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Reduction theorem for general connections

by JOSEF JANYSKA (Brno)

Abstract. We prove the (first) reduction theorem for general and classical connec-
tions, i.e. we prove that any natural operator of a general connection I' on a fibered
manifold and a classical connection A on the base manifold can be expressed as a zero
order operator of the curvature tensors of I' and A and their appropriate derivatives.

1. Introduction. A classical connection on a manifold M is assumed
to be a linear symmetric connection A on T'M. Among the most important
results concerning classical connections on manifolds are the replacement
and the (first) reduction theorems which are closely related to the so called
normal coordinates associated with a classical connection A. Let us recall
that A-normal coordinates centered at xy € M (see [V1 VT]) are local
coordinates (z*), A =1,...,dim M, such that

1
(1.1) A (2) = Z N2 (zo)af* .. .xPi, Atz =0,

G PLepip
i=1
where N; = (N ,’0\1.,, pi /w) are the normal tensors satisfying the following iden-
tities:
A _ a7A
(1'2) NPU(1)~~~Pg(i)MV - Npln-Pil’«V
for any permutation o of ¢ indices,
A _ arA
(1'3) NP1~~piMV - NP1~~inﬂ
and
A _
(1.4) N(lepil“/) =0,

where (...) denotes symmetrization. The independence of a natural differ-
ential operator from given local coordinates (the main property of natural
operators) implies that any differential operator of order r of A is a zero
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order natural operator of the normal tensors N;, i < r, i.e., if D is a natural
operator with values in a natural bundle, then D(j"A) = D(0, Ny, ..., N,).
This result is known as the replacement theorem (see [Thl [TM]). The first
reduction theorem now follows from the fact that each IV; can be expressed
as a linear combination, with real coefficients, of covariant derivatives of
order ¢ — 1 of the curvature tensor R[A] of A and a tensor field constructed
by tensor products and contractions from covariant derivatives of R[A] of
orders < i —2 [S| p. 162], [V2| p. 91].

So, the normal tensors and the covariant derivatives of the curvature
tensor of A form two bases of natural operators of A. Of course, we can find
many other bases of natural operators of A which differ in the right hand
side of the Bianchi—Ricci identities. For instance there is a base satisfying
the so called ideal Bianchi-Ricci identities with vanishing right hand side
(see [JM]).

The replacement theorem was generalized by Horndeski [H] to princi-
pal connections I' of a principal G-bundle p : P — M and classical con-
nections A on M. I'-normal coordinates (over the A-normal coordinates of
the base) are given by mnormal tensorial gauge concomitants By. So any
natural operator of order r in I' and of order r — 2 in A (the minimal
order with respect to A we have to use) is of the type D(j"I,j " 2A) =
f)(O7 Bi,...,B,,0,Ny,...N,_2). Normal tensorial gauge concomitants are
given by covariant derivatives of R[I"] with respect to I" and A (such covari-
ant derivatives are also called double covariant derivatives in the literature)
and covariant derivatives of the curvature tensor of A. This leads to the cor-
responding reduction theorem (higher order Utiyama theorem) for principal
connections. The reduction theorem for principal connections was proved
in [J3] and, for the case of general linear connections on a vector bundle
considered as principal connections on the corresponding principal frame
bundle, in [J2]. Another approach to the reduction theorem for principal
connections can be found in [DM]. In all versions of reduction theorems a
key role is played by covariant derivatives of the curvature tensors.

This paper was inspired by the paper by Mikulski [M] who introduced the
so called “special” fibered coordinates associated with a general connection
I" on a fibered manifold p : Y — M and a classical connection A on M. As
a consequence, any natural operator of I' and A with values in a natural
bundle of a certain order can be expressed via “normal” fields which are
sections of a natural bundle over Y whose fibers are (Gl x GT)-manifolds,
m=dimM, m+n=dimY.

The aim of this paper is to prove the (first) reduction theorem for gen-
eral connections, i.e. to show that any natural operator of I" and A can be
expressed by the curvature tensor of I' and its “general covariant” and ver-
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tical derivatives and by the curvature tensor of A and its standard covariant
derivatives. As a consequence, Mikulski’s normal fields can be expressed as
zero order operators of the curvature tensors of I' and A and their appro-
priate derivatives.

All manifolds and mappings considered are assumed to be smooth.

2. Preliminaries. In this paper we use the terminology and properties
of natural bundles and natural operators in the sense of [KMS| [K.J, IN| [T].

Let us denote by M f the category of all smooth manifolds and smooth
morphisms, by FM the subcategory of all fibered manifolds and fibered
manifold morphisms, and by FM,, , the subcategory of fibered manifolds
with m-dimensional bases and n-dimensional fibers and fibered diffeomor-
phisms over diffeomorphisms of bases. In this paper we mainly consider nat-
ural bundle functors on the subcategory FM,, ,. Standard fibers of such
natural bundle functors are left Gy, ,-manifolds, where the group Gy, ,, is a
subgroup of the rth order dlfferentlal group G7, ., = inv JJ(R™*™ R,
The elements of G}, ,, are r-jets j((),o)(p, where ¢ : R™ x R" — R™ x R"”
is a diffeomorphism such that ¢(0,0) = (0,0) and ¢ is projectable onto an
origin preserving diffeomorphism ¢ : R” — R™.

m,n

We have the group epimorphism 7 : G, ,, — G7, ., v > s, given by

A (j(070)<p) = J{0,0)%- Moreover, we have the group epimorphism py : Gy, —
Gy, given by pi(j '(TO 0)4,0) = Joy and the group epimorphism p : Gy, ,, —
G, given by ph(j7, Jo, 0)g0) = jo(proop o t), where ¢ : R® — R™ x R” is the
canonical inclusion and pr, : R”™ x R" — R" is the projection on the second
component. On the other hand Gj, and G], can be viewed as subgroups
in Gy, ,, by extending origin preserving diffeomorphisms of R™ and R" to
diffeomorphisms of R™ x R” via the identity on R™ and R™, respectively.
If we denote by 7i(m) : G}, — G5, and 7l(n) : G, — G the canonical
group epimorphisms and by BI(m) and B.(n) the corresponding kernels,
we obtain the group epimorphisms ¢f(m) : G}, — Gj,,, x B{(m) and
q5(n) : Gl — Ghop X Bi(n).

