

NOTATION. Given v € Nj, we set v* = (77,...,7)) with v} = 7, if
vs # 0 and v} =1 if 7, = 0.
Moreover we set ¥ = (77)* ... (7)) for every a € Nj.

Then, by integration by parts, for every o € Ny, formula (1) leads to

1 1 1
_ 11 ()
() = 57 77 72 [ | r(f(cos(tl),...,cos(tT))) x(t) dt
with
COS COS
0 ={ Yo {2 b,
hence
grtlal—r() 0 (x
) (Nl <ot wp s N
Y 0<6<axze[-1,1]" :

by Proposition 2.1.

4. The matrix m. To any sequence m = (my),cn, of positive num-
bers, we associate as usual the sequence M = (M,),cn, defined by M, =
mo - - - my, for every p € Np.

Throughout the paper, m designates a matrix

m = (mjp) jen
S
such that the sequences m; = (m;,)pen, satisfy the following conditions:
for every j € N,

(m1)  mjo=1and mj, > 1 for every p e N;
(mg)  myp/p <mjpr1/(p+ 1) for every p € N; in particular the sequence
/P pen, 18 increasing an i, > p! for every p € Ny;
M;p/P)peng 18 i ing and Mj,, > p! f y N
(m3)  mjp > mjq1, for every p € No;
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(my) for every A > 0, there is A; > 1 such that

Mj+1,2(p+1) < Ainpp!M]}p, Vp € Np.

Conditions (m;) and (mg) are standard. Condition (mg3) is necessary to
introduce the projective limits defined in the next section. Condition (my)
is not standard: it provides links between the spaces defining these projec-
tive limits. Let us note at once that it leads to the following two conse-
quences.

ProroSITION 4.1. For every j € N and B > 0, there ts ¢ > 0 such that
M, /p! > eBP*L for every p € Ny.
Proof. Indeed, by condition (m4) with A = B/4, we get
. » M. P ! p
Moy o 28 Tittatort) o 2y B0, B4,
pl T A () 4; (P} 4;

NOTATION. For every j € N and v € N, set M, = M, ., ---Mj,.

PROPOSITION 4.2. For every j,r € N such that r > 2, there is a constant
Bj» > 1 such that M ,_y 5 < BJ‘{S?'"MJ-,(; for every 6 € N.

Proof. When r = 2, this is equivalent to establishing that, for every
j € N, there is B; > 1 such that Mjiiprq < B;’J“qu,pMj,q for every
p,q € Ng such that p > ¢q. For A = 1, condition (my) provides a constant
C; €10,1] such that CjM; 1 opq1) < p!Mj, for every p € N, hence

M. M > g Mj+132(p+1)
s2Msa 2 3 B+ 1)

Mji1prq (20)0  (C\"
20 e e 2\ 2 ) M

The case r > 3 is then immediate:

C; My
(2(p+1))lg! > p—!” 7(;+ 2);] (2p)'q!

|6]
Mjr1ys) < By osMjir—a5,4ets, My,
5
<. < (Bj+r—2,2---Bj,2)| ‘Mj,al M, . m

5. Some spaces

5 (r) (r)
The(grechet spaces A(Mj) and A(sm)'

space /1( M;) is the vector space of indexed families @ = (a,),eny of elements
J
of K such that

For every j,r € N, the Fréchet

|a,|
laljp = sup ———— < o0, Vh >0,
vENg hMMJ}\v\

endowed with the system of norms {|-|;/,,: m € N}.
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For every r € N, the space Ag%) is then defined as the projective limit of

the sequence (AE;\)/[-))J'GN; {l"l;1/5: 7 € N} is of course a fundamental system
J
of norms for this space.

The Fréchet spaces Bng;)(£2) and Bgp)(§2). Given an open subset {2
of R", the Fréchet space B(pz,)(£2) is the vector space of functions f € C>(£2)

such that
ID*fll
[/l 2,j.h := sup

< oo, VYh>0,
aeNy nlelM. I Mj )0

endowed with the countable system of norms {||-|| o j1/m: m € N}.
The Fréchet space By (£2) is then defined as the projective limit of the
sequence (B(nz;)(£2))jen-

The space D(gﬁ)(K ). Given a compact subset K of R", the Fréchet space
Do) (K) is the topological subspace of Bgy)(R") consisting of the elements
with support contained in K.

