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Existence and uniqueness of positive periodic solutions
of delayed Nicholson’s blowflies models

by Fei Long (Yiyang) and Bingwen Liu (Jiaxing)

Abstract. This paper is concerned with a class of Nicholson’s blowflies models with
multiple time-varying delays. By applying the coincidence degree, some criteria are es-
tablished for the existence and uniqueness of positive periodic solutions of the model.
Moreover, a totally new approach to proving the uniqueness of positive periodic solutions
is proposed. In particular, an example is employed to illustrate the main results.

1. Introduction. As is well known, Nicholson’s blowflies equation was
introduced by Nicholson [N] to model laboratory fly populations. Its dy-
namics was later studied in [GBN] and [NG]. Consequently, the theory of
Nicholson’s blowflies equation has made a remarkable progress in the past
forty years with main results scattered in numerous research papers (for
details see [BBT, BIT, CDZ, KLS, YZ, ZWZ]). In particular, there have
been extensive studies on the problem of the existence of positive periodic
solutions for Nicholson’s blowflies equation. We refer the reader to [C, CL,
LD, SA] and the references cited therein. In [C], Chen obtained the existence
of positive periodic solutions of Nicholson’s blowflies model of the form

(1.1) N ′(t) = −δ(t)N(t) + P (t)N(t− σ(t))e−a(t)N(t−τ(t)),

where δ ∈ C(R,R), P, σ, τ ∈ C(R, (0,∞)), and a ∈ C(R, (0,∞)) are T -
periodic functions with

	T
0 δ(t) dt > 0. Let k be a positive integer. When

τ(t) = σ(t) = kT , S. Saker and S. Agarwal [SA] established the existence of
positive periodic solutions for (1.1). In [LD], Li and Du studied the gener-
alized Nicholson’s blowflies model

(1.2) N ′(t) = −δ(t)N(t) +
m∑
i=1

pi(t)N(t− τi(t))e−γi(t)N(t−τi(t)),
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where δ, pi, γi ∈ C(R+, (0,∞)) and τi ∈ C(R+,R+) are T -periodic functions
for i = 1, . . . ,m. They obtained a sufficient and necessary condition for the
existence of positive periodic solutions for (1.2). Recently, Chen and Liu [CL]
established some criteria for the solutions of this model to converge locally
exponentially to a positive almost periodic solution. However, the existence
and uniqueness of positive periodic solutions of Nicholson’s blowflies model
is difficult to establish. Moreover, to the best of our knowledge, few authors
have considered conditions for the existence and uniqueness of positive pe-
riodic solutions of Nicholson’s blowflies equation in terms of its coefficients.

The main purpose of this paper is to give conditions for the existence
and uniqueness of positive periodic solutions for Nicholson’s blowflies model
(1.2).

Throughout this paper, given a bounded continuous function g defined
on R, let

(1.3) g− = inf
t∈R

g(t), g+ = sup
t∈R

g(t).

Then, we denote

A = 2
T�

0

δ(t) dt, B =
T�

0

m∑
i=1

pi(t) dt,(1.4)

γ− = min
i∈{1,...,m}

γ−i , γ+ = max
i∈{1,...,m}

γ+
i .(1.5)

For convenience, let κ ∈ (0, 1) be the unique real number such that

(1.6)
1− κ
eκ

=
1
e2
.

One can easily show that

(1.7) sup
x≥κ

∣∣∣∣1− xex

∣∣∣∣ =
1
e2
.

The paper is organized as follows. In Section 2, we shall derive new
sufficient conditions for the existence and uniqueness of positive periodic
solution of model (1.2). In Section 3, we shall give an example and a remark
to illustrate our results.

2. Existence and uniqueness of positive periodic solution. We
will need the continuation theorem of coincidence degree theory formulated
in [GM].

Lemma 2.1 (Continuation Theorem). Let X and Z be Banach spaces.
Consider an operator equation Lx = λNx, where L : DomL ⊂ X → Z is a
Fredholm operator of index zero and λ ∈ [0, 1] is a parameter. Let P and Q
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denote two projectors such that

P : X → KerL and Q : Z → Z/ImL.

Assume that N : Ω → Z is L-compact on Ω, where Ω is open bounded in X.
Furthermore, suppose that

(1) Lx 6= λNx for all x ∈ ∂Ω ∩D(L), λ ∈ (0, 1);
(2) Nx 6∈ ImL for all x ∈ ∂Ω ∩KerL;
(3) the Brouwer degree deg{QN,Ω ∩KerL, 0} is not zero.

