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On the geometry of tangent bundles with a class of metrics

by ESMAEIL PEYGHAN (Arak), ABBAS HEYDARI (Tehran) and
LEILA NOURMOHAMMADI FAR (Arak)

Abstract. We introduce a class of metrics on the tangent bundle of a Riemannian
manifold and find the Levi-Civita connections of these metrics. Then by using the Levi-
Civita connection, we study the conformal vector fields on the tangent bundle of the
Riemannian manifold. Finally, we obtain some relations between the flatness (resp. local
symmetry) properties of the tangent bundle and the flatness (resp. local symmetry) on
the base manifold.

1. Introduction. Tangent bundles of differentiable manifolds are of
great importance in many areas of mathematics and physics. In the last
decades, a large number of publications have been devoted to the study of
their special differential geometric properties [CS1, D) [EP, [FTP, [GTS, Mull,
Mu2, [OP].

The geometry of tangent bundles goes back to the fundamental paper [
of Sasaki published in 1958. He used a given Riemannian metric g on a
differentiable manifold M to construct a metric ¢° on the tangent bundle
TM. Today this metric is a standard notion in differential geometry, called
the Sasaki metric and defined by

9° = gij(2)da’ @ da? + gij(x)5y" ® 6y,
where g;;(x) are the components of the Riemannian metric g. The Sasaki
metric has been extensively studied by several authors, including Yano and
Davies [YD], Kowalski [Ko], Musso and Tricerri [MT], Aso [A], Cenzer and
Salimov [CS2].
For a given Riemannian metric g on a differentiable manifold M, there

are certain other (pseudo-) Riemannian metrics on 7'M, constructed from g.
One of them, introduced by Yano and Ishihara [YI], is defined by

(1.1) g = 2gij(z)dz’ @ 6y’ + gij(z)dy" @ 5y
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Hasegawa and Yamauchi investigated infinitesimal conformal and projective
transformations on (7'M, g) [HY]. By replacing g;;(x) in g with the compo-
nents h;j(x,y) of a generalized Lagrange metric [MA], one gets a class of
pseudo-Riemannian metrics

(1.2) G = 2hj(z)dz’ @ 0y’ + hyj(2)dy’ @ dy’.
In particular, hi;j(x,y) could be a deformation of g;;(z), a case studied by
Anastasiei and Shimada [AS].

In this paper, we consider G when h;;(z,y) is the following special de-
formation of g;;(x):

(1.3) hij(z,y) = a(L?)gi; (@),
where L? = g;;(2)y'y’, yi = ¢i;(z)y’ and a : Im(L?) C [0,00) — RT with
a > 0.

We calculate the Levi-Civita connection of G and we show that the
horizontal distribution HT'M (resp. vertical distribution VI'M) is totally
geodesic if and only if (M, g) is locally flat (K = 0, respectively). We also
study the conformal vector fields on T'M with respect to G. We prove that
the complete lift of X € X (M) is conformal on T'M if and only if X is
homothetic. Finally, we find the components of the Riemannian curvature
tensor of G and show that if (TM, G) is flat (resp. locally symmetric), then
(M, g) is flat (locally symmetric, respectively).

2. Preliminaries. Let (M, g) be a real n-dimensional Riemannian man-
ifold and (U, ) a local chart on M, where the coordinates of the point p € U
are denoted by z(p) or (). Using the coordinates (z') on M, we have the
local field of frames {0/dx'} on T,M. Let V be a Riemannian connection
on M with coefficients Filj» where the indices a, b, c, h, 1,7, k, m,... run over
the range 1,...,n. The Riemannian curvature tensor is defined by

(2.1) R(X,Y)Z=VxVyZ-VyVxZ—-VixyZ, VX,Y,Z¢eX(M).
Locally, we have

m _ 9. 1m _ 9. .7m mpa _ pmpa
Ry ™ = 0l — 0; 15y + I Iy, — g I,

where 0; := 9/9z' and R(9;,0;)0y = R;j).™Om. Let TM be the tangent
bundle of M, and 7 the natural projection from T'M to M. Consider m, :
TTM — TM and put

kerm, ={z € TTM | 7(z) =0}, VveTM.