The Banach spaces Bj, and the Fréchet spaces Egpy([—1,1]"). The Ba-
nach space B;, is the vector space of functions f & COO([ 1,1]") such that

oD F| 1 1
7 fH[ 1,1] <

= sup 00
r )
aeN] Mj,|oz\

endowed with the norm ||-||;,.
The Fréchet space Egyy([—1,1]") is then defined as the projective limit
of the sequence (B;,);en.

6. Study of the space &gy ([—1,1]")

PROPOSITION 6.1. For every j,r € N, there is a constant B, > 1 such
that, for every a,~y € N,

Q‘OllB‘-al
|afy(f)| < 2" 27 Mj,a”f”j-‘,—r—l,ra vf € Bj-i—r—l,r-

(o7

In particular, for every j,r € N, (Ty, ay(-))yeny is a biorthogonal system in
BjJrrfl,r-
Proof. For every f € Bji,—1, and a, 0 € Nj such that § < a, we clearly
have
Lo 1 Mjir—1,50)
50 [P 51 1 li+r—1r m

M]a

)
_Bj‘l 2 fll -t < B 23



234 J. Schmets and M. Valdivia

for some constant Bj, > 1 independent of f (if r = 1, any number Bj; > 1
is suitable; if » > 2, we use Proposition 4.2). So the announced inequality is
an immediate consequence of the estimate (2) of |a(f)|.

The particular case is clear: it is a fact that a,(T5) is equal to 1 if y =6
and to 0 otherwise. Moreover the established inequality implies that the
linear functionals a(-) are continuous on Bji,_1,. =

PROPOSITION 6.2. For every j,r € N, the canonical injection from
Bjtrr into Bj, is nuclear.

Proof. For every (3,7 € Nj, we use the V. A. Markov inequality to es-
timate the derivatives of T, and Proposition 6.1 with the special value
a = (261 +2,...,26, + 2) to estimate |a,(f)|. We thus get a constant
Bjt1, > 1 such that

) . 2|8|+2
J‘m\aw(f)\ HDBT’)'H[—I,l]’“ < JWW?WHQTBJ'H,T ' 1 Mji1.a

< £ 11+,
M s M s vt T

for every f € Bty
For A =4jB?,, ., condition (m4) provides a constant A; > 1 such that

Mj+1,2(p+1) < AjA_pp!ijp, Vp € Np.
This leads to the following estimate:

Mjvia _ Mivio@iey  Mitiee+) - -
_ ES) < ATATING g < A5 AT

p 4! Gl
Therefore we get
1
(3) ‘av(f)’ HTv”j,r < Cjyr N ) | fllj+rrs  Vf € Bjgrr,
’Yl Uy
with Cj, = 23’"A§BJ2.§FLT > 0 and we conclude at once since the series

ZWENB (vi%- - 9;2) 7! converges. u

Together with inequalities (3), Propositions 6.1 and 6.2 lead to the fol-
lowing result.

THEOREM 6.3. For every r € N, the family (T, a()) enz is an absolute
Schauder basis in the Fréchet nuclear space &gy ([—1,1]"). m

NOTATION. As Egy)([—1,1]) is a Fréchet nuclear space, the tensor prod-
ucts

5(93?)([_17 1]) ®E . ®E 5(93'()([_17 1])
and
8(9)?)([_17 1]) ®7r L ®7r S(SJT)([_L 1])

coincide. To shorten notation, let us designate them by @Té’@m([—l, 1]).
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PROPOSITION 6.4. For every integer r > 2, the Fréchet nuclear spaces
Q" Eam([—1,1]) and Egny([—1,1]") coincide.
Proof. Let £ denote the tensor product