In particular G,lnyn is given by matrices of the type

A
0
A:<al; I)’ |a/)1\,|7é07 ‘ag‘#oa Avuzlv"’7m7 I7J:17""n
a a
o J

In what follows, a tilde indicates inverse, so we have the following identities
for G}n’n

A=p __ SA ~p I ~P _ I
ayal, =9, aa +apa =0, apa; =4y,

which gives, by formal differentiation, identities on Gy, ,,
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We say that a natural bundle functor on the category FM,,, is of
order (1,k), k > 1, if its standard fiber is a left (G} x G¥)-manifold.
A typical example of a (1,1)-order bundle functor is V ® @Tr @ Q' T}
where V' is the vertical tangent bundle functor and Tz and T are the tan-
gent and cotangent functors applied to base manifolds. A section @ : Y —
VY @y (Q°TM @ Q"T*M) is a (1,1)-order field and its vertical deriva-
tive V@ can be considered as a section V@ : Y — V(VY @y (RQ°TM ®
®TT*M)) ®VY®Y(®S TM®®T T*M) V*Y), i.e. a ﬁeld Of Order (1, 2), and, by
iteration, V*® is a field of order (1,k).

Let us recall that classification of natural operators between natural
bundle functors is equivalent to classification of equivariant maps between
standard fibers. An important tool in classifications of equivariant maps is
the orbit reduction theorem [KMS, [KJ]. Let p : G — H be a Lie group
epimorphism with kernel K, M be a left G-space, @@ be a left H-space and
m: M — @ be a p-equivariant surjective submersion, i.e. 7(gx) = p(g)7(x)
for all x € M, g € G. Having p, we can consider every left H-space N as a
left G-space by gy = p(9)y, g € G, y € N.

THEOREM 2.1 ([KMS, p. 233]). If each 7= 1(q), ¢ € Q, is a K-orbit
in M, then there is a bijection between the G-maps f : M — N and the
H-maps ¢ : Q — N given by f =pom. n

3. General connections on fibered manifolds. Let p: Y — M be
in the category F M, . A general connection on'Y is defined to be a section
I':Y — JYY, or equivalently a tangent-valued 1-form I : Y — TY @ T*M,
over the identity of T'M. The corresponding horizontal lift will be denoted
by bl .Y xy TM — TY.

We assume (27, y7) is a fibered coordinate chart on Y, (2, y?,y1) is the
induced fibered coordinate chart on J'Y, and (dy,dr) and (d*,d’) are the
associated local bases of vector fields and 1-forms, respectively. Then I is
given by

(‘TA, yIa yi) ol'= ("EA’ yIa FI)\(:L‘a y))
or, when considered as a tangent valued 1-form, by
' = d)\® (EA —i—FI)\a[).

Moreover, if we identify I" with its coefficients I''y(x,y), then I" can be
considered as a section of the natural bundle GenY — Y, where Gen is a
first order natural bundle functor from FM,, , to F M. The standard fiber
of Gen is Sgen = R™ ® R™* with coordinates (I''y) and an action of the
subgroup G}mn C G}, +n- The coordinate expression of the action of G}mn
on SGen 1S

(3.1) 'y =(apI'", +al)ds.
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Let us note that the standard fiber of J" Gen is the space of (m + n,r)-
velocities 77 ., SGen = J§(R™T" SGen) with the action of GTJrl given by

m+n
comp081t10n of jets. For instance for r = 1, we have the induced action of

G2 , On 7! manSGen given by (3.1]) and

(3.2) FIA,M:(aPQaSJraPpaP)FP s +ap (I qa? + 1", . a%)al
—I-afafppdf\u—l—( alpal, +a,, al)al + a, ak,

(33) Ty =(apg Iy +ap I’ yq+ayg)daf.

REMARK 3.1. A classical connection is a linear section A : TM — J'T'M
with the corresponding horizontal lift d* = A2 (z)HdY | where A%, =
AN x and we denote by “” the induced coordinates on the tangent bundle.
A can be considered to be a section of the second order natural bundle
ClaM — M, where the standard fiber of Cla is Scp, = R™ @ R™ @ R™*
with the action of G2, given by

(3.4) AN = (ay AoPr + ay,)al ).

If we consider I' as a tangent-valued 1-form I' : Y — TY ® T*M over
the identity of T M, the curvature of I" can be defined as the section

R[N :Y - VY @ N*T*M

given by R[I'] = —[I',I'], where [,] is the Frolicher-Nijenhuis bracket. We
have the coordinate expression

R = =20\, + TT\0pI )0 @ d* A d".

Now, let us consider the standard fiber Uy = R" ® /\QR’”* of the natural
bundle functor V @ A*T}% with the induced coordinates (u! ap) and the ten-
sorial action of the subgroup G}, x G} C G}n,n. Then it is easy to see that

the curvature operator is a natural first order operator Gen - V® /\2Tg
with the corresponding G?nm—equivariant mapping R¢g : T, +nSgen — Uy
given by

(3.5) ulyyoRGg =T\, —~T"y+T", "\ p—T"\I, p.

4. General covariant derivatives. A key role in reduction theorems
for (general) linear and principal connections is played by covariant deriva-
tives of curvature tensor fields. But in the case of a general connection we
cannot define the standard covariant derivatives of R[I']. We have to con-
sider a more general concept of general covariant derivatives. In this section
we recall the definition and basic properties of general covariant derivatives
(see [J4]) of vertical-valued tensor fields with respect to general and classical
connections, which allows us to define also general covariant derivatives of
the curvature tensor R[I].
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The general covariant derivative is a first order natural operator trans-
forming sections @ : Y — VY ®y (Q°TM Q" "T*M) (in order one), general
connections I" (in order one) and classical connections A (in order zero) to
sections of VY @y (Q*TM ® ® T T*M). The coordinate expression of a
general covariant derivative is

4.1) Vg = (a O 4 TP 0pd'y — FY0pT,
_qum~-ﬂ-~vm 2 +Z¢1v Ao )w e ded,

where we have used multiindices v = (v1...v5), A = (A1...\,) and we
have set 9y = 0, ® -+ ® J,, and d* = dM ® @ dM. If we consider the
corresponding mappings of standard fibers T\, Sgen X Scia X T4 (R" ®
R R @ ®R™) — R" ® @R @ ®"T'R™, and we denote by ;” the
formal general covariant derivative and by “” the formal partial derivative,
then

(4.2) gzsfim:qﬁ“ +1°, ¢I§P—¢P¥F1

By iteration we get the kth order general covariant derivative (V/4)*
Y = VY @y (QTM @ ®"™T*M) which is a natural operator of order k
with respect to @ and I" and of order & — 1 with respect to A.