Then the vertical vector bundle on M is defined by VI'M = UUETM ker 7.
A non-linear connection or a horizontal distribution on TM is a comple-
mentary distribution HT' M for VI'M on TT M. Here, the reason for using
the term “non-linear connection” for HT' M is that H1T M is completely de-
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termined by the functions N ; (z,y) which are non-linear with respect to y, in
general. These functions are called coefficients of the non-linear connection.
It is clear that HT M is a horizontal vector bundle. By definition, we have
the decomposition

(2.2) TTM = VTM & HTM.

Using the induced coordinates (z¢,4%) on TM, where 2 and y* are called
respectively position and direction of a point on TM, we have the local
field of frames {0/0z",0/0y'} on TTM. Let {dx' dy’} be the dual ba-
sis of {0/0x%,0/0y'}. Tt is well known that we can choose a local field of
frames {§/d2%,0/0y'} adapted to the above decomposition, namely §/dz’ €
X(HTM) and 9/9y* € X(VTM) are sections of the horizontal and vertical
subbundles HT'M and VT'M, defined by

5 0 ; 0

dxt Ot Loy’
where Nij (z,y) are functions on T'M which have the following transforma-
tion rule in local coordinates (z*,y) and (z*,3") on TM:

. 0z [ Ox 9%zl /
NV = = (= NP — =y ).
’ dzh <8x2’ P oY >

To see a relation between linear and non-linear connections, let Fﬁ- be the
coefficients of the Riemannian connection of (M, g). Then it is easy to check
that y®I" fl satisfy the above relation and thus can be regarded as coefficients
of a non-linear connection on T'M. Hence we can rewrite as follows:
i = a. —yal—'j.i.
dxt  Ox* @ Oy
We put 6, = 6/62" and d, = 9/dy". Then {0;,8,} is the adapted local
field of frames of TM. Let {dz",6y"} be the dual basis of {d}, )}, where
syl = dyl + y“Fahidxi and the indices ¢, j, h, ... run over the range 1, ..., n.

Let ¢ be a transformation on M. Then ¢ is called a conformal transfor-
mation on M if it preserves angles. Let X be a vector field on M and {¢:}
be the local one-parameter group of local transformations on M generated
by X. Then X is called a conformal vector field on M if each ¢, is a local
conformal transformation of M. It is well known that X is a conformal vec-
tor field on M if and only if there exists a scalar function p on M such that
£xg9 = 2pg, where £x denotes Lie derivation with respect to the vector
field X. In particular, X is called homothetic if p is constant, and Killing
when p vanishes.

Let T'M be the tangent bundle of M, and ¢ be a transformation of
TM. Then ¢ is called fiber-preserving if it preserves fibres. Let X be a
vector field on T'M, and consider the local one-parameter group {¢;} of local

(2.3)

(2.4)
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transformations of T'M generated by X. Then X is called fiber-preserving
if each ¢; is a local fiber-preserving transformation of TM. Let G' be a
(pseudo-) Riemannian metric of TM. A fiber-preserving vector field X on
TM is said to be conformal if there exists a scalar function p on T'M such
that £ ;G = 2pG. In particular, X is called inessential if p is depends only

on (z"), and essential when p depends only on (y") [HBJ.

3. The Levi-Civita connection of the metric G. In this section, we
calculate the Levi-Civita connection with respect to the lift metric G and
by using it, we find conditions for the horizontal (or vertical) distribution
to be totally geodesic.

Let (M, g) be a Riemannian space and (T'M, 7w, M) be its tangent bundle.
On a domain U C M of a local chart, g has the components g;;(x) (4,7,... =
1,...,n). On 7~ Y(U) C TM, we consider

(3.1) r=1I%= gij(x)yiyj.

Then 7 is globally defined and differentiable on T'M. With the above nota-
tion, we can rewrite the metric G defined by (1.2)) and (1.3) as follows:

(3.2) G = 2a(7’)gij(a:)dxi ® 5yj + a(7)gij (90)5yZ ® 5yj.

It is easy to check that (T'M,G) is a pseudo-Riemannian space, depending
only on the metric g. Obviously, if a = 1, then we have (|1.1)).