S(Qﬁ)([_lv 1])® L ®E(9ﬁ)([_17 1])
By Theorem 6.3, we already know that £ is a dense vector subspace of
Eom ([-1,1]7).
We first prove that on £ the m-topology is finer than the topology induced
by Ewmy([—1,1]"). For every j € N, it is well known that the set U; of linear
combinations

l l
Z bsfs,l(xl) e fs,r(xr) = stfs,l Q- ® fs,r(x)
s=1 s=1

with I € N, by, ..., b € K such that >0 |bs| < 1, and fox € Eony([~1,1])
such that || fsxll;1 <1 forall s e {1,...,1} and k € {1,...,r}, is a neigh-
bourhood in £ endowed with the m-topology. To conclude it is then enough
to verify that, for every j € N, U; is a subset of the closed unit semi-ball
of Egmy ([—1,1]") for the semi-norm ||| This is straightforward: for every
element f = Zi:l bsfs1 @ -+ ® fs,r of Uj, one just has to note that, for
every s € {1,...,1},

[fs1 @@ forllir < fsallia- I fsrllin < 1.

Now we prove that on &, the e-topology is weaker than the topology
induced by Egpy([~1,1]"). For any elements uy,...,u, of the topological
dual of gy ([~1,1]) and f € Egyy([—1,1]"), set

(frur @ ®@uy) = Z a’Y(f)<u1’T’Yl> T <UT7T%~>-
YEN]
For every j € N, let moreover V; denote the polar set of
{f € &am(=L1D: Ifll-10505 <1}
in the topological dual of &gy ([—1,1]). If u1,...,u, € Vj, we get
[(frun @ @ur)| < Y lay (DTl 1Ty, 1

7€N6
with

laf D B|‘0“ ilal DT
JD TWH[—l 1" G l 7||[—1,1]r
1T [l 75,110 = sup —— < sup —
v i Mo aeNg Mjir_q jal
for some Bj, > 1 independent of v by Proposition 4.2. So if m;, is an
integer such that m;, > j+r —1 and m;, > jB;,, we have

1T ll1 - - T 10 < 1Tyl
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for every v € Njj. Now we apply inequality (3) to get

1
|<f7 u1 ® e ® UT>| S ij,'merHmj,'mr Z *2—*2
AR
veNg

for every f € o) ([—1,1]"), for some constant Cy,; . » > 0 independent of f.
Therefore u; ® -+ ® u, is a continuous linear functional on &gy ([—1,1]")
and

{1 @ - @up: uy,...,ur € Vj}
is an equicontinuous subset of the topological dual of &gy ([—1,1]").
Hence the conclusion follows, since the topologies € and 7 coincideon €. u

7. Non-extension result. It is clear that the restriction map

R: By (R") = Algy, f = (DV£(0))seng,

is well defined, linear and continuous.

ProproSITION 7.1. For every r € N, there is no continuous linear exten-

sion map from AE;J)I) into Bom (R").

Proof. We proceed by induction on r.

CASE r = 1. Suppose that there is a continous linear extension map T
from AEEID)?) into B(gn) (R). Then there are r,s € N, b,k €]0,1] and H, K > 1
such that

|Tallg11 < Hla|sp and  ||Ta|rsi11 < Klal,x

for every a € AE;}T). For every p € Ny, denote by e, the pth unit vector of

AESl):Zt) and set x, := T'e,. We then have

K
< d < :
IXpllr11 < L, IXpllR.s+11 < L,

Moreover for every x > 0, the Taylor development provides some y € |0, x]
such that

x? P
6 @) =70 + 2067 W) = 1+ -0 ),

hence » v M
®) () _ - B Mst1,2p
P @) =11 < Tl Moz < T =

So if we define 7, > 0 by 75 = plkP M, ,,/ (2K Ms112,), we get

7__1])) KM5+1,2p _ 1

(p) 1l < _
) -1l < % Kl

Vz € 10,7,
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hence ERX(p) (z) > 1/2 and therefore Rx,(x) > zP/(2p!) for every x € ]0,7,].
This leads to

— — = R,1,1M1,0 < .

4K Mi1,2p 217' hP M p
Now we note that condition (my) applied with A = 1 provides a constant
Bs > 0 such that My 5,41y < Bsp!Mj ), for every p € N. So the preceding
inequalities lead to

Myp  AHKMsy10p  4HK M i12(p+1) o AHE

p! = phPkPM,, — plhPkp M, — hPkP

and we obtain the existence of some B > 0 such that M, ,/p! < BPT! for
every p € Ng. As by Proposition 4.1, there is ¢ > 0 such that M, ,/p! >

c(2B)P*! for every p € Ny, we arrive at the contradiction ¢(2B)P! < BPF!
for every p € Np.