Then Lx = Nx has a solution in Ω.

Theorem 2.1. Suppose that

(2.1) ln
2B
A

> A.

Then (1.2) has a positive T -periodic solution.

Proof. Set N(t) = ex(t). Then (1.2) can be rewritten as

x′(t) = − δ(t) +
m∑
i=1

pi(t)ex(t−τi(t))−x(t)−γi(t)e
x(t−τi(t))(2.2)

:= ∆(x, t).

Thus, to prove Theorem 2.1, it suffices to show that (2.2) has a T -periodic
solution. Let X = Z = {x ∈ C(R,R) : x(t + T ) = x(t) for all t ∈ R} be
equipped with the norm ‖x‖ = maxt∈[0,T ] |x(t)|. For any x ∈ X, it is easy to
see that ∆(x, ·) ∈ C(R,R) is T -periodic. Let

L : D(L) = {x ∈ X : x ∈ C1(R,R)} 3 x 7→ x′ ∈ Z,

P : X 3 x 7→ 1
T

T�

0

x(s) ds ∈ X,

Q : Z 3 z 7→ 1
T

T�

0

z(s) ds ∈ Z,

N : X 3 x 7→ ∆(x, ·) ∈ Z.
Clearly,

ImL =
{
x ∈ Z :

T�

0

x(s) ds = 0
}

= KerQ, KerL = R = ImP.

It follows that L is a Fredholm operator with index zero. Set LP =
L|D(L)∩KerP . Then LP has continuous inverse L−1

P defined by

(2.3) L−1
P : ImL→ D(L) ∩KerP, L−1

P y(t) = − 1
T

T�

0

t�

0

y(s) ds dt+
t�

0

y(s) ds.
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To apply Lemma 2.1, we first show that N is L-compact on Ω, where Ω is
a bounded open subset of X. From (2.3), it follows that

QNx =
1
T

T�

0

Nx(t) dt(2.4)

=
1
T

T�

0

[
− δ(t) +

m∑
i=1

pi(t)ex(t−τi(t))−x(t)−γi(t)e
x(t−τi(t))

]
dt,

L−1
P (I −Q)Nx =

t�

0

Nx(s) ds− t

T

T�

0

Nx(s) ds− 1
T

T�

0

t�

0

Nx(s) ds dt(2.5)

+
1
T

T�

0

t�

0

QNx(s) ds dt.

Obviously, QN and L−1
P (I −Q)N are continuous. It is not difficult to show

that L−1
P (I−Q)N(Ω) is compact for any open bounded set Ω ⊂ X by using

the Arzelà–Ascoli theorem. Moreover, QN(Ω) is clearly bounded. Thus, N
is L-compact on Ω with any open bounded set Ω ⊂ X.

Considering the operator equation Lx = λNx, λ ∈ (0, 1), we have

(2.6) x′(t) = λ∆(x, t).

Assume that x ∈ X is a solution of (2.6) for some λ ∈ (0, 1). Then

(2.7)
T�

0

∣∣∣ m∑
i=1

pi(t)ex(t−τi(t))−x(t)−γi(t)e
x(t−τi(t))

∣∣∣ dt
=

T�

0

m∑
i=1

pi(t)ex(t−τi(t))−x(t)−γi(t)e
x(t−τi(t)) dt =

T�

0

δ(t) dt.

It follows from (2.6) and (2.7) that

T�

0

|x′(t)| dt ≤ λ
T�

0

∣∣∣ m∑
i=1

pi(t)ex(t−τi(t))−x(t)−γi(t)e
x(t−τi(t))

∣∣∣ dt+λ T�
0

|δ(t)| dt(2.8)

< 2
T�

0

δ(t) dt = A.

Since x ∈ X, there exist ξ, η ∈ [0, T ] such that

(2.9) x(ξ) = min
t∈[0,T ]

x(t), x(η) = max
t∈[0,T ]

x(t).
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It follows from (2.7) and (2.8) that

A

2
=

T�

0

δ(t) dt =
T�

0

m∑
i=1

pi(t)ex(t−τi(t))−x(t)−γi(t)e
x(t−τi(t)) dt

≥ ex(ξ)−x(η)−γ+ex(η)
m∑
i=1

T�

0

pi(t) dt = Bex(ξ)−x(η)−γ
+ex(η) ,

and

A

2
=

T�

0

δ(t) dt =
T�

0

m∑
i=1

pi(t)ex(t−τi(t))−x(t)−γi(t)e
x(t−τi(t)) dt

≤ ex(η)−x(ξ)−γ−ex(ξ)
m∑
i=1

T�

0

pi(t) dt = Bex(η)−x(ξ)−γ
−ex(ξ) ,

which implies that

x(ξ) ≤ ln
A

2B
+ x(η) + γ+ex(η),

and

x(η) ≥ ln
A

2B
+ x(ξ) + γ−ex(ξ).