REMARK. In [AM], Abbassi and Calvaruso introduced the g-natural
metric on T'M which is characterized by

Glaay(X" V™) = (1 + 3)(7)g2 (X, V) + (51 + B5) (1) g2 (X, 1) g (Y, ),
Gl (X7, Y?) = a1(7)92(X,Y) + B () g (X, u)ga (Y, w),

Gloay (X", YY) = Gau (X, V") = a2(7) (X, V) + B2(7) g2 (X, w) g (Y, 0),
where o, 5; : RT — R, i = 1,2, 3, are smooth functions and X" and X" are

the horizontal lift and the vertical lift of a vector X € T, M, respectively. In
particular:

(i) The Sasaki metric g¥ is obtained for o (7) = 1 and as(7) = a3(7) =

Bi(7) = Pa(7) = P3(T) =
(ii) The Cheeger-Gromoll metric g°“ (see [C(]) is obtained for ag( ) =

,32(7’) :0, al(T) 261(7') = —53(7') = % and ag( ): 1

Further, if we set a1(7) = aa(7) = a(71), as3(1) = —a(7) and G1 (7 ) Ba(T) =
B3(7) = 0 then we obtain the metric G defined by -

By direct calculation, we obtain the following lemma.
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LEMMA 3.1. Let (M, g) be a Riemannian manifold. Then

(3.3) [6; 6]= YRy, "o,
(3-4) [817 3]] =
(3.5) [0 0]=

PROPOSITION 3.2. Let (M, g) be a Rzemannian manifold and TM be its
tangent bundle equipped with the metric G. Then the corresponding Levi-
Civita connection V satisfies the following relations:

(3.6)  Vy0; = —Kgijy*o, + K(5§“yz + 67 y;) O,
(3.7) Vs, = (IF = Sy Ry — %yaRajik)ék + yaRaijk6k7
(3.8)  Vs,0; = (Ko¥y; — Kgijy® — Ly Ry;")0r + (I + 3y Ry ;%)
(3.9)  Vy0; = (Kd¥yi — Kgijy" — 3y" Ruij™ )0k + 3y Ryii* 0k,
where K = d'/a.
Proof. We only prove . Since the g;; only depend on (z"), we obtain

(3.10) Ot = Okl (2)y'Y)) = 91 (@)1 + 915 ()L’ = 2y
If V is the Levi-Civita connection on (M, g), then

(3.11) 0 = Vigij = 0kgij — girLyj — gjrLpy-

By using (3.1)), we obtain

(3.12) k(969" y’) = (Orgii) V'Y’ + 9i5(5ky" )y’ + 915y (6k1”).-
But (2.4]) gives

(3.13) Sky' = —y Ti.0% = —y T

By inserting (3.13)) in (3.12)) and using (3.11)), we infer that
(3.14) 5k = 0k(9iy"y’) = (Vigij)y'y’ = 0.

Now let

(3.15) 5,05 = Af;0k + B0y

Writing the Koszul formula, we have
2G(§3i8'j, o) = 8,G(8j, oK) + 6jG(5k,8i) — 5kG(3i,5j)
Combining (3.4)), (3.5) and (3.15]) with the above equation and using ([3.10)),
(3.11)) and (3.14)), we obtain
agrkBl; = d'(Yigjr + vjgik)-
Contracting the above equation with g** implies that
(3.16) Bl = K(yi0] + y;00).
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In the same way we obtain
(3.17) A}y = —Kgijy".

From (3.16)), (3.17) and (3.15]), we deduce (3.6]). =

We recall that the vertical distribution VT'M is totally geodesic in T'T'M
if HV , 6] = 0, where H denotes the horizontal projection. Similarly, if
we denote the vertical projection by V, then we say that the horizontal
distribution HT' M is totally geodesic in TT M if VV515 = 0. In the following
proposition, we find necessary and sufficient conditions for the vertical or
horizontal distributions in TT'M to be totally geodesic.

PROPOSITION 3.3. Let (M, g) be a Riemannian manifold and T M be its
tangent bundle with the metric G. Then
1. The vertical distribution VT M is totally geodesic in TT M if and only
if K=0.
2. The horizontal distribution HT M is totally geodesic in TT' M if and
only if (M, g) is a locally flat manifold.