< §RXP<TP) < ”Xp’

By

General case. Suppose that for some r > 1, there is a continuous linear

extension map S from AE;;I) into Bgyy(R"). Of course, the map V': AE ))

— A defined by

()
va), = {

is well defined, linear and continuous. Moreover the map Ry from Bgy) (R")
into B(gn) (R) defined by (R1f)(t) = f(¢,0,...,0) for every ¢t € R is also well
defined, linear and continuous. Therefore the map R o .S o V is continuous

(1)

and linear from A(m) into Bgn)(R). As it is clearly an extension map, we

0 if (y2,...,7) #0,
(a4,,0,...,0) otherwise,

have arrived at a contradiction. m

8. Conditions (m5) and (mj)

DEFINITION. (a) The matrix m satisfies condition (ms) if there is some
a > 1 such that 372, p*/m;, < oo for every j € N.

(b) The matrix m satisfies condition (mf) if there is some 3 > 2 such
that lim, .o p!®/M;, = 0 for every j € N.

PROPOSITION 8.1. The matriz m satisfies condition (ms) if and only if
it satisfies condition (mj).

Proof. We will prove that if m satisfies (ms) with a > 1, then it sat-
isfles (mg5) with 8 = 1+ a. For every j € N, the sequence (m),)pen,
defined by m/, 50 = 1 and m]p = p “m;, for every p € N is non-quasi-

analytic. Therefore the Denjoy—Carleman theorem (cf. [3, Theorem 1.3.8])
gives 302, 1/L;, < oo if we set

Ljp= inf{(M]Qk)l/k: k>pl, VYpeN.
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As (1/L;p)pen is a decreasing sequence of positive numbers, this leads to
p/L;jp — 0. The conclusion is then clear since

114+ [Ie% p
p! Sppp- _ < (L), wen

If m satisfies (m}) with 3 > 2, the following argument proves that it
satisfies (m5) for any o € |1,8 — 1[. Let j € N and choose v € ]2,3[. An
immediate application of the Stirling formula gives lim, .., p??/(p!)? = 0,
hence lim,_,o p"/M;,, = 0. So there is p; € N such that p"? < M;,, hence
p? < mj, for every p > p;. Choosing now o > 1 such that v —a > 1,

we get
< 2 1 1
P _2 — < ——, Vp2>pj,
Mjp — Myp P17 P«

hence 3702, p®/mj, < oco.

9. Extension results

CONSTRUCTION. If the matrix m satisfies condition (ms) with a > 1, we
make the following choices.

a) The integers p; and the numbers n, and N,. We first choose a strictly
increasing sequence (p;);en of positive integers such that
o0 pa

Mj+1,p

<277, VjeN
p=p;+1
We then define the sequence (n,),en, as follows:
1 ifp=0,
np =14 P “mip itpe{l,...,p1},
p*mjy1p ifpe{p;+1,...,pj41} and j € N.
Of course we then set N, = ng - --n, for every p € Ny.

Note that, for every j € N, there is clearly a constant ¢; > 1 such that
n, < ¢jp-“m;, for every p € Ny, hence

(4) N, < C;)p!_an’p, Vp € Np.

b) The functions S,,. For a := E;il 1/np, a slight enhancement of prop-
erty 1.3.5 of [3] provides the existence of a function ¢ € D(|—a,a]) such
that 0 < ¢ < 1 as well as ¢ (0) = 6,0 and [P |g < 2PN, for every
p € Np.
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For every n € Ny, we then set v,(z) = ¢(a(1 + n?)z) for every z € R
and define the function u, on R by setting

0 ifz < —1-1/(1+n?),
vp(z4+1) if =1 -1/(1+n?) <2< -1,
up(x) =41 if —-1<z<1,
vp(z—1) if1<x<14+1/(1+n?),
0 if1+1/(1+n?) <.
Finally, for every n € Ny, we set S, := Thu,. It is a direct matter to

verify that S, belongs to C*°(R), is an extension of T,|_; ) and has its
support contained in [~1 — 1/(1 +n?),1+ 1/(1 +n?)].

c) The functions S,. Now everything is set up to introduce the following
functions: for every v € Njj, we define the function S, on R" by

Sy(x) = Sy, (1) -+ Sy, (2r), VzeR".