In what follows we shall write simply V instead of V>4 and we shall set
vk = (id =V, V,...,Vk).

REMARK 4.1. Let p : E — M be a vector bundle with linear fibered
coordinates, K be a (general) linear connection on E, and & be a linear
vertical-valued tensor field. Then the general covariant derivative VXA is
a linear vertical-valued tensor field which is given by the standard covariant
derivative of @ with respect to the pair (K, A) (see [I1]). So, the general co-
variant derivative generalizes the standard covariant derivatives with respect
to linear connections.

REMARK 4.2. Let us recall that for a section s : M — Y we can define
the covariant derivative V1's : M — VY ® T*M with respect to a general
connection I" by

Vlis=jls—TIos.
In coordinates, if (z*,y’) o s = (z*, s!(z)), then
(‘,L)\a yIa UI)\) 0 VFS = (‘,1’)\7 SI(:E)a a)xsl(x) - FI)\(QE’ S(l’))),



Reduction theorem for general connections 237

ie.

vis = (8)\51 - FI,\)BI ® d>.
In [CK] the above covariant derivative is called the absolute differential of
s and, by using an auxiliary classical connection on M, the second order
absolute differential of s is defined. The second order absolute differential of
s coincides with the general covariant derivative of V!'s and we can consider
general covariant derivatives of s of any order.

The vertical prolongation V& : VY — V(VY Qy (Q°*TM @ Q" "T*M))
can be considered as the section
VO:Y - V(VY @y (Q'TM @ QT M)) Ovyey @ TMe M) V'Y
given in coordinates by

Vo = 0,050 @ d’,

where we have put /5 = d/0uly. The functor (V @ @°Tp ® Q'T}) @
V(Ve®°'Ts @@ T};) ®V*) on the category FM,y, , is of order (1,2) and
the action of the subgroup Gl x G2 C G?mn on its standard fiber is given
by

(4.3) 'y = apayul2 i,
(4.4) ') = ay (apgu”g +apu'") & af
where we have set az = a¥! ...a} and a a)\ = a)\ .ak ).- By iteration we can
deduce that the functor
@V VIVoR T T QV)...)oV*
%/—/ ‘—/—/
i times i—1times

is of order (1, %) and on its standard fiber we have the action of the group
Gl x GF given by the formal vertical derivatives of (&.4). The sequence of
operators V)@ = (&, V, ..., VFd) has values in sections of

@V VIVY @ QT @ Q'TH) @ VY)...) @ VY

i tlmes (3—1) times

and defines a kth order operator which depends on vertical derivatives of @
only.

Let us consider the general covariant derivatives of the curvature tensor
RI[I']. Then we obtain the general Bianchi identity [J4].

LEMMA 4.3. We have
(4.5) VR[I'|(&,n,¢) + VR[I'(n,¢, &) + VRIT|((,&,m) =0,
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i.e. in coordinates
(4.6) R[/\,u;u + RI/“,;)\ + RI,,)\;M = 0.

For the second order general covariant derivative we have the following
general Ricci identity [J4].

LEMMA 4.4. The antisymmetrization of the second order general covari-
ant derivative is a section At V@ : Y — VY @y (Q°TM @ Q T*M ®
N*T*M) given by
2Alt v2¢(0[1, o 761”7777() = VQQS(OQ, L 7§T7 m, C) - v2@(a17 e 757”7 gﬂ?)

=V(@(ay, ..., &) (R[]0, Q) = V(R[I](n, O))(P(a, ..., &)

=Y Blan,. . RIAN (0,0, s,y &)
k=1

+Z¢(a17-"70587517"'>R[A](‘Sj777>C)7"'>§T)
7=1

for any 1-forms ay, k = 1,...,s, and vector fields &, n, ¢, j = 1,...,r,
on M. In coordinates

(4.7) 2515%;[#;51 - @Ii;u;ﬁ a @Iisﬁ;u - dj]iP RPW o RIWvP @Pi

S '

_ Ivi...p..Vs vk Iy P
E:‘P Iy Rp™ e + E :‘P Neepone 100 e
k=1 Jj=1

We can write
Alt V2¢ = pol(®, V®, R[T'), VR[], R[A]),

where pol is a polynomial (zero order) operator on the indicated fields.
But Alt V2® is the section of VY ®y (Q°*TM @ Q" T>T*M), i.e. a section
of a (1,1)-order bundle and we can apply general covariant and vertical
derivatives of higher orders. Then we have [J4]

THEOREM 4.5. We have
(4.8) V' 2(Alt V26) = pol (VO 2, V(V—2p),
VORI V(VOIRIT), VY RLA),

(4.9) V' 2 (ALt V2®) = pol(V Ve, V=D R[], R[A]).
If we apply Theorem to the curvature tensor of I" we get
COROLLARY 4.6.
(4.10) V" 2(Alt V2R[I]) = pol(V 2RI, V(VT=2RII)), V2 R[A)]),
(4.11) V' 2(Alt V2R[I]) = pol(V~Y R[], R[A]).
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REMARK 4.7. Let us remark that the general Ricci identity differs from
the Ricci identities for (general) linear or principal connections in the order
of fields on the right hand side [J2] [J3]. Indeed, in the cases of general linear
and principal connections we have the field @ and the curvature tensors
R[I'] and R[A] on the right hand side, i.e. the right hand side is of order
zero with respect to @ and of order one with respect to connections, so
antisymmetrization decreases the degree with respect to @ by 2. In the
case of general connections on fibered manifolds the right hand side of the
general Ricci identity is given by the vertical derivatives of @ and R[I], i.e.
it is of order one with respect to @ and of order two with respect to I', so
antisymmetrization decreases the order with respect to @ by one, and if we
apply the general Ricci identity for the covariant derivatives of the curvature
tensor, antisymmetrization decreases the order by one.