Proof. By using we infer that HV 8 = ng]y 0. Hence VI'M
is a totally geodesic 1str1but10n in TTM 1f and only if K = 0. According

to we also have

If (M,q) LS a locally flat manifold, then Raijk = 0. Hence from 1' we
deduce VV;,6; = 0, i.e., HT'M 1is a totally geodesic distribution in TTM.
Conversely, if VV5,6; = 0 then by (3 1-) we deduce

(3.19) YRy F =

az]

Applying 8, to this equation, we obtain Rhijk = 0. Hence (M, g) is locally
flat. m

4. Conformal vector fields on T M. In this section, we study the
conformal vector fields on T'M with respect to the metric G. Let us first
recall the following fact.

LEMMA 4.1 ([PH]). Let X = X6; + X'; be a vector field on TM. Then

X is fiber-preserving vector field on T'M if and only if the X' are functions
on M.

In the fiber-preserving case, we denote Xt by X°. Therefore, every fiber-
preserving vector field X on T'M induces a vector field X = X*0; on M.

DEFINITION 4.2 ([YI]). Let X be a vector field on M with compo-
nents X°. The following vector fields on T'M are called respectively complete,
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horizontal and vertical lifts of X:

(4.1) XY = X0 + 4/ (V; X)),
(4.2) X = xig;,
(4.3) XV = X0,

Recall that the Lie derivative of G with respect to X is given by

(4.4) (£xO)(Y,2)=G(V3X,Z) + G(Y,V;X).

By using (3.6 and (3.9)), we obtain

(45)  G(V,3X,vZ) =Y'Z{G((0:X")0k, 0;) + X*G(V 5.0, 0)
+ G0 X"y, 9;) + G(XFV 5,01, 05)}

= a(T)Y'ZI{0;(X*)gs; + KX (g1iyi — 9iny;)

+ 5i()~(s)9js + K)?k(?/igk;j — YjGik + Ykgij) }s

where vY = 57‘81 Similarly,

(46)  GOY,V,zX) = a(r*)Y' Z{0;(X")gsi + K X*(griy; — 9j8:)
+0;(X*)gis + KX"(yjgi — vigin + vngi) }-

From (4.4)—(4.6) we deduce

A7) (£5G)(WY,0Z) = a(r)Y' ZH{0:(XF)gr; + 05(X")gir + 0:(X")gr
+ H'j()?k)gki + QKXkykgw}

Similarly, we can prove that

(4.8) (fng)(hf/» vZ) = a(tH)Y' Z7 {g; Vi X" + X*9* Rjuir + g1 Vi X*
+0;(X*)gri + 2K X yrgi},

(4.9) (f)}G)(MN/? hZ) = 0(72)37i2j{)~(kya3aikj + XkyaRajki + gijsz
+ gkivjf(’“}.

By using (4.7)—(4.9) we obtain:

PROPOSITION 4.3. Let (M, g) be a Riemannian manifold and G be the

pseudo-Riemannian metric on TM defined by l' Then X = )N(ié,- —1—)?’81
is a conformal vector field on T M with respect to G if and only if the fol-



236 E. Peyghan et al.

lowing relations hold:

(4.10) 8i(X*)gey +8; (X*)gue + (X )gkg +3,(X )gki+2K)?kykgij = 2093
(4.11) g, ViXF + X*y Ry + g1y ViX* + 6 (Xk)gm + 2K X ypg; = 25015,
(4.12) X*y" Ry + X5y Ry +gijz'X +gkziva =0,

where p is a function on TM.

Now, let X = Xi5;4+ X9, be a fiber-preserving conformal vector field on
TM. Then by interchanging ¢ and j in (4.11) and adding the new relation

to (4.11)), we infer that

(4.13) g ViX" + gV X5 + XPy" Rjpir + X5y Riji + g1 Vi X"
+gri V; X5 + 8"(5(%)@%' + 5'()~(k)gkj +AK X yrgi; = 4pgi;.