It is clear that S, belongs to C*°(R"), is an extension of T,[_; ;- and has
its support contained in [—2,2]". A lot more can be said. m

LEMMA 9.1. If the matrix m satisfies condition (ms), then there is a

constant b > 1 such that ||S’(()p)HR < PN, and |\S7(1p)||R < (bn?)PTIN, for
every n € N and p € Ng.

Proof. For every n € N, z € R such that |z| < 1+1/(14+n?) and p € Ny,
Proposition 3.1 and the preceding construction lead to

5P |<Z() )] D ()
<Z(>e—2p INp_1a?~ (1 + 2P

As the series Z;io 1/n, converges, we have n, > 1 for p large; this implies
the existence of a constant ¢ > 1 such that N, < cN,, for every p,q € N such
that ¢ < p. Therefore we get

P
Py a2 2\\p—1
15P)||r < ceNpZ (l)n (2a(1 4 n*))?

1=0
< ceNp(n2 +2a(14+n%)P, VneN,peN.

As it is clear that we also have
159 Ik = Il 1z < (20)PN,,  ¥p € N,

we conclude at once. m
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PROPOSITION 9.2. If the matriz m satisfies condition (ms), then there is
q € N such that, for every j,r € N, there is a constant D;, 4 > 0 such that
||Sv||Rr,j,1/j < Djr gl Tyl j+g+2rr Vv € Np.
In particular, for every v € N, the extension S, of T7|[_171}r belongs to
Doy ([-2,2]").
Proof. Let us first remark that, for every j € N, condition (my) applied
with A = 1 provides a constant F; > 1 such that

(5) Mji120p41) < Ejp!M;,,  Vp € No,
hence
(6) M, < M1 open) < Ejp!M;,,  Vp € No.

Now we fix ¢ by the following observation: as the matrix m satisfies (ms),
thereis A > 1 such that Z;O:1 p*/m;j, < oo for every j € N, so we can choose
geNwith277 <A —-1.

Next, for every j,r € N, we proceed as follows. First of all, to shorten
notation, we set ||7% ||« = ||T5|| j4q+2rr for every v € Nj. Then we recall that
Proposition 6.1 provides some B = Bji44r+1, > 1 depending only on j, r
and ¢ such that

. (2B)IAl .
M 1=l <2 B Mgl T W8 €N

So, for every o € Njj, using successively Lemma 9.1, inequality (4) and (7)
with 8= (2(a1 +1),...,2(cy + 1) and setting A = 8bc;44+-B2, we obtain

I T
A%k
154 || = H 185%) || < AT || H > Mjtqtran My gir1,2(a+1)-
k=1 k=1 "

Now for every k € {1,...,r}, we use (5) and (6) to get
Mjsgiron Myt qiri12001) < %P EjygtrBigrr—1Mj1qir—1,04
and then we note that a repeated use of inequalities of type (6) leads to

271
E, Mj""‘]""r_l’ak < E E271 Mj+¢]+7"—2,04k < ...
j+q+r—1 70%' = Ljtgtr—1554q4r—2 70%' >

M e
E. 2-1 E27° Jjtr—Llog
< ]+q+r—1Ej+q+rf2 U ir—1 < k;—' ) .

Setting £ = Ejq1r [[}_, E]?;Z+T_l_k and putting all this information to-

gether yields

T 271
A% (M
(@) - J+r—1,a
||S’y ”RT < (AE) ||ZZ'Y”*k|:|1 ak!)\—3 < ak‘ > ’
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hence

ol
J ||S ||RT (o) .7
- < T
M, 1557 I H 1l HMH o

s |Oé‘ j7ak

v T (GA) A
< (AE)"||T; ||« H al(c!/\_)l_Qq ( > :

Pt Mjtr—1,04

Finally, on the one hand the sequence (p/m;p)pen of positive numbers is de-
creasing and satisfies Z;OZI p/m;, < oo; this implies lim p?/m;, = 0, hence
limp!?/M;, = 0. On the other hand, the sequence ((jA)P/p*~1727") o
converges to 0. These two facts and the last inequality together provide the
existence of a constant D, , > 0 such that

31185 |

M; ||

S DjarquT’YH*? va € NT7

hence the conclusion. =

THEOREM 9.3. If the matrix m satisfies condition (ms), then for every
r €N,

T: Ea([~1,1]) = Dy ([-2,2]), [ Y ay(f)Sy,
veNg
is a continuous linear extension map.