Using (2.8) yields

x(t) ≤ x(ξ) +
T�

0

|x′(t)| dt ≤ ln
A

2B
+ x(η) + γ+ex(η) +A,

x(t) ≥ x(η)−
T�

0

|x′(t)| dt ≥ ln
A

2B
+ x(ξ) + γ−ex(ξ) −A.

In particular,

x(η) ≤ x(ξ) +
T�

0

|x′(t)| dt ≤ ln
A

2B
+ x(η) + γ+ex(η) +A,

x(ξ) ≥ x(η)−
T�

0

|x′(t)| dt ≥ ln
A

2B
+ x(ξ) + γ−ex(ξ) −A.

It follows that

x(η) ≥ ln
(

1
γ+

(
ln

2B
A
−A

))
, x(ξ) ≤ ln

(
1
γ−

(
ln

2B
A

+A

))
.
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Again from (2.8), we have

x(t) ≥ x(η)−
T�

0

|x′(t)| dt ≥ ln
(

1
γ+

(
ln

2B
A
−A

))
−A := H1,(2.10)

x(t) ≤ x(ξ) +
T�

0

|x′(t)| dt ≤ ln
(

1
γ−

(
ln

2B
A

+A

))
+A := H2.(2.11)

Let H > max{|H1|, |H2|}, and define Ω = {x ∈ X : ‖x‖ < H}. Then
(2.10) and (2.11) imply that there is no λ ∈ (0, 1) and x ∈ ∂Ω such that
Lx = λNx.

If x ∈ ∂Ω ∩KerL = ∂Ω ∩ R, then x = ±H. We have

(2.12) QN(−H) > 0 and QN(H) < 0.

Indeed, if QN(−H) ≤ 0, it follows from (2.4) that

A

2
=

T�

0

δ(t) dt ≥
m∑
i=1

T�

0

pi(t)e−γi(t)e
−H

dt

≥ e−γ+e−H
m∑
i=1

T�

0

pi(t) dt = Be−γ
+e−H ,

which implies

−H ≥ ln
(

1
γ+

ln
2B
A

)
> ln

(
1
γ+

(
ln

2B
A
−A

))
−A = H1.

This is a contradiction and implies that QN(−H) > 0. Similarly, if QN(H)
≥ 0, it follows from (2.4) that

A

2
=

T�

0

δ(t) dt ≤
m∑
i=1

T�

0

pi(t)e−γi(t)e
H
dt

≤ e−γ−eH
m∑
i=1

T�

0

pi(t) dt = Be−γ
−eH .

Consequently,

H ≤ ln
(

1
γ−

ln
2B
A

)
< ln

(
1
γ+

(
ln

2B
A

+A

))
+A = H2,

a contradiction to the choice of H. Thus, QN(H) < 0.
Furthermore, define a continuous function H(x, µ) by setting

H(x, µ) = −(1− µ)x+ µ
1
T

T�

0

[
−δ(t) +

m∑
i=1

pi(t)e−γi(t)e
x
]
dt.



Delayed Nicholson’s blowflies models 223

It follows from (2.12) that xH(x, µ) 6= 0 for all x ∈ ∂Ω∩KerL. Hence, using
the homotopy invariance theorem, we obtain

deg{QN,Ω ∩ KerL, 0}

= deg
{

1
T

T�

0

[
−δ(t) +

m∑
i=1

pi(t)e−γi(t)e
x
]
dt,Ω ∩KerL, 0

}
= deg{−x,Ω ∩KerL, 0} 6= 0.

In view of all the discussion above, we conclude from Lemma 2.1 that The-
orem 2.1 is proved.

Corollary 2.1. Let (2.1) hold, and

(2.13) ln
(

1
γ+

(
ln

2B
A
−A

))
−A := H1 ≥ lnκ.

If N(t) is a positive T -periodic solution of (1.2), then

(2.14) N(t) ≥ κ for all t ∈ R.

Proof. Let N(t) be a positive T -periodic solution of (1.2), and let x(t) =
lnN(t). Then x(t) is a T -periodic solution of (2.2). Applying techniques
similar to the proof of Theorem 2.1, we can obtain

x(t) ≥ ln
(

1
γ+

(
ln

2B
A
−A

))
−A := H1 ≥ lnκ for all t ∈ R,

which implies that

N(t) = ex(t) ≥ κ for all t ∈ R.

This completes the proof.

Theorem 2.2. Let (2.1) and (2.13) hold. Moreover, assume that

(2.15) γ− = min
i∈{1,...,m}

γ−i ≥ 1,
m∑
i=1

p+
i

δ−
< e2.

Then equation (1.2) has a unique positive T -periodic solution.

Proof. Assume that N1(t) and N2(t) are two positive T -periodic solu-
tions of (1.2). Set y(t) = N1(t)−N2(t), where t ∈ R. Then

(2.16) y′(t) = −δ(t)y(t) +
m∑
i=1

pi(t)[N1(t− τi(t))e−γi(t)N1(t−τi(t))

−N2(t− τi(t))e−γi(t)N2(t−τi(t))].

Define a continuous function Γ (u) by setting
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(2.17) Γ (u) = −(δ− − u) +
m∑
i=1

p+
i

1
e2
eur, u ∈ [0, 1], r = max

i∈{1,...,m}
τ+
i .

Then, from (2.15), we have

Γ (0) = −δ− +
m∑
j=i

p+
i

1
e2

= −δ− 1
e2

(
e2 −

m∑
j=i

p+
i

δ−

)
< 0,

which implies that there exist two constants η > 0 and λ ∈ (0, 1] such that

(2.18) Γ (λ) = −(δ− − λ) +
m∑
i=1

p+
i

1
e2
eλr < −η < 0.

We consider the Lyapunov functional

(2.19) V (t) = |y(t)|eλt.

Calculating the upper right derivative of V (t) along the solution y(t) of
(2.16), we have

D+(V (t)) ≤ −δ(t)|y(t)|eλt +
m∑
i=1

pi(t)|N1(t− τi(t))e−γi(t)N1(t−τi(t))(2.20)

−N2(t− τi(t))e−γi(t)N2(t−τi(t))|eλt + λ|y(t)|eλt

=
[
(λ− δ(t))|y(t)|+

m∑
i=1

pi(t)|N1(t− τi(t))e−γi(t)N1(t−τi(t))

−N2(t− τi(t))e−γi(t)N2(t−τi(t))|
]
eλt

for all t ∈ R. For any fixed t0 ∈ R, we claim that

V (t) = |y(t)|eλt(2.21)

< eλt0( max
t∈[0,T ]

|N1(t)−N2(t)|+ 1) =: M for all t > t0.

Otherwise, there exists a constant t∗ > t0 such that

(2.22) V (t∗) = M and V (t) < M for all t < t∗,

which implies that

(2.23) V (t∗)−M = 0 and V (t)−M < 0 for all t < t∗.

By (2.15) and Corollary 2.1, we get

(2.24) γ−Ni(t) ≥ Ni(t) ≥ κ for all t ∈ R, i = 1, 2.

From (1.7), (2.20), (2.23), (2.24) and the inequality
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|se−s − te−t| =
∣∣∣∣1− (s+ θ(t− s))

es+θ(t−s)

∣∣∣∣ |s− t|(2.25)

≤ 1
e2
|s− t| where s, t ∈ [κ,∞), 0 < θ < 1,

we obtain

0 ≤ D+(V (t∗)−M) = D+(V (t∗))(2.26)

≤
[
(λ− δ(t∗))|y(t∗)|

+
m∑
i=1

pi(t∗)|N1(t∗ − τi(t∗))e−γi(t∗)N1(t∗−τi(t∗))

−N2(t∗ − τi(t∗))e−γi(t∗)N2(t∗−τi(t∗))|
]
eλt∗

=
[
(λ− δ(t∗))|y(t∗)|

+
m∑
i=1

pi(t∗)
γi(t∗)

|γi(t∗)N1(t∗ − τi(t∗))e−γi(t∗)N1(t∗−τi(t∗))

− γi(t∗)N2(t∗ − τi(t∗))e−γi(t∗)N2(t∗−τi(t∗))|
]
eλt∗

≤ (λ− δ(t∗))|y(t∗)|eλt∗

+
m∑
i=1

pi(t∗)
1
e2
|y(t∗ − τi(t∗))|eλ(t∗−τi(t∗))eλτi(t∗)

≤
[
(λ− δ−) +

m∑
i=1

p+
i

1
e2
eλr
]
M.

Thus,

0 ≤ (λ− δ−) +
m∑
i=1

p+
i

1
e2
eλr,

which contradicts (2.18). Hence, (2.21) holds. It follows that

(2.27) |y(t)| < Me−λt for all t > t0.

In view of (2.27) and the periodicity of y(t), we have

y(t) = N1(t)−N2(t) = 0 for all t ∈ R.

This completes the proof.

3. An example. In this section we present an example to illustrate our
results.
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Example 3.1. Consider the Nicholson’s blowflies model with multiple
time-varying delays:

N ′(t) = − 1
1000000

(1.000001 + 0.000001 cos t)N(t) +
e1.9999

4000000
(3.1)

· (0.999999 + 0.000001 sin t)N(t− 1− 10−4|sin t|)

· e−N(t−1−10−4|sin t|) +
e1.9999

4000000
(0.999999

+ 0.000001 cos t)N(t− 1− 10−4|cos t|)e−N(t−1−10−4|cos t|).

Obviously,

δ(t) =
1

1000000
(1.000001 + 0.000001 cos t),

p1(t) =
e1.9999

4000000
(0.999999 + 0.000001 sin t),

p2(t) =
e1.9999

4000000
(0.999999 + 0.000001 cos t),

τ1(t) = 1 + 0.00001|sin t|, τ2(t) = 1 + 0.00001|cos t|,
γ1(t) = γ2(t) = 1, γ−1 = γ−2 = γ+

1 = γ+
2 = 1,

A = 2
2π�

0

δ(t) dt = 4.000004π · 10−6,

B =
2π�

0

2∑
i=1

pi(t) dt = 1.999998πe1.9999 · 10−6.

Then

ln
2B
A
−A ≈ 1.9999 > 0, ln

(
1
γ+

(
ln

2B
A
−A

))
−A ≈ 0.6931 > 0 > lnκ,

2∑
i=1

p+
i

δ−
=

1
2
e1.9999 < e2.

This implies that Nicholson’s blowflies model (3.1) satisfies (2.1), (2.13)
and (2.15). Hence, from Theorem 2.2, equation (3.1) has a unique positive
2π-periodic solution.

Remark 3.1. Since the delays of Nicholson’s blowflies model (3.1) are
time-varying, all the results in [SA] are invalid for equation (3.1). In [C, CL,
LD], the authors only studied the local existence of positive periodic solution
of Nicholson’s blowflies model. Therefore, the results in [C, CL, LD] also
cannot be applied to equation (3.1) to obtain the existence and uniqueness of
positive 2π-periodic solutions. Moreover, in the present paper, we propose a
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totally new approach to proving the uniqueness of positive periodic solution
of Nicholson’s blowflies model. This implies that the results of this paper
are essentially new.

Acknowledgements. The authors would like to thank the referees very
much for their helpful comments and suggestions. This research was partly
supported by the Key Project of Chinese Ministry of Education (grant no.
210 151), the Scientific Research Fund of Hunan Provincial Natural Sci-
ence Foundation of P.R. China (grant no. 11JJ6006), the Natural Scientific
Research Fund of Hunan Provincial Education Department of P.R. China
(grants no. 11C0916, 11C0915, 11C1186), the Natural Scientific Research
Fund of Zhejiang Provincial Education Department of P.R. China (grant
no. Z201122436), and the Zhejiang Provincial Natural Science Foundation
of P.R. China (grant no. Y6110436).

References

[BBT] L. Berezansky, E. Braverman and L. Idels, Nicholson’s blowflies differential
equations revisited: main results and open problems, Appl. Math. Modelling 34
(2010), 1405–1417.

[BIT] L. Berezansky, L. Idels and L. Troib, Global dynamics of Nicholson-type delay
systems with applications, Nonlinear Anal. Real World Appl. 12 (2011), 436–445.

[C] Y. Chen, Periodic solutions of delayed periodic Nicholson’s blowflies models,
Canad. Appl. Math. Quart. 11 (2003), 23–28.

[CL] W. Chen and B. W. Liu, Positive almost periodic solution for a class of Nichol-
son’s blowflies model with multiple time-varying delays, J. Comput. Appl. Math.
235 (2011), 2090–2097.

[CDZ] K. Cook, P. van den Driessche and X. Zou, Interaction of maturation delay and
nonlinear birth in population and epidemic models, J. Math. Biol. 39 (1999),
332–352.

[GM] R. E. Gaines and J. Mawhin, Coincidence Degree and Nonlinear Differential
Equations, Lecture Notes in Math. 568, Springer, Berlin, 1977.

[GBN] W. S. C. Gurney, S. P. Blythe and R. M. Nisbet, Nicholson’s blowflies revisited,
Nature 287 (1980), 17–21.
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