Since 9;(X*) = 0, by using and in we derive

(4.14) gr; ViXF + gkiva’“ + 2K XFyyg,; = 259,

If we suppose ¢ = p — K)?kyk, then (4.14)) gives
(4.15) ViX; + V;X; = 2¢gij,

where X; = gijk. It is easy to see that the vector field X = X?0; on M
satisfies

(4.16) £xgij = ViX; + V;X;.
The relations and (| - imply
(4.17) £xgij = 20gij-

This shows that the function @ on TM depends only on the variables (2") in

the induced coordinates (z",y"). Thus we can regard @ as a function on M.

In this case, we write ¢ 1nstead of ¢. Therefore, we have the following result.
PROPOSITION 4.4. Let (M, g) be a Riemannian manifold and G be the

pseudo-Riemannian metric on T M defined by lb Then zf)? = Xi6;+ X0,
is a fiber-preserving conformal vector field on TM with respect to G then
X = X'0; is a conformal vector field on M.

LEMMA 4.5. The vertical components Xk of X can be written in the form
vk k k
(4.18) X" =y A} + BY,

where A¥ and B are the components of certain tensor fields A and B on M,
respectively.
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Proof. From (4.10]) we obtain

(4.19) O:(XM)guy + 9;(X*)gri = 209.5.
Applying 9, to the above equahty, we obtaln

Hence . '
(4.21) 90 05(X*) = —gi; 8,8 (XF) = —8;(gi; 6, (X))

") =
= —0;(— gkra (X*) + 200;0) = grr 030 (X*)
= 0;(grr0:(X*)) = 0;(— gri0r (X ) +209ri)
= —gki0;0, (X*) = —grid, 9;(X"),
which implies that )
gri0r0;(X*) = 0.
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This shows that 3j ()~( ¥) depends only on the variables (z*) and consequently

X* can be written as (4.18)). =

LEMMA 4.6. The components A¥ and B* of the tensor fields A and B

satisfy

(4.22) A+ Aji = 2003,
(4.23) X*Rpinj + VjAn =0,
(4.24) V;B; — ViX; + Aij = 0,

where X; = gijk, B; = g;sB* and Ay = gjkAé“.
Proof. Inserting in we get
0i(y" AY + BY)gij + 05(y" AT + B")gri = 20935

Since A¥ and B* are functions of (z¥), the above implies

Al gej + Abgei = 20935
This yields . From , we have

9k ViX " + X*y" Rpig, + gkjvi)?k + 5j(j~(k)9ki = 2¢9ij,

Applying in the above equation yields
(4.25) ViX; + X5y Rjrir + y"ViArj + ViBj + Aji = 2¢g;;.

Inserting (4.18)) in (4.12)) we also obtain

(4.26) XkyTRm'kj + XkyTRrj]m' + eriArj + VZ‘B]’ + erjAm' + VjBi =0.

From and -, we get

X Yy Rrikj +vy VjAm- + V]Bl + QSogij — VZXJ — Aji =0.
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Using in the above equation implies that
(4.27) X" Y Ryigj +y"VjAr + VB — V; X + Ajj = 0.
Taking the derivatives of both sides with respect to d), gives . By
applying in we deduce . "
By interchanging ¢ and j in and adding the new equation to (4.24)

we get
The relations (4.15)) and (4.22) now imply that
£Bgij = VZ'Bj + VjBZ' =0.
Hence, we have the following result.
LEMMA 4.7. The vector field B = B'0; is a Killing vector field on M.
By using (4.22)) we obtain
ViAij + ViAji = 2i;Vie.
The above relation and (4.23)) give
X*Rijen + X Rjin = 29i;Vaep.
Since Rjjrn, = —Rjikn, we infer that Vi, = 0. Consequently, 0, = 0, i.e.,
@ is constant on M. Therefore we have the following result.

LEMMA 4.8. The vector field X = X'0; is a homothetic vector field
on M.

From Proposition [£.4] and Lemmas [£.7] and [4.8] we have the following.

THEOREM 4.9. Let (M,g) be a Riemannian manifold and G be the
pseudo-Riemannian metric on TM defined by . Then every fiber-pre-
serving conformal vector field on T M with respect to G induces a homothetic
vector field and o Killing vector field on M.