Proof. This is a direct consequence of Theorem 6.3 and Proposition 9.2. =

10. Application

ProposITION 10.1. If &: [0,00[ — [0,00[ is an increasing and convex
function such that ®(0) = 0 and limy_,o, (t)/t = oo, then the matriz m =
(mjp)jen, pen, defined by mjo=1 and

mj, = peé(p/Sj)—q"((p—l)/fij)

for every j,p € N satisfies conditions (my) to (my).

If moreover @ satisfies lim, .o @(t)/(tlog(t)) = oo, then m also satis-
fies (ms).

Proof. By Proposition 7.1 of [8], we know that m satisfies (my) to (ms).

Let us prove that it also satisfies (my4). For every p € N, as we have
(2pp+2) <222 541 <2 and p+2 < 2PTL we get (2p+2)! < 23T4Pp12. So
for every j,p € N, we have

Mji19pp41) = (2p + )PP/ < 93+4p,,12,P(p/(287))

since @ is an increasing function. As also 2&(t) < @(2t) for every ¢ > 0, this
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leads to

M1 00p41) < 9Pp12e2(0/8) o~ P(p/(287)) 27pp!Mjﬁpe—¢(p/(2~8j))

for every j,p € N. Now the condition lim®(¢)/t = oo implies for ev-
ery A > 0 the existence of some ps € N such that &(p/(2 - 8%)) >
p(log(A) + log(27)), hence e~®P/(28) < A=P2=™P for every p > pa. So
altogether we have

Mji o) < APpIMjp, VP 2 pa;
hence the conclusion.

Finally, we prove that if @ satisfies lim &(¢)/(tlog(t)) = oo, then m sat-
isfies (mf) with § = 3. Indeed, for every j € N, the supplementary condi-
tion provides lim ®(87p)/(plog(p)) = oo, hence there is p; € N such that
®(87/p) > 3plog(p) for every p > p;. So for every p > p; we certainly
have

13 12 '
P _ gf()./sj) < pPPePW/8) < omplog(p)
Mjp e

and we conclude at once. u

Let @ be a real, increasing and convex function on [0,00[ such that
@(0) = 0 and limy—,o P(t)/t = 0.

The notations have been modified several times: the spaces 144({0}),
I;0([—1,1]) and I4 ¢(R) introduced in [1] become 15 ({0}), Is([—1,1]) and
Is(R) in [2]. If one considers the matrix m associated to ¢ in Proposi-

~ ~

tion 10.1, they coincide respectively with the spaces Ao, Egny([—1,1]) and
B\(gﬁ) (R) of [8] and with the spaces AE;:)H), Eomy([—1,1]) and By (R) in this
paper.

Let us also recall that in [8], it is proven that there are spaces B(gy)(R) for
which there is no function @ such that Bigy)(R) = Is(R). So Proposition 7.1
and Theorems 6.3 and 9.3 provide enhancements of the following results of
Beaugendre.

THEOREM 10.2. Let @ be a real, increasing and convex function on the
interval [0, 00[ such that ®(0) =0 and lim;_,oc D(t)/t = 0.
(a) ([1, Proposition 3.1.1]) There is no continuous linear extension map
1) .

from /lgm)t) into Bion (R).

(b) ([2, Theorem 3.6]) The family (T, an(:))nen, s an absolute Schau-
der basis in Egyy([—1,1]).

(¢) ([2, Theorem 4.3]) If & also satisfies lim;_,oc P(t)/(tlog(t)) = oo,
then there is a continuous linear extension map from &gy ([—1,1])

into Bion) (R) by means of a modification of the Chebyshev polynomi-
als. m
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