5. Replacement and reduction theorems. By Mikulski [M] there
are fibered coordinates on Y, over A-normal coordinates on M, such that in
a neighborhood of yg = (0,0) the coordinate expression of I" is

11 p p
1 E 1 i i 1 A
(51) r A= il ji!Blil---/iipl---PjA .’1}'“1 .. .iU'u y L LY 7, I AL = 0.

Here B, = {B; ;) = (B/ILl---MiPI---PjA)7 i+ j = r} are the so called normal
fields which are sections of a natural bundle over Y on whose fibers the
subgroup GL, x G C Ghn.n acts, i.e. normal fields are sections of a natural
bundle of order (1,7). Moreover, the following identities are satisfied:

T —
(5.2) Bl .piprpn) = 05
I _pl
(5-3) BiircusProPix = Bugayctiaoy Poyy-Poy 3

where (...) denotes symmetrization with respect to the Greek indices only,
while o and p are permutations of ¢ and j indices, respectively.

In what follows we shall consider natural operators of order 7 in general
connections I" and of order s, r — 2 < s, with respect to A. The reason is
that general covariant derivatives of R[I"] are natural operators such that
the order with respect to A is the order with respect to I" minus 2.

Now we can prove the replacement theorem for general connections.

THEOREM 5.1. Any natural operator of order r > 1 with respect to I’
and of order s, r — 2 < s, with respect to A with values in a natural bundle
factorizes through normal fields of I' and A up to orders r and s, respectively,
1.e.

(5.4) D(5'T,j*A) = D(0, By,..., By, 0, Ny, ..., Ny).
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Proof. Natural operators are independent of the choice of a local fibered
coordinate chart. In I-normal fibered coordinates centered at yy € Y over
A-normal coordinates on the base centered at xo = p(yo), r-jets of I" are
given by normal fields B, and s-jets of A are given by normal tensors N. =

By the above replacement theorem, the I'-normal and A-normal fields
form a basis of natural operators of I" and A. In the rest of the paper we shall
prove that there is another basis of natural operators of I" and A formed by
the general covariant and vertical derivatives of the curvature tensor of I'
and by the standard covariant derivatives of the curvature tensor of A. This
result is the (first) reduction theorem for general connections.

REMARK 5.2. For r = 2, s = 0 we can prove the reduction theorem very
easily. Let us put

I I I I I I
Bux =R Buypox = Baguie):  Bupx = R p-
Then it is easy to see that the Bianchi identity (4.6) implies the identity
(5.2)). On the other hand if we have normal fields (B, B2) then
2

I _ nl 1 _ 1 I I _ nl
R\, = B/M’ R s = S(Bﬂluz)\ o B)\/J2,Ufl)’ Rozup = BﬂPA

is the inverse mapping and the identity (5.2|) implies the Bianchi identity.
Then

D(0, By, By) = D(R[I'], VR[I',VR[I).

So, the normal fields (B, B2) and the fields (R[I'], VR[I'], VR[I']) form two
different bases of second order natural operators of I'.

REMARK 5.3. If r = 1 then B{M = RIA“ and we see that Utiyama’s
theorem [U] is also true for general connections.

Now, we can formulate the reduction theorem for general connections.

THEOREM 5.4. Any natural operator of order r with respect to I' and of
order s, r — 2 < s, with respect to A with values in a (1,7 4+ 1)-order natural
bundle factorizes through general covariant and vertical derivatives of R[I|
up to order r—1 and through covariant derivatives of R[A] up to order s—1,
i.e.

(5.5) D(j’I,5°A) = D(VY(VIR[I]),VEYRIA]), j+i=0,1,...,r—1.

REMARK 5.5. The difference between the reduction theorem and the re-
placement theorem is in the target natural bundle. In the replacement theo-
rem the order of the target natural bundle is arbitrary but in the reduction
theorem the target bundle has to be a natural bundle of order (1,7+1). But
in the last section we shall prove that I'-normal fields can be expressed via
general covariant and vertical derivatives of R[I'] and covariant derivatives
of R[A]. So natural differential operators with values in a natural bundle of
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any order can be factorized through curvature tensors and their appropriate
covariant derivatives.

6. Curvature bundles. To prove the above reduction Theorem we
have to prove first some technical results.

Let us introduce the following notation.

Let WM = WoM :=T*M @ TM & N*T*M, WM = WM @ @"T*M,
1 > 0. Let us put WM = WoM X+ Xpr WM. Then W; M and WM
are natural bundles of order one on the category M f, and the corresponding
standard fibers will be denoted by W; and W) where Wy := W = R™ @
R™ @ A*R™, Wi = Wy @ Q'R™, i > 0, and W) = Wy x --- x W,. We
denote by (wu/\yﬁplmpi) the canonical coordinates on W;.

We denote by

i+1
Rei: T Scla — Wi

the Gin*?)-equivariant map associated with the standard ¢th covariant deriva-
tive of curvature tensors of classical connections

V'R[A] : C*°(ClaM) — C™®(W;M).

The map R is said to be the formal curvature map of order i of classical
connections.

Let Cc; C W; be the subset given by the identities of the ith co-
variant derivatives of the curvature tensors of classical connections (see
[J3, KMS]). Recall that these identities are the first and second Bianchi
identities of the curvature tensor of classical connections and their covariant
derivatives, and the Ricci identity and its covariant derivatives. Let us put

Cg) = CC,O X - X CCJ« and

(6.1) R = (Reo, .., Rey) : Th Sea — WO,

which has values in Cg ). In [KMS] it was proved that C’g ) is a submani-

fold in W) and the restriction of (i to C’g )is a surjective submersion.

The corresponding first order natural bundle C’g )M is called the rth order
curvature natural bundle for classical connections on M.

In order to describe the curvature bundle for general comnections we
have to recall that the general Ricci identity applied to the second order
general covariant derivatives of R[I'] (or V:R[I']) depends also on the vertical
derivatives of R[I'] (or V'R[I']). So we have to include into the curvature
bundle for general connections also the vertical prolongation of the bundle
VY @y N*T*M @ @'T*M.
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Let
UY =Up Y =VY @y N*T*M,
UiV =V(...(V(VY @y (NT*M @ QT*M)) @ V*'Y)...) @ V'Y,
————

j times j times (symmetric)

1>0,75 >0,

Uy = X U, pY, UDY = X UY.
itj=k k=0
Then UMY is a (1, 741)-order natural graded vector bundle on the category
F M on whose standard fiber the subgroup GJ, x GI! C G:,‘L"}L acts.
The corresponding standard fibers will be denoted by U(; j), Uy and U,
respectively, where Uy = U = R" ® /\2Rm*, Uij) = R"® /\QRm* ®
RR™ @ SIR™, i,j > 0, Uy = X, Uiy and UD = X _ U We
denote by (uI,\Wl_._le_._Kj) the canonical coordinates on U(; ;). The action of
the subgroup G, x G € Gift on U can be deduced from iterated formal

vertical derivatives of the tensor action of G} x GL on R"® A*R"™ @ Q@ 'R™*.
For instance, for r = 1, we have the coordinates on the standard fiber ¢/(*)
given by (uIAu,uIAW,uIMJ) with the action of the subgroup G}, x G2 C
2 .
G;,.n given by
W'y = apul e dfal, Wi =apu® e, dfalay,
_T I_P I P \=p-c=
U aug = (ap Upyg T Apo U po) a’))\ a, a?.
We denote by
i o

(6.2) R (i) * Tt SGen % T~ Scta — Ui

the Girtﬁz—equivariant map associated with the ith general covariant and
the jth vertical derivative of curvature tensors of general connections

VI(V'RII]) : C®(GenY xy ClaM) — C™(U; ;)Y ).
The map Rq,(; ;) is said to be the formal curvature map of order (i,7) of
general connections. We set
RG,k = >< RG7(i7j) : TTIZ_:IHSGQH X ij]_lSCla — U
i+j=k

Let Cg ;) C U ;) be the subset given by the identities of the (i, j)th
general covariant and vertical derivatives of the curvature tensors of gen-
eral connections which are obtained by taking the general covariant and
vertical derivatives of the general Bianchi and general Ricci identities (see

Lemmas and or [J4]). Let us put Cop = X,y Ca i) and Cg) =
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X 7];:0 CG,k and

(6.3) RY = W Rek : T Scen x Th S — U,
k=0
)

which has values in C’g .
Now we shall prove

LEMMA 6.1. If s > r—2, r > 0, then Cg) X C’g) is a submanifold of
U x W Then €5 x €8 = (RE RENVTIAL Sien x T8 Scya) and the

m+n
restricted map

('R,(T),'R(S)) . TT+1 SGcn > TS-HSCIa N (r) % C(S)
G C m G C

m-+n

s a surjective submersion.

Proof. First, let us recall that C’és ) is a submanifold of W) and Rg) :
T35S — és) is a surjective submersion [KMS| p. 236].

Next, we prove by induction that C’g )

For r =0, C’g)) =UO =Y. For r = 1 we have Cg1 = Ca,1,0) X Ca 0,1
a linear subspace of U1 = U1 o) X Uo,1) given by the solution of the formal
general Bianchi identity . Hence C’g ) is a vector subbundle of Cg) ) x U.

Assume C’g ~U 1401 is a submanifold and consider the product bundle

is a submanifold of U().

C'g -l xU,. The equations defining Cg , consist of the formal general covari-
ant and vertical derivatives of and of formal expressions of alternations
of the second order general covariant derivatives of curvature tensors and
their general covariant and vertical derivatives. By Lemmas and
Corollary we have the following two systems of equations:

(64) u[()\uul)ug...l/iKl...Kj = Oa 12> 17
1 -9 .

(65) ul}\ﬂVl...[V571Vs]...l/iKl.A.Kj + POl(Cg ) X Cg )) = Oa 1> 2,
i+ j = r, where pol(Cg_l) X Cg_z)) are some polynomials in elements of
5™ % €%, The map defined by the left-hand sides of (6.4) and (6.5)
represents an affine bundle morphism Cg Uy C’((; ) XUy — Cg Dy C’((JS xRN
of constant rank, N = the number of equations (6.4) and (6.5]). Its kernel
Cg) X C’g) is a subbundle of Cg_l) X Cés) X Uy

To prove (R(GT),RS)) is a surjective submersion it is sufficient to prove
that the map Rg)(—,j5+1)\) Tt SGen — Cg) is a surjective submersion

for any jg“)\ € T3 Scpa. We shall prove this by induction. For r = 0 we

have R(GO)(—,jSH)\) = R¢ and we shall prove R (T, 1, SGen) = Cg)) =U.
The coordinate expression of R is (3.5]). This is an affine bundle morphism
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of the affine bundle wé ot +nSGen — Sgen into U of constant rank. We
know that the values of Rg lie in U, so that it suffices to prove that the
image is the whole U at one point 0 € Sgen. Consider the restriction R of
R to the fiber (7§)71(0), 0 € Sgen. Then

WyioRa=T"\, — I
R¢ is a surjection if and only if
dimU = dim ()71 (0) — dim Ker R p.
But dim¥ = $nm(m — 1), dim (7§)71(0) = nm? + n?m and dimKer R =
snm(m + 1) + n*m. This implies that R¢ is surjective and hence R is a

surjective submersion.
Assume by induction

Rg_l)(— s+1)\) SGen N C(’!‘ 1)

m+n

is a surjective submersion. So we have the commutative diagram

(") (_ sst1

Re (=i TN
r+1 G 0 ()
Tm+nSGen - CG

71’:7L1 l J{pr:—l

(r—1) s+1

R (=357 N -1
T G 0 (r—=1)
Tm+nSGeH > CG

where the bottom arrow is by assumption a surjective submersion. The map-

ping Rg)( , j0+1)\) is affine (with respect to affine structures of both projec-
tions) and of constant rank on all fibers. Hence if the fibers of the projection
artl: TgfnSGen T+ nScen are mapped surjectively onto fibers of the
projection pr)_; : Cg ) S C(r 1), the top arrow is a surjective submersion.
Let us denote by ﬁg)( ,]0+1)\) the restriction of Rg)( L7571 N) to the fiber
over 0 € T, SGen- Then R (=, js'A) = Rap(—, 35 A) + (w71 ~1(0)
— (Ca,r)o, where (Cg,)o is the fiber of the projection pr]_; : Cg) — C’g_l)
over the zero in C’(r b,

We shall prove R (—, 557 \) : (7711 71(0) — (Car)o is surjective. In
coordinates
(' s vitcr 1) 0 Ry (=2 56N = T sk iy = T sk I
The fiber (Cg i 5))o equals

(Co,00) ® SR™ @ SR™) N (Cg,1,0) @ S 'R™ @ S'R™),

which follows from (6.4)) and ( .

Let us note that ( TH) L) = Xirizr1 RT@R™ ® SIR™ ® SIR™.
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By induction assumption the map

(R, 1,00 X Reyo) (=35 A) -
R"®R™ ® SR™) x (R" @ R™ @ R™ @ R™) — (Cg 00 * Co,0n)o

is a surjection which splits into two surjective mappings
Ra,1,0)(— 35T A) R @ R™ @ S*R™ — (Cg,(1,0))o0,
Re,01)(— 35T A) R @ R™ @ R™ @ R™ — (Cg (0.1))o0,
with the coordinate expressions
s =T =T s, sy =T — T

Hence

7@07(170)(—, ]§+1)\) ® idSifl]Rm*@SjR"* .
(Rn QR™ ® SQRm*) ® Si—lRm* ® SJR’IZ* _ (CG,(I,O))O ® Si—lRm* ® SJRTL*
is also a surjection.

Consider an element X € (Cg (; j))o, i +j = 7. Then there exists

Z € R"@R™ ® S*R™) @ S"IR™ @ S/R™
such that
(R, 1,0)(— 35T A) ® idgi-1pmeggipn:) (Z) = X,
i.e. in coordinates
X ik, = Z sk i, — 20 ik k-

Symmetrization gives

ZI _ ZI
)\/.LV1V2V3...UZ‘K1...K]' - )\M(V1V2)V3.‘.V¢K1.‘.Kj
ceR"@R™ ® GitIR™M* ® SIR™ — (TFH_I)_I(O)

r

such that 7?,(;7(i,j)(2,j5+1/\) = X and hence RGKZ'J)(—,]‘S—FI)\) is a surjec-
tion. This implies that the top arrow in the above diagram is a surjective
submersion. m

In the above Lemma we have proved that C’g) X Céf) is a sub-

manifold of U x W) Tt is easy to see that Cg ) x Cg ) is closed with
respect to the action of the group GL x GT2 and, according to the gen-
eral theory of natural bundles, we have the (1,7 4 2)-order natural vector

subbundle Cg Y xy Cg )M of the (1,7 4 2)-order natural vector bundle

UDY xy WM called the (r,s)-order curvature bundle of general and
classical connections.
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7. Orbit reduction theorem for general connections. Let F' be
a natural bundle functor of order (1,r + 1), i.e. Sp is a left (GL, x GI'1)-

manifold. From the fact that G}, x G}, is a subgroup of G,/ we see that

Sp can be considered as a left G,f-manifold. Similarly, as G, is a subgroup
of G}, ,,, we can consider T572801, as a left G}, n-manifold.

THEOREM 7.1. Let s > r —2,r >0, t = max(r + 1,s + 2). For every
G, ,-equivariant map

[T SGen X T Scla — SF
there exists a unique (Gl x G)-equivariant map g : C’g_l) X C’((Js_l) — S
satisfying
f=go(REVRETY).
Proof. Let us consider the spaces
Sc,s ==R™®S*R™ and Sg (11, =R"'®STR™ @ S/R™
with coordinates (SAMMQ..,NS) and (SIM1~~~lLi+1K1--~Kj)7 respectively. Let us con-

sider the action of G}, on Sc s and the action of Gﬁ;frl

that the symmetrization maps

on Sg,(i+1,5) such

00 TScla — Scst2,  0ar  TpinScen — Scr1 = X S (i+1,)
i+j=r
given by
A _ A
(s u1u2~~-us+2) ©0C,s = A(m [2,3 s 42)
(8 N1-~~Nz’+1K1~--Kj) UG,T‘ - (Hl,#2-~~ﬂi+l)Kl--~Kj’ ? .] - T’
are G31?- and G, l-equivariant, respectively.
We have the G%F2-equivariant map
-1
©os = (00,5 To_1, Ros—1) : TScta — Scysv2 X Ty, " Scta X Ws-1.
On the other hand we can define the G2 2-equivariant map
-1
@Z)C,s : SC,erQ X Trsn, Scla X Ws—1 — TriLSCla
over the identity of 75715y, such that
Yo,s 0 0o,s = idrs 5, -

This map is given by the coordinate expression

A o A
(7'1) Aul B2l s 2 — S e fhst2 + ZAUw#au) Ho(2)--Ho(s+2)
ag

— pol(T%,  Sca),

where A, are real coefficients and o is a permutation of s + 2 indices (for
details see [J3| [KMS]).
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Similarly we have the GT“—equwarlant map

: )
PG, = (O'G,raﬂ':fl X ldT;;QSCIaaRG,T—l) : Trz+nSGen X T;;; SCla
-1 -2
- SG,T+1 x T, +nSGen X TT Scla X Ur—1

where we have used the notation Rg,—1 = Ra (i—1,9) and U,_1 =

H—] T
X i+ jer Ugi—1,5), and we define the GTH—equlvarlant map

—2 —2
¢G,7‘ : SG,rJrl X m+nSGen X T Scla X Up—1 — m+nSGen X T SCla

over the identity of 772! Sqen X 1" 2Sc1a by the coordinate expression

m+n

1 T I
(7.2) r ppz . pi1 K1 Ky = 8 prepipa KKy E :AUU Ho(1)-Ho(i+1) K1 K
ag

- p01< X Sa tr—t41) X Tiih,Scen X Thy 2 Scia X X u(l72,r7l+1))7

>4 1>i

i+j = r, where o is a permutation of ¢+1 indices and A, are real coefficients.
g, can be constructed in the following way. First,

I I
I Ky Ky = 8 uKy . K

Second, by taking the (r — 1)-order formal vertical derivative of (3.5]) we get

I I
U ppoKy. . Kr—1 = 2r (p1,p2) K. . Kr_1
I P I
+ I pn1,PKy1.. . Kr_1 r 2 T r 2, PK1..Kr_1 rr p T+ pOI( m—i—nSGen)
I
=2r [w1,p2] K. K1
I P I P -1
+ S PKy K Iy, - SpaPK1.. Kr_1 I, + pOl(T;l+nSGen)
I
=2 [,U,l,;,LQ]Kl...Kr_l =+ pOl(SG,(].,T) m—‘rTLSGen)
where [...] denotes antisymmetrization. We can write
I I I I
r prpo K1 Koo = S pipe Ky Kpo1 (F p1pe K1 K1 — r (m,uz)Kl.-.qu)‘
Then the term in brackets can be written as
I 1,1
r [p1,p0) K1 Krm1 = W pypn Ky ... pOl(SG (1,r) X m+nSGen)
and we get
I I
(7'3) r p1 2Ky Kpop = 8 M1M2K1 K1
I
+ 3 Su pipeKi... p01(SG (1,r) X m+nSGen)

Next, by taking the formal general covariant and the (r —2)-order formal
vertical derivative of (3.5 we get

I _ I I P
U pops Ky Ky = 207 [w1,pelps K. . Kr_2 17 s PK K T

- FIug,ugPKl,..Kr_QF 5 + POI( m+nSGen X SCla)
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and from (7.3)) we get

I I
W popsKy .. Kp_p = 2 [w1,pe)ps Ky Kr—2
+pol(Sq (2,0-1) X 8,(1,r) X TyrinSGen X Scia X U (0,0-1))-
We can write

FI _ I
pipopsKy . Kr_o = S pipopsKy. . Kr_o

I I
+ (F w1, pops K Kr—o ™ r (M1,u2u3)K1..-Kr—2)'
The term in brackets can be written as

2 I 9 I
§F [n1,p2]p3K1... Kr_2 + gF (w1 sl pa K1 Kyea
_ 10
= 5(U pypops Ky Ky
— pol(S¢,(2,r-1) X Sa,(1,7) X ToinScen X Scla X U 0,r-1)))
I
+ % (u pipspa K. Ko
— pol(Sg,2.r-1) X Sa (1) X TiinScen X Scia X Ug (0.r-1)))5
and we get

(7.4) Fluhuzu?,Kl.--Kr_z = SININQNBKIWKT—Q
+ % (“I#1M2#3K1.~Kr72 + ulmus#zfﬁ Ko 2)
— pol(Sa,2.,0-1) X SG,(1r) X TininScen X Scia X Ug (0,r—1))-
Continuing in this way by increasing the order of general covariant

derivatives we get (7.2)).
Moreover, it is easy to see that

wGﬂ" © SOG/" - ldTT?;L+nSGen><T7:172SCIa :

Now we have to distinguish three possibilities.

(A) Let s = r — 1. The groups G};/' and G,1} acting on T}, Scia and
T SGen, Tespectively, are of the same order. Moreover, we consider G741 as
a subgroup in G}

Let us set

A" =T, ! SGen X T;;L_2SCla X Up—1 X Wy .

m+n
Then the map fo(wg’ﬁ Yor—1) : Sar+1XScr41x A" — Sp satisfies the con-
ditions of the orbit reduction (see Theorem for the group epimorphism
o gt (n) + G — G, x Bitl(n) and the surjective submersion
318G r+1 X Scre1 X AT — A", Indeed, if we denote by KTt the kernel
of w1 x ¢"T1(n), then S 41 X Sc i1 is a KT 1-orbit. Indeed, it is easy
to see that we have the coordinates

A I S
(aul---urﬂ’au1---m+1K1---Kj)’ ttg=m,
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on K/t! and the restriction of the action of Gy} on Sg,11 X Scri1 to

K’ *! has the coordinate expression

A _ +al,

SRRy Ha e pir 1 urH’

5! = +d,
Spi.. i1 K1 K T u1 pir1 K1 K w1 pir1 Ky Kyt
Hence this action is simply transitive and there exists a unique (G7,, x

B/ (n))-equivariant map g, : A" — Sp such that the diagram

SG,T+1 X SC’,r—i-l x A"

r—1
1 XT o 7RG,7”71 ’RC,'P72)

(7

—1
A" manSGen X Ty Scla

Sk
commutes. So fo (g, Ycr—1) = groprs and if we compose both sides with
(¢Gr, pcr—1), by considering
pry o(Par, Por—1) = (T_y X 13, Rar—1, Rew—2),
we obtain
f=gro(m_q X 77::%77?'@7’—17720,7’—2)-

In the second step we consider the same construction for the map g, and

obtain the commutative diagram

SG,T X SC,T X AT_I X Up—1 X Wi

r—1 r—2 :
(WT,Q X7T7',3)RG,T727RC,T73a1dMT 1X W, 2)

AT % Ur_1 X Wy_o = - - A"

Sk
So there exists a unique (G, 5 X B (n))-equivariant map g, : A" x
U1 X Wy_9 — Sp such that

1
Gr = gr—10 (T3 X T3 Rar—2, Rer—3, 111 x W, o),

i.e.
~1
f=gr—10(m_o xm 35, Rar-2,Rar-1,Rcr—3,Rcr—2).
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Proceeding in this way we get in the last step a unique (G}, ,, X Bt (n))-
equivariant map g1 : SGen X U x Wr=2) _, §p such that

f=gio(myopr, RGY RED).

Finally, g; satisfies the orbit reduction theorem for the group epimor-
phism G} BTH( ) — GL x Gl given by the epimorphism pi x pi :
Grm — Gl x G}, and the surjective submersion pry3 : Sgen X U= x
W(T 2 Z/l(r D x W=2) Indeed, Sgen is an orbit with respect to the ac-
tion of the kernel of the group epimorphism G}, ,, x B (n) — GL x Gr+l
(this follows from I'My = I''y + a{\, where aﬁ\ are the coordinates on the
kernel of G}, , x B{™'(n) — G1, x G5;t1). So there is a unique (G}, x G5,F1)-
equivariant map g : U""D x W2 — Sp such that g = g o pry 3 and
hence (1) (r—2)

-1 -2

(B) Let s = r — 2. We have the action of the group G”, on T"~2S), and
the action of the group G""+1 on T}, . ,SGen. We consider G, as a subgroup
in G’"m‘% :

Then the map f o (Yg,r idTﬁl’sza) : Sar41 X m+nSGen x T 2S¢t
X Ur_1 — SF satisfies the conditions of the orbit reduction (Theorem [2.1)
for the group epimorphism 7/ "' x ¢/*!(n) : G} — G, , x Bit(n) and
the surjective submersion pry 3 4 : Sar+1 X m+nSGen X T 2501a XUr_1 —

T;;JrlnSGen X 2501 X Uy—1. Indeed, the space Sg 11 = X itjer Sa,(i+1,5) 18
a KTl orbit. Let us note that the action of BI™ on X Sg 41 is transitive,

but not simply transitive. Hence there exists a unique (Gj,,, x Brtt(n))-

equivariant map g, : L Scen X Tr=2Sc1a X U1 — S such that the

diagram

m+n

SG,rJrl X m+nSGen X T SCla X ur 1

A
2.2

Q{

(77 xid,Rg.r_1)

1 -2
T SGen X T;;L SCla X urfl D

m-+n

-2
m+nSGen X T SCla

9, $

Sk
commutes. So fo(¢py,idpr-2g ) = gropry 34 and if we compose both sides

with the mapping (¢¢,r, idr—2 Scm)’ by considering pry 3 4 o(pG,r, idpr—2 SCla)
= (m_; X idT;’TQSCI' ,Rar—1), we obtain

f=gro (7T:_1 X idT:rL_QSCIa’ RG,r—1)~
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Further we proceed as in the second step in (A) to get a unique (G} x GI1)-
equivariant map ¢ : W3 x ¢/"=1) — Sp such that
-1 -3
f=g0o®Rg MV RETY).
(C) Let s > r — 1. We have the action of the group G5F2 on T Sc, and

GTJrl on 1" Sgen. We consider G2F2 as a subgroup of G5+2 and both T3, Scia
and TT " SGen as left Gs+2 manifolds.

By [J2] there exists a G7"+1—equ1var1ant mapping
gr+1 ¢ TmSGcn X Tm_ISCla XWpg X oo xWs 1 — Sk
such that
f = gr+1 o (idTﬁ,LSGen X 7-[-5717 RC,T*l) L 7RC,571)'

gr+1 then satisfies condition (A) and we obtain a unique (G},
equivariant morphism

x Grl)-
g U Xx WD g,
such that g,41 =go (Rg_l),Rg_m,idwplx..,stfl), ie.
f=g0RG " RE).
Summarizing all cases we have
f=goRE M RETY)

(r-1) =

for any s > r — 2 and the restriction of g to C¢, is the uniquely

determined map we wished to find. =

— Gl x
G'*+1. In the above Theorem [7.1] - we have found a map g which factorizes
f, but we have not proved that (R(T 2 R(g 1)) SGen X T2,Sc1a —
C'g b C'g U satisfies the orbit condition, that is,

r—1 s—1 r—1 s—1
RV RE D Hg Y6 7Y)

Let us denote by K* the kernel of the group epimorphism G?

m,n

m+n

is a K'-orbit for any (rgfl), 7“(571)) € C’éf ) x C’gil). Now we shall prove
it.
LEMMA 7.2. If (357, 35A), (jgf’y,jo)\) T} nSaen % T3 Scia satisfy
r—1 s—1 e .5 — — v, .8
(RETRET)GEv 3N = (RETRET) (g, 364),
then there is an element h € K* such that h(j}7, jg)/\) = (307, 35 N)-

Proof. Consider the orbit set (777, ., Sgen XT3, Sc1a) /K. Tt is a (GL, x G?))-
set. Clearly the factor projection

SGon x T SCla ( ;1+nSGcn X qu,SCIa)/Kt

m+n

m+n
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is a G}, ,-map. By Theorem there is a (G}, x GIT1)-equivariant map
g: Cg_l) X Céf_l) — (T4 nScen X T3 Sc1a)/ K"
satisfying p = g o (Rgil), Rgil))- If

(RG™ RGN = (R RET Gt i8h) = (67,670,

then p(jgv, J5A) = p(jgﬁ,jg),\) = g(rg_l), r(g_l)). This proves Lemma (7.2l w

Proof of Theorem [5. From Theorem and Lemma it follows
that the equivariant mappings associated with natural operators on general
connections on Y and classical connections on M with values in (1,7 + 1)-
order natural bundles factorize through formal curvature mappings. So, the
operators factorize through curvature operators and their covariant, general
covariant and vertical derivatives. m

8. Examples. We give applications of the reduction Theorem for
general connections on concrete examples. The first example is prolongation
of I to J'Y — M.

By [KMS] there are two canonical prolongations of I', by means of a
classical symmetric connection A on M, to general connections on p' : J'Y
— M. Let I' be given by its horizontal lift

(8.1) dl = 'y (z,y)d>.

Then the flow prolongation J1(I', A) is given by (8.1) and
orty —ort,

(8.2) dyl = ( Sar T oy yp + AP, - y£)>dA-

The second prolongation P(I, A) is given by and
(8.3) dyﬂ = <681;“ + %Z;)‘ (yi—FP#H- a;;J;“FPA —AApu(y,g—FIp)>d)‘.
The difference ¥ = J1(I', A) — P(I', A) is a section
Y = Vg J'Y ®@y T*M.
In coordinates this section is given by
(@ yh yhouln ