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Abstract. We introduce the extended bicomplex plane T, its geometric model: the
bicomplex Riemann sphere, and the bicomplex chordal metric that enables us to talk about
convergence of sequences of bicomplex meromorphic functions. Hence the concept of nor-
mality of a family of bicomplex meromorphic functions on bicomplex domains emerges.
Besides obtaining a normality criterion for such families, the bicomplex analog of the
Montel theorem for meromorphic functions and the fundamental normality tests for fam-
ilies of bicomplex holomorphic functions and bicomplex meromorphic functions are also
obtained.

1. Introduction. The concept of normality of a family of bicomplex
holomorphic functions was introduced in [CRS], and we now intend to study
the same property for bicomplex meromorphic functions. A family F of
meromorphic functions on a domain D ⊂ C is said to be normal in D
if every sequence in F contains a subsequence which converges uniformly
on compact subsets of D; the limit function is either meromorphic in D
or identically equal to ∞. Of course, the convergence in this situation is
with respect to the chordal metric on the Riemann sphere C = C ∪ {∞}
(cf. [Sc]). Unfortunately, the one complex variable case does not admit any
simple generalization to the bicomplex case.

In order to discuss the convergence of sequences of bicomplex meromor-
phic functions on bicomplex plane domains, we introduce the extended bi-
complex plane T, its geometric model, viz. the bicomplex Riemann sphere,
the bicomplex chordal metric on the bicomplex Riemann sphere, and the
idea of convergence on T. In turn, these developments enable the intro-

2010 Mathematics Subject Classification: Primary 30G, 30G35, 30D30; Secondary 32A,
32A30.
Key words and phrases: bicomplex numbers, complex Clifford algebras, normal families,
bicomplex holomorphic functions, bicomplex meromorphic functions, bicomplex Riemann
sphere.

DOI: 10.4064/ap103-3-6 [303] c© Instytut Matematyczny PAN, 2012



304 K. S. Charak et al.

duction of the concept of normality of a family of bicomplex meromorphic
functions on bicomplex domains. This is the content of Section 3.

In Section 4, a normality criterion for families of bicomplex meromorphic
functions, the bicomplex analog of the Montel theorem for meromorphic
functions and the fundamental normality tests for families of bicomplex
holomorphic functions and bicomplex meromorphic functions are obtained.

2. Preliminaries. As in [RS] (see also [CR] and [CRS]), the algebra of
bicomplex numbers

(2.1) T := {z1 + z2i2 : z1, z2 ∈ C(i1)}
is a space isomorphic to R4 via the map

z1 + z2i2 = x0 + x1i1 + x2i2 + x3j 7→ (x0, x1, x2, x3) ∈ R4,

with multiplication defined using the following rules:

i21 = i22 = −1, i1i2 = i2i1 = j so that j2 = 1.

Here C(ik) := {x + yik : i2k = −1 and x, y ∈ R} for k = 1, 2. It is easy to
see that multiplication of bicomplex numbers is commutative. In fact, the
bicomplex numbers

T ∼= ClC(1, 0) ∼= ClC(0, 1)

are unique among the complex Clifford algebras (see [BDS, DSS] and [Ry])
in that they are commutative but not a division algebra. Also, since the
map z1 + z2i2 7→ (z1, z2) gives a natural isomorphism between the C-vector
spaces T and C2, we have T = C⊗R C. That is, we can view the algebra T
as the complexified C(i1) exactly the way C is complexified R. In particular,
in (2.1), if we put z1 = x and z2 = yi1 with x, y ∈ R, then we obtain the
subalgebra of hyperbolic numbers, also called duplex numbers (see e.g. [RS],
[So]):

D := {x+ yj : j2 = 1, x, y ∈ R} ∼= ClR(0, 1).

The two projection maps P1,P2 : T→ C(i1) defined by

(2.2) P1(z1 + z2i2) = z1 − z2i1 and P2(z1 + z2i2) = z1 + z2i1,

are used extensively in the following.
The complex (square) norm CN(w) of the bicomplex number w is the

complex number z2
1 + z2

2 ; writing w∗ = z1− z2i2, we see that CN(w) = ww∗.
Then a bicomplex number w = z1 + z2i2 is invertible if and only if CN(w)
6= 0. Precisely,

w−1 =
w∗

CN(w)
.