Now, let X = X'0; be a homothetic vector field on M with respect to
the constant function ¢. Then

(4.28) £xgij = ViXj + V;X; = 2095
If £ XF[]‘- are the components of the tensor field £xV, then ([F], [K])

£xT) =V V;X"+R,,"X" =0,
or
(4.29) ViV X+ Rpij X" = 0.
We define the vector field X on TM by
(4.30) X = X; +y" (V. X))

By using (4.9), (4.29) and (4.30) we obtain
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(431)  (£5G)(04,05) = ay (X Ryipj+ X Ry jji + ViV, X;+ V;V,. X;) = 0.
The relations (4.8), (4.28), (4.29) and (4.30) give
(£5G)(6:,0;) = 2a( + Ky (VX" )yr)gij-

Hence,

(4.32) (£5G)(0:,9) = 2apgs;,

where p = ¢ + Ky"(V,X"*)y,. Using , (4.28)) and (4.30)) we also obtain
(4.33) (£5G)(0i,05) = 2a(p + Ky" (V. X )yr)gij = 2pgi;-

By using (4.31), (4.32) and (4.33), we get £3G = 2pG. This yields the

following theorem.

THEOREM 4.10. Let M be an n-dimensional Riemannian manifold, and
TM be its tangent bundle with the metric G. Then every infinitesimal ho-
mothetic vector field X on M induces an infinitesimal fiber-preserving con-
formal vector field on T M.

If X is a vector field on M, then its complete lift defined by
X¢ = dez + yr(vai)éi
is a fiber-preserving vector field on T'M . Obviously, the vector field X defined

by (4.30) is the complete lift of X = X'9;. Therefore from Theorems 4.9
and we deduce the following result.

THEOREM 4.11. Let (M, g) be a Riemannian manifold, X a vector field
on M, and XC the complete lift of X to TM. If we endow TM with the
metric G, then X© is a conformal vector field on TM if and only if X is
homothetic on M.

PROPOSITION 4.12. Let M be an n-dimensional Riemannian manifold,
and T M be its tangent bundle with the metric G. Then every infinitesimal
horizontal inessential conformal vector field on T M induces an infinitesimal
conformal vector field on M.

Proof. Let X = X'6; be a horizontal inessential conformal vector field
on T'M. Then there exists a function p(x) on M such that £ ;G = 2pG. By

using (4.10)—(4.12)), we obtain

(4.34) 0i(X*)grj + 0;(X ) gri = 2pgij,

(4.35) ViX; + X Y Rjair = 2094,

(4.36) X*4% Ryin + X*y* Rajri = 0.
Differentiating with respect to 9), and using , we get
(4.37) 0y (X*) =0,

or

(4.38) Xk =y Ak 4 B,
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By interchanging ¢ and j in (4.35)), and adding the new relation to (4.35)
and using (4.36]) we deduce

(4.39) ViX; + V;Xi = 4pgij,

where )Z'j = gjk)zk. Putting into implies that
(4.40) Y'Vidr; +y'VjAn + ViBj + V;B; = 4pyg;;.
Since the first two terms depend only on y, we have

(4.41) Vidnj + VjAp = 0.

From (4.40) and (4.41)), we obtain

(4.42) ViB; 4+ V;B; = 4pg;;.

Since p is a function on M, B = B%0; is a conformal vector field on M. =

PRrROPOSITION 4.13. Let M be an n-dimensional Riemannian manifold,
and T M be its tangent bundle with the metric G. Then every horizontal lift
conformal vector field on TM is a Killing vector field on M and it induces
a Killing vector field on M.

Proof. Let XH = X'5; be the horizontal lift vector field of X = X'9;.
If XH is a conformal vector field on TM, then by using we infer
that p = 0. Hence X is Killing on TM. Using we also deduce that
X = X'9; is a Killing vector field on M. =

PROPOSITION 4.14. Let M be an n-dimensional Riemannian manifold,
and TM be its tangent bundle with the metric G. Then every vertical lift
conformal vector field on T'M induces a Killing vector field on M.

Proof. Let XV = X9; be the vertical lift of X = X9,. If XV is a
conformal vector field on T'M, then by using we get V; X;+V,;X; =0.
Hence X = X"9; is a Killing vector field on M. =

5. Riemannian curvature tensor

LEMMA 5.1. Let (M, g) be a Riemannian manifold. Then the coefficients
of the Riemannian curvature tensor with respect to the metric G are

(5.1)  R(8;,0;)0, = [(2K, — K?)(ginyj — 949)y° + K (9ind§ — 910
K K
+ 5y gk R * — 2ylyrgi/€lerS:| ds
! 2 s s K I, r s
+ | (2K = K7) (i3 = y;07)yk — 9y 9k B

K )
+ K(gik0; — gjx0;) + 2ylyrgilejrs] s,
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(5.2)

R(8;,0;)01 = [(2-’(, — K*)(gikyj — giryi)y® + K (9ir0; — 9560;) — Ry’

K K 1
+ *yhyngthirs - 7yhyrgithjrs + *ylthzjkTRhirs

2 2 4
1
- Zylthuk Tthrs} ds

1 K
+ |:_4ylthljkTRhirs + ?yhyrgithjrs

1 K
+ R + ZylthlikrthrS + Eylyrlek’”éf

K K -
— Yy Ry "8 — yhy’"gijmrs} Os,

2 2
(5.3)
~ . K K
R(0s, 8j)3k = |:2ylyrgjk’Rlir *+ gylyrgijm *+ QK/(gikys - ykéf)yj
s s 1 s 2 s K h, r s
+ K(g9ik6; — g;x0;) + S Biki” — K ginysy” — Yy Gik I
1
- ZylthlkiTthrs + K2yy; 07 | 6
L.r s 1 s
+ | —Kyy gjnRy, *§Rjki
K 1 K .
+ 0" ik Bag,” + YY" R Rig,” = 5y v R 05 | Os,
(5.4)
E&‘a"é——llv~RsEhr-RsllhR "R,.$
(6:,05)0k = ¥ Vil + SV ikl + VY Ry Ry
K K 1 1
+ Eyhyrgijhms + Eylyrlek’”éf + §Rjiks + 3 ki

1 1
- Zylthlik rthrs - 4ylthlkirthrS:| Os

1 1
+ [2ylvz‘lekS - KyhyTRm;rsgjk - iylthljkrRhirs

1 1
+ ZylthljkrRhm‘s - Rjz'ks + ZylthlikTthrs

1 .
+ Zylthlkirthrs - ylyrRlikr(sf] 9s,
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(5.5)

~ : 1 s K T s K T
R(0i,05)0k = [2yl(ijzm' = ViRy,;®) + Eyhy Gk Bpi — Eyhy gik Ry’

1 1 K
+ ZylthlijRhirs - Zylthlkirthrs + Eyhyrgijhms

K K %
B Eyhyrgithrjs + Eylyrlejrsz‘s - leyrlei’"éj} s

1
+ [2yl(viRm]’s — VR, *) — Ky"y girRy;,*
+ Ky"y gix Ryj,°

L1 L1 L in
A Ry, Ry, + SvY Ry " Ryjp” + VY Ry Ry

1
- ZylthlkiTthjs + Ry, + Ky'y Ry Tfslf:} Os,
(5.6)

S 1 S S 1 S S
R(0i,05)0k = | R;ji° + le(ijlik — ViRy;.°) + iyl(ijlki — ViRy;°)

1 1 1
+ *ylthzjkrRm'rs - *ylthzikTthrs + *ylthzkerhirs

4 4 4
L1 L1 Lin
— Y Ry "Ry j0° — VY Ry Ry + SVY R " Ry

+ Kyly(Ryjp," 67 — Ry, " 53)
— Ky'y. Ry ™65 + 2KylysRijlk] ds

l s s 1 L, h r s
+ |y (vilek - ViR,;.°) — QY'Y Ry Rpr

1 1 1
— —yly" Ry Ry, + §ylthlkirthrs + §ylthljkTthis

2
1 L, h r s 1 L, h r s| 9
- §yy Ry, thj - iyy Rijl Ry | Os-
Proof. We only prove l' Since [01, OJ] =0, by using 1' we have
(5.7) R(0;, 8j)ak = V&ngc‘)k — ngvaiak.
From (3.6) and (3.9)), we obtain
(5.8) V.V, 00 = Vi, (= Ky gjir + K (y;0} + yd}),)

= 0;(—Ky"g;%)6, + 0i(K (y;0% + yx65)) O,
— Ky"gjiV 5.00 + K (y;0f, + y6})V 5,0,
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— 9K g — Kag:1.65 EZT.RS
= 9ikYiy gjk0; + 9 YUY gikptvyg,

- K?ginyjy® — K 29ijykys] 8s + [K 2Yiy; 0
+ K2yiyk5j + 2Ky (y; 6} + Yk6;) + K(gijoy,
+ gik63) — gyly’"gijliﬁ +2K kayﬂf] Os.
Interchanging ¢ and j in the above equation gives
(5.9) 63j%3i3k = | —2K"giry;y° — Kgird; + %yll/rgikszrs
— K2gjyiy® — KQQij?/kys] ds + |:K2yiyj5]f;

+ K2y;yr0s + 2K'y; (yi0; + yiof) + K (9103

2
Putting (5.8) and (5.9) in (5.7)) implies ((5.1)). =
Now, let R =0. Then by using 1) we obtain

0= (R(5i7 5j)5k)(x,o) = Rijks5s-
Hence Rl-jki:(), i:e., R :~O' ConvgrselyL if R =0, then by using Lemma
we obtain R(d;,0;)0, = R(d;,6;)0k = R(6;,05)6; = 0 and
(5.10) R(;,0;)3), = [(2K" — K*)(giny; — gjnyi)y" + K (905 — gj107)]0s

+ (2K — K*)(1i65 — y;08)yk + K (965 — gik07)]0s,
(5.11) R(95,0;)0y, = [(2K' — K*)(giwy; — 9ju9i)y° + K (905 — gj105)]0s,
(5.12) R(0;,0;)0k = [K yry;07 + 2K'y;(9ixy” — urd}) — K giny;y°

+ K(gik0; — gjk0;)]0s-
If K =0, then from the above equations, we derive that

R(9;,0;)0 = R(9;,0;)0), = R(6;,0;)8), = 0,

and consequently R=0.Butif R = 0, then by considering we deduce
that

K .
T gkb?) — Dyl gu R, + 2K2ykyi6;] b,

(2K' — K*)(giry; — 9i69:)y° + K (gik6; — gji67) = 0.
By contracting the above equation with y, we conclude that K = 0. There-
fore we have the following result.

THEOREM 5.2. Let (M,g) be a Riemannian manifold and TM be its
tangent bundle with the metric G. Then we have the following assertions:
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(i) If TM s flat then M is flat.
(ii) If M is flat then TM is flat if and only if K = 0.

REMARK. In [Ko], it is proved that the tangent bundle of a Riemannian
manifold M with the Sasaki metric is flat if and only if M is flat. On the other
hand the tangent bundle of M with the Cheeger—Gromoll metric cannot be
flat [Se].

Next, we assume VR = 0. Then by Lemma we obtain
(513) 0= (Vs,R)(8:,0;)0 = Vs, (R(5:,0;)6:) — R(Vs,,6:,0;)d%
— R(6:,V5,,6;)0r — R(6:,6;)V5, 0.
If we restrict ourselves to the zero section of T'M, then by Lemma and

B.6)-B-9) we get

(5.14) (Vo (R(65,0,)0%)) (2.0 = Riji" T80,
(5.15) (R(Vs,,81,05) k><m,0 = R Tidl,
(5.16) (R(6:,V5,,03)0k) 0.0y = Ryit' T,
(5.17) (R(5i76j)v6m5k)(x,0) = Ry, T

Applying the above equations in (5.13)) yields
0= (Rijksl—;{ns - Rrjk FT - Rrile;;Lj - Rz‘jrlrrtm)al = (Vc‘?mR)(ah 3j)8k7
that is, VR = 0. Hence we have

THEOREM b5.3. Let (M,g) be a Riemannian manifold and TM be its
tangent bundle with the metric G. If T M is locally symmetric, then so is M.

It is remarkable that, in [Ko|, it is proved that if the tangent bundle
TM of the Riemannian manifold M with the Sasaki metric ¢° is locally
symmetric, then M is flat and hence T'M is also flat. Further, if TM with
the Cheeger—Gromoll metric is locally symmetric, then so is M [AM].
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