The set of units in the algebra T is a multiplicative group which we de-
note by T∗ (see [BW]). Unlike C, the bicomplex algebra T has zero divisors
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given by

NC = {w ∈ T : CN(w) = 0} = {z(1± j) : z ∈ C(i1)},

which we may call the null-cone. Note that, using the orthogonal idempo-
tents

e1 =
1 + j

2
, e2 =

1− j
2

, in NC,

each bicomplex number w = z1 + z2i2 ∈ T can be uniquely expressed as

w = P1(w)e1 + P2(w)e2,

where P1 and P2 are the projection maps defined in (2.2). This representa-
tion of T as C ⊕ C helps to do addition, multiplication and division term-
by-term. With this representation we can set

|w|j := |P1(w)|e1 + |P2(w)|e2,

which will be referred to as the j-modulus of w = z1 + z2i2 ∈ T (see [RS]).
Moreover, the usual Euclidean norm of R4 can be rewritten as

‖w‖ =

√
|P1(w)|2 + |P2(w)|2

2
.

Definition 2.1. Let X1 and X2 be subsets of C(i1). Then the set

X1 ×e X2 := {w = z1 + z2i2 ∈ T : P1(w) ∈ X1 and P2(w) ∈ X2}

is called the T-cartesian set determined by X1 and X2, where P1 and P2

are the projections (2.2).

It is easy to see that if X1 and X2 are domains (open and connected) of
C(i1) then X1×eX2 is also a domain of T. We define the “disc” with center
a = a1 + a2i2 of radii r1 and r2 of T as follows [P]:

D(a; r1, r2) = B1(a1 − a2i1, r1)×e B
1(a1 + a2i1, r2)

= {w1e1 + w2e2 : |w1− (a1 − a2i1)|<r1, |w2− (a1 + a2i1)|<r2},

where Bn(z, r) is the open ball with center z ∈ Cn(i1) and radius r > 0. In
the particular case where r = r1 = r2, D(a; r, r) will be called the T-disc
with center a and radius r. In particular, we define

D(a; r1, r2) := B1(a1 − a2i1, r1)×e B1(a1 + a2i1, r2) ⊂ D(a; r1, r2).

We remark that D(0; r, r) is, in fact, the Lie ball (see [A]) of radius r in T.
Further, the projections defined in (2.2) help to understand bicomplex

holomorphic functions in terms of the following Ringleb Decomposition
Lemma [R].
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Theorem 2.2. Let Ω ⊂ T be an open set. A function f : Ω → T is
T-holomorphic on Ω if and only if the two natural functions fe1 : P1(Ω)→
C(i1) and fe2 : P2(Ω)→ C(i1) are holomorphic,where

f(w) = fe1(P1(w))e1 + fe2(P2(w))e2, ∀w = z1 + z2i2 ∈ Ω,

Ringleb’s Lemma for bicomplex meromorphic functions is as follows [CR].

Theorem 2.3. Let Ω ⊂ T be an open set. A function f : Ω → T is
bicomplex meromorphic on Ω if and only if the functions fe1 : P1(Ω) →
C(i1) and fe2 : P2(Ω)→ C(i1) are meromorphic.

Definition 2.4. Let f : Ω → T be a bicomplex meromorphic function
on the open set Ω ⊂ T. Then we say that w = P1(w)e1 + P2(w)e2 ∈ Ω is a
pole (resp. strong pole) for f if P1(w) or (resp. and) P2(w) is a pole for fe1

and fe2, respectively.

Remark 2.5. Poles of bicomplex meromorphic functions are not isolated
singularities. It is also easy to obtain the following characterization of poles.

Proposition 2.6. Let f : X → T be a bicomplex meromorphic function
on the open set Ω ⊂ T. If w0 ∈ Ω then w0 is a pole of f if and only if

lim
w→w0

‖f(w)‖ =∞.

A classical example of bicomplex meromorphic function is the bicomplex
Riemann zeta function introduced by Rochon [Ro1].

3. The extended bicomplex plane T. Since the range of a bicom-
plex meromorphic function lies beyond the bicomplex plane, we need the
extended bicomplex plane to study bicomplex meromorphic functions. Fur-
ther, it would help to study the limit points of unbounded sets in the bicom-
plex plane. We obtain this extended bicomplex plane by using the extended
C(i1)-plane.

We consider the set

C(i1)×e C(i1) = (C(i1) ∪ {∞})×e (C(i1) ∪ {∞})
= (C(i1)×e C(i1)) ∪ (C(i1)×e {∞}) ∪ ({∞} ×e C(i1)) ∪ {∞}
= T ∪ I∞,

writing I∞ for (C(i1)×e {∞}) ∪ ({∞} ×e C(i1)) ∪ {∞}. Clearly, any un-
bounded sequence in T will have a limit point in I∞.

Definition 3.1. The set T = C(i1) ×e C(i1) is called the extended bi-
complex plane. That is,

T = T ∪ I∞, with I∞ = {w ∈ T : ‖w‖ =∞}.
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It is of importance to observe that formation of the extended bicomplex
plane T requires us to add an infinity set, viz. I∞, which we may call the
bicomplex infinity set.

We need some definitions in order to give a characterization of this set.

Definition 3.2. An element w ∈ I∞ is said to be a P1-infinity (resp.
P2-infinity) element if P1(w) =∞ (resp. P2(w) =∞) and P2(w) 6=∞ (resp.
P1(w) 6=∞).

Definition 3.3. The set of all P1-infinity elements is called the I1-
infinity set. It is denoted by I1,∞. Therefore,

I1,∞ = {w ∈ T : P1(w) =∞, P2(w) 6=∞}.

Similarly, the I2-infinity set is

I2,∞ = {w ∈ T : P1(w) 6=∞, P2(w) =∞}.

Definition 3.4. An element w ∈ T is said to be a P1-zero (resp. P2-zero)
element if P1(w) = 0 (resp. P2(w) = 0) and P2(w) 6= 0 (resp. P1(w) 6= 0).

Definition 3.5. The set of all P1-zero elements is called the I1-zero
set ; it is denoted by I1,0. That is, I1,0 = {w ∈ T : P1(w) = 0, P2(w) 6= 0}.
Similarly, the I2-zero set is {w ∈ T : P1(w) 6= 0, P2(w) = 0}.

We now construct the following two new sets:

I−∞ = I1,∞ ∪ I2,∞, I−0 = I1,0 ∪ I2,0,

so that I∞ = I−∞ ∪ {∞} and NC = I−0 ∪ {0}. With these definitions, each
element in the null-cone has an inverse in I∞ and vice versa. One can easily
check that the elements of I−∞ do not satisfy all the properties as satisfied
by the C(i1)-infinity but the element ∞ = ∞e1 +∞e2 does. We may call
I−∞ the weak bicomplex infinity set, and the element ∞ = ∞e1 +∞e2 the
strong infinity. This nature of the set I∞ generates the idea of weak and
strong poles for bicomplex meromorphic functions (see [CR]). Now, in order
to work in the extended bicomplex plane, it is desirable to have a geometric
model wherein the elements of T have a concrete representative so that the
points of I∞ are as good as any other point of T. To obtain such a model, one
can use the usual stereographic projections of C(i1) as two components in
the idempotent decomposition to get a one-to-one and onto correspondence
between the points of S×S, where S is the unit sphere in R3, and T. Hence,
we can visualize the extended bicomplex plane directly in R6 = R3 × R3.
With this representation, we call T the bicomplex Riemann sphere.

Observe that what is done above is basically a compactification of C2,
using the bicomplex setting. That is, suitable points at infinity are added
to T to get the extended bicomplex plane T. In higher dimensions such
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compactifications are well known under the name of conformal compactifi-
cations. In fact, such compactifications are obtained as homogeneous spaces
of Lie groups (see [BW] and [BE]).

3.1. The chordal metric on T. To study normal families of bicomplex
meromorphic functions, we first have to extend the chordal distance to the
extended bicomplex plane, to be able to introduce convergence of sequences
and continuity of bicomplex meromorphic functions. The chordal metric on
C(i1) can be used to define a distance on T.

Proposition 3.6. Let χ : C(i1) × C(i1) → R be the chordal metric on
C(i1). Then the mapping χe : T× T→ R defined as

χe(z, w) =

√
χ2(P1(z),P1(w)) + χ2(P2(z),P2(w))

2

is a metric on T.

Proof. It is easy to verify that for all z, w ∈ T we have: χe(z, w) ≥ 0;
χe(z, w) = 0 iff z = w; χe(z, w) = χe(w, z). Now, we show that χ also
satisfies the triangle inequality. Let z, w, v ∈ T.

Using Minkowski’s inequality, we obtain

χe(z, w)

=

√
χ2(P1(z),P1(w)) + χ2(P2(z),P2(w))

2

≤
r
{χ(P1(z),P1(v)) + χ(P1(v),P1(w))}2 + {χ(P2(z),P2(v)) + χ(P2(v),P2(w))}2

2

≤
√
χ2(P1(z),P1(v)) + χ2(P2(z),P2(v))

2

+

√
χ2(P1(v),P1(w)) + χ2(P2(v),P2(w))

2
= χe(z, v) + χe(v, w).

We call χe the bicomplex chordal metric. The virtue of this metric is that
it allows w ∈ I∞ to be treated like any other point. Hence, we are now able
to analyse the behavior of bicomplex meromorphic functions in the extended
bicomplex plane, especially on the set I∞.

Remark 3.7. As for the j-modulus, let us define

χj(z, w) := χ(P1(z),P1(w))e1 + χ(P2(z),P2(w))e2.

Then Re(χ2
j (z, w)) = χ2

e(z, w) and thus

χe(z, w) =
√

Re(χ2
j (z, w))
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where

χj(z, w) =
|z − w|j√

1 + |z|j
√

1 + |w|j
if z, w ∈ T.

Some properties of the bicomplex chordal metric are discussed in the
following result.

Theorem 3.8. If z = z1e1 + z2e2 and w = w1e1 + w2e2 are any two
elements in the extended bicomplex plane, then:

1. χe(z, w) ≤ 1;
2. χe(0,∞) = 1;
3. χe(z, w) = 1√

2
χ(z1,∞) if P2(z) = P2(w) = 0 and P1(w) =∞;

4. χe(z, w) = 1√
2
χ(z1, w1) if P2(z) = P2(w) =∞;

5. χe(z,∞) = 1√
2
χ(z2,∞) if P1(z) =∞;

6. χe(z, w) = χe(z−1, w−1);
7. χe(z, w) = χ(z, w) if z, w ∈ C(i1);
8. χe(z, w) ≤ ‖z − w‖ if z, w ∈ T;
9. χe(z, w) is a continuous function on T.

The implication ‖z‖ ≤ ‖w‖ ⇒ χe(0, z) ≤ χe(0, w) need not be true:

Example 3.9. Let

z = (1 + 2i1)e1 + (2 + 3i1)e2 and w = (1 + i1)e1 + (3 + 3i1)e2.

Then ‖z‖ ≤ ‖w‖, but χe(0, z) =
√

0.88 and χe(0, w) =
√

0.80.

Example 3.10. Let

z = (4 + i1)e1 + (2 + 3i1)e2 and w = (1 + 2i1)e1 + (3 + 4i1)e2.

Then ‖z‖ = ‖w‖, but χe(0, z) =
√

0.93 and χe(0, w) =
√

0.89.

However, we can prove the following result.

Proposition 3.11. Let z, w ∈ T. If ‖z‖ ≤ ‖w‖ then

χe(0, z) ≤ χe(0,
√

2 ‖w‖).

Proof. By definition,

χe(0, z) =

√
χ2(0,P1(z)) + χ2(0,P2(z))

2

=

√
1
2

{
|P1(z)|2

1 + |P1(z)|2
+
|P2(z)|2

1 + |P2(z)|2

}
.

Since, |Pi(z)| ≤
√

2‖z‖ ≤
√

2 ‖w‖ for i = 1, 2 we have χ(0,Pi(z)) =
χ(0, |Pi(z)|) ≤ χ(0,

√
2‖w‖) for i = 1, 2. Hence, χe(0, z) ≤ χe(0,

√
2‖w‖).
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3.2. Convergence in T
Definition 3.12. A sequence {fn} of functions on T converges bispher-

ically uniformly to a function f on a set E ⊂ T if, for any ε > 0, there is a
number n0 such that n ≥ n0 implies

χe(fn(w), f(w)) < ε for all w ∈ E.

Note that if {fn} converges uniformly to f on E ⊂ T, then it also
converges spherically uniformly to f on E. The converse holds if the limit
function is bounded.

Lemma 3.13.

χe(z, w) ≥ ‖z − w‖√
1 + 2‖z‖2

√
1 + 2‖w‖2

, if z, w ∈ T.

Proof. We shall establish this inequality by obtaining an equivalent in-
equality that holds trivially. For z, w ∈ T, put P1(z) = a, P2(z) = b,
P1(w) = c, and P2(w) = d. Then

χe(z, w) ≥ ‖z − w‖√
1 + 2‖z‖2

√
1 + 2‖w‖2

⇔ χ2
e(z, w) ≥ ‖z − w‖2

(1 + 2‖z‖2)(1 + 2‖w‖2)

⇔ χ2(a, c) + χ2(b, d) ≥ |a− c|2 + |b− d|2

(1 + |a|2 + |b|2)(1 + |c|2 + |d|2)

⇔ |a− c|2

(1 + |a|2)(1 + |c|2)
+

|b− d|2

(1 + |b|2)(1 + |d|2)

≥ |a− c|2

(1 + |a|2 + |b|2)(1 + |c|2 + |d|2)
+

|b− d|2

(1 + |a|2 + |b|2)(1 + |c|2 + |d|2)

⇔ |a− c|2
[

1
(1 + |a|2)(1 + |c|2)

− 1
(1 + |a|2 + |b|2)(1 + |c|2 + |d|2)

]
≥ |b− d|2

[
1

(1 + |a|2 + |b|2)(1 + |c|2 + |d|2)
− 1

(1 + |b|2)(1 + |d|2)

]
⇔ |a− c|2[|d|2 + |b|2 + |a|2|d|2 + |b|2|c|2 + |b|2|d|2]

(1 + |a|2)(1 + |c|2)

≥
|b− d|2[−

{
|c|2 + |a|2 + |a|2|c|2 + |a|2|d|2 + |b|2|c|2

}
]

(1 + |b|2)(1 + |d|2)
.

The left hand side of the last inequality is positive, while the right hand
side is negative, so the inequality holds trivially.

Theorem 3.14. If {fn} converges bispherically uniformly to a bounded
function f on E ⊂ T, then {fn} converges uniformly to f on E.
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Proof. By assumption, for every ε > 0 there is n0 such that for all n ≥ n0,
we have

χe(fn(w), f(w)) < ε.

Now the definition of χe implies that Pi(fn(w)) converges uniformly to
Pi(f(w)) on Pi(E), i = 1, 2. Further, since f is bounded on E, Pi(f(w))
is bounded on Pi(E), i = 1, 2, and hence Pi(fn(w)) is bounded on Pi(E),
i = 1, 2, for all but finitely many n. This implies that there is a positive
constant L such that

‖fn(w)‖ < L ∀n ≥ n0,

on P1(E)×e P2(E) ⊇ E. By Lemma 3.13, we have

‖fn(w)− f(w)‖ ≤
√

1 + 2‖fn(w)‖2
√

1 + 2‖f(w)‖2 χe(fn(w), f(w))

for all n ≥ n0 and w ∈ E. But f is bounded on E and {fn} is bounded on
E for all n ≥ n0, so {fn} converges uniformly to f on E.

The notion of continuity with respect to the bicomplex chordal metric is
given in the following definition.

Definition 3.15. A function f is bispherically continuous at a point
w0 ∈ T if, given ε > 0, there exists δ > 0 such that

χe(f(w), f(w0)) < ε whenever ‖w − w0‖ < δ.

In the case of bicomplex meromorphic functions we have the following
result.

Theorem 3.16. If f is a bicomplex meromorphic function in a domain
E ⊂ T, then f is bispherically continuous in E.

Proof. By Theorem 2.3 there exist meromorphic functions fe1 : E1 →
C(i1) and fe2 : E2 → C(i1) with E1 = P1(E) and E2 = P2(E) such that

f(z1 + z2i2) = fe1(z1 − z2i1)e1 + fe2(z1 + z2i1)e2 ∀z1 + z2i2 ∈ E.
If f is T-holomorphic at w0 ∈ E, then fei is holomorphic on Ei for i = 1, 2.
Hence, it is bispherically continuous on E since

(3.1) χe(f(w), f(w0)) ≤ ‖f(w)− f(w0)‖.
If w0 is a strong pole, then 1/fe1 and 1/fe2 are continuous at P1(w0) and
P2(w0) respectively. Moreover, noting that

χe(f(w), f(w0))

= χe

(
1

f(w)
,

1
f(w0)

)

=

√√√√√χ2

(
1

fe1(P1(w))
,

1
fe1(P1(w0))

)
+ χ2

(
1

fe2(P2(w))
,

1
fe2(P2(w0))

)
2

,
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the result follows as in the preceding case. If w0 is a weak pole, then 1/fe1

or 1/fe2 is continuous at P1(w0) or P2(w0) respectively. Suppose, without
loss of generality, that 1/fe1 is continuous at P1(w0) with fe2 continuous at
P2(w0). Then

χe(f(w), f(w0))

=

√√√√√χ2

(
1

fe1(P1(w))
,

1
fe1(P1(w0))

)
+ χ2(fe2(P2(w), fe2(P2(w0)))

2
,

and the result follows by using (3.1) in the complex plane (in i1).

Definition 3.17. A family F of bicomplex functions defined on a do-
main Ω ⊂ T is said to be bispherically equicontinuous at a point w0 ∈ Ω if
for each ε > 0, there exists δ = δ(ε, w0) such that

χe(f(w), f(w0)) < ε ∀f ∈ F whenever ‖w − w0‖ < δ.

Moreover, F is bispherically equicontinuous on a subset E ⊂ Ω if it is
bispherically equicontinuous at each point of E.

Remark 3.18. By (3.1), equicontinuity with respect to the euclidean
metric implies bispherical equicontinuity.

4. Normal families of bicomplex meromorphic functions

4.1. Basic results

Definition 4.1. A family F of bicomplex meromorphic functions in
a domain Ω ⊂ T is normal in Ω if every sequence {fn} ⊂ F contains a
subsequence which converges bispherically uniformly on compact subsets
of Ω.

That the limit function is either bicomplex meromorphic in Ω or in the
set I−∞ or identically∞ is a consequence of Corollary 4.4. That the limit can
actually be identically ∞ is shown by the following example.

Example 4.2. Let fn(w) = n/w, n = 1, 2, . . . , on the Lie ball D(0; r, r).
Then each fn is bicomplex meromorphic and {fn} converges bispherically
uniformly to ∞ in D(0; r, r).

Theorem 4.3. A family F of bicomplex meromorphic functions is nor-
mal in a domain Ω if and only if the family of meromorphic functions
Fei = Pi(F ) is normal in Pi(Ω) for i = 1, 2 with respect to the chordal
metric.

Proof. Suppose that F is normal in Ω with respect to the bicomplex
chordal metric. Let {(fn)1} be a sequence in F e1 = P1(F ). We want to
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prove, without loss of generality, that the family of meromorphic func-
tions {(fn)1} contains a subsequence which converges spherically locally
uniformly on P1(Ω). By definition, we can find a sequence {fn} in F such
that {P1(fn)} = {(fn)1}. Moreover, for any z0 ∈ P1(Ω), we can find a
w0 ∈ Ω such that P1(w0) = z0. Now, consider a closed T-disc D(w0; r, r)
in Ω. By hypotheses, the sequence {fn} contains a subsequence {fnk

} which
converges bispherically uniformly on D(w0; r, r). Hence, P1(fnk

) = (fnk
)1

converges spherically uniformly on B1(z0, r) ⊂ P1(Ω).
Conversely, suppose that F ei = Pi(F ) is normal on Pi(Ω) = Ωi for

i = 1, 2. We want to show that F is normal in Ω. Let {fn} be any sequence
in F and K be any compact subset of Ω. Then {P1(fn)} = {(fn)1} is a
sequence in F e1 = P1(F ). Since F e1 = P1(F ) is normal in P1(Ω), {(fn)1}
has a subsequence {(fnk

)1} which converges spherically uniformly on P1(K)
to a C(i1)-function. Now, consider {fnk

} in F . Then {P2(fnk
)} = {(fnk

)2} is
a sequence in F e2 = P2(F ). Since F e2 = P2(F ) is normal in P1(Ω), {(fnk

)2}
has a subsequence {(fnkl

)2} which converges spherically uniformly on P2(K)
to a C(i1)-function. This implies that {(fnkl

)1e1+(fnkl
)2e2} is a subsequence

of {fn} which converges bispherically uniformly on P1(K) ×e P2(K) ⊇ K
to a T-function, showing that F is normal in Ω.

Since the limit function of a locally convergent sequence of meromor-
phic functions is either meromorphic or identically equal to ∞, we have
automatically the following result as a direct consequence of Theorems 2.3
and 4.3.

Corollary 4.4. Let {fn} be a sequence of bicomplex meromorphic func-
tions on Ω which converges bispherically uniformly on compact subsets to f .
Then f is either a bicomplex meromorphic function on Ω or in the set I−∞
or identically ∞.

Moreover, from the fact that a family of analytic functions is normal with
respect to the usual metric if and only if the family is normal with respect
to the chordal metric (see [Sc, Cor. 3.1.7]) and from the characterization of
the notion of normality for a family of bicomplex holomorphic functions (see
[CRS, Thm. 8]), we obtain the following result as a consequence of Theorems
2.2 and 4.3.

Corollary 4.5. A family F of T-holomorphic functions is normal in
a domain Ω with respect to the Euclidean metric if and only if F is normal
in Ω with respect to the bicomplex chordal metric.

4.2. Bicomplex Montel theorem. In this subsection, we will give a
proof of a bicomplex version of the Montel theorem for a family of bicomplex
meromorphic functions. We start with the following results.
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Lemma 4.6. If {fn} is a sequence of bispherically continuous functions
which converges bispherically uniformly to a function f on a compact subset
E ⊂ T, then f is uniformly bispherically continuous on E and the functions
{fn} are bispherically equicontinuous on E.

Proof. The proof is the same, with necessary changes, as the one complex
variable analogue (see [Sc, Prop. 1.6.2]).

Lemma 4.7. The bicomplex Riemann sphere is a compact metric space.

Proof. We will prove that T is sequentially compact. Let {wn} be a
sequence in T. Then {Pi(wn)} is a sequence in C(i1) for i = 1, 2. Since
the Riemann sphere is the one-point compactification of the complex plane,
{P1(wn)} has a spherically convergent subsequence {P1(wnk

)} in C(i1) and
{P2(wnk

)} also has a spherically convergent subsequence {P2(wnkl
)} in C(i1)

such that {Pi(wnkl
)} converges spherically in C(i1) for i = 1, 2. Hence,

{wnkl
} converges bispherically in T.

As for one complex variable, in discussing the normality of a family of
bicomplex meromorphic functions, the concept of local boundedness is not
entirely relevant. However, bispherical equicontinuity can be substituted in
the following counterpart of Montel’s theorem.

Theorem 4.8. A family F of bicomplex meromorphic functions in a
bicomplex domain Ω ⊂ T is normal if and only if F is bispherically equicon-
tinuous in Ω.

Proof. Suppose F is normal but not bispherically equicontinuous in Ω.
Then there is a point w0 ∈ Ω, some ε > 0, a sequence {wn} converging to
w0 and a sequence {fn} ⊂ F such that

(4.1) χe (fn(w0), fn(wn)) > ε, n = 1, 2, . . . .

Since F is normal, {fn} has a subsequence {fnk
} converging bisherically

uniformly on compact subsets of Ω and in particular on a compact subset
containing {wn}. By Lemma 4.6, this implies that {fnk

} is bispherically
equicontinuous at w0. This contradicts (4.1). Therefore F is bispherically
equicontinuous.

Conversely, let F be a bispherically equicontinuous family of bicomplex
meromorphic functions defined on Ω. To show that F is normal in Ω we need
to extract a locally bispherically uniformly convergent subsequence from ev-
ery sequence in F . Let {fn} be any sequence in F and let E be a countable
dense subset of Ω, for example we can take E∩Ω where E = {wn = w1,ne1+
w2,ne2 : wj,n = xj,n+i1yj,n where xj,n, yj,n ∈ Q, j = 1, 2}. Take any sequence
{fn} ⊂ F and consider the sequence of bicomplex numbers {fn(w1)}. Since
the bicomplex Riemann sphere is a compact metric space (see Lemma 4.7),
{fn} has a subsequence {fn,1} converging bispherically at w1. Next, we can
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find a subsequence {fn,2} of {fn,1} such that {fn,2(w2)} converges bispheri-
cally at w2. Since {fn,2} is a subsequence of {fn,1}, {fn,2(w1)} also converges
bispherically at w1. Therefore, {fn,2} converges bispherically at w1 and w2.
Continuing this process, for each k ≥ 1 we obtain a subsequence {fn,k}
that converges bispherically at w1, . . . , wk and {fn,k} ⊂ {fn,k−1}. Now by
Cantor’s diagonal process we define a sequence {gn} as

gn(w) = fn,n(w), n ∈ N.

Hence, {gn(wk)} is a subsequence of the bispherically convergent sequence
{fn,k(wk)}n≥k and hence converges for each wk ∈ E. Now, by hypothesis,
{gn} is bispherically equicontinuous on every compact subset of Ω. So for
every ε > 0 and every compact subset K of Ω there is a δ > 0 such that

(4.2) χe(gn(w), gn(w′)) <
ε

3
, ∀n ∈ N and ∀w,w′ ∈ K with ‖w − w′‖ < δ.

Since K is compact, we can cover it by a finite collection of balls, say

K ⊂
p⋃

j=1

{B2(ςj , δ/2) : ςj ∈ E}.

Since ςj ∈ E, {gn(ςj)} converges for each j with 1 ≤ j ≤ p, which further im-
plies that {gn(ςj)} is a Cauchy sequence. That is, there is a positive integer
n0 such that

(4.3) χe(gn(ςj), gm(ςj)) < ε/3, ∀m,n ≥ n0 (1 ≤ j ≤ p).
Finally, for any w ∈ K, w ∈ B2(ςj0 , δ/2) for some 1 ≤ j0 ≤ p. Thus, from
(4.2) and (4.3), we have

χe(gn(w), gm(w))
≤ χe(gn(w), gn(ςj0)) + χe(gn(ςj0), gm(ςj0)) + χe(gn(ςj0), gm(w))
< ε/3 + ε/3 + ε/3, ∀m,n ≥ n0.

Therefore, by construction, {gn} is locally bispherically uniformly Cauchy
and hence converges locally bispherically uniformly on Ω.

4.3. Fundamental normality test. Finally, we prove the bicomplex
version of the fundamental normality test for meromorphic functions. First,
we prove it for bicomplex holomorphic functions.

Theorem 4.9. Let F be a family of bicomplex holomorphic functions in
a domain Ω ⊂ T. Suppose there are α, β ∈ T such that

(a) α− β is invertible, and
(b) S ∩ R(f) = ∅ for all f ∈ F , where S = {w ∈ T : w − α ∈ NC} ∪
{w ∈ T : w − β ∈ NC} and R(f) denotes the range of f.

Then F is a normal family in Ω.
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Proof. Conditions (a) and (b) imply that for each f ∈ F the projection
Pi(f) does not assume Pi(α) and Pi(β), where Pi(α) 6= Pi(β), for i = 1, 2.
Then by the fundamental normality test for holomorphic functions (see [Sc]),
it follows that Pi(F ) is normal in Pi(Ω) for i = 1, 2. Now by Theorem 11 of
[CRS] we conclude that F is normal in Ω.

Following [Ro2], one can easily obtain a bicomplex version of Picard’s
Little Theorem for meromorphic functions.

Theorem 4.10. Let f be a bicomplex meromorphic function in T. Sup-
pose there exist α, β, γ ∈ T such that

(a) α− β, β − γ, γ − α are invertible, and
(b) S ∩ R(f) = ∅, ∀f ∈ F , where S = {w ∈ T : w − α ∈ NC} ∪
{w ∈ T : w − β ∈ NC} ∪ {w ∈ T : w − γ ∈ NC} and R(f) denotes
the range of f.

Then f is a constant function.

Theorem 4.11. Let F be a family of bicomplex meromorphic functions
defined in a domain Ω ⊂ T. Suppose there exist α, β, γ ∈ T such that

(a) α− β, β − γ, γ − α are invertible, and
(b) S ∩ R(f) = ∅, ∀f ∈ F , where S = {w ∈ T : w − α ∈ NC} ∪
{w ∈ T : w − β ∈ NC} ∪ {w ∈ T : w − γ ∈ NC} and R(f) denotes
the range of f.

Then F is normal in Ω.

Proof. Following the method of proof of Theorem 4.9 and applying The-
orem 4.3 and the fundamental normality test for meromorphic functions
([Sc, p. 74]) we can easily conclude that F is normal in Ω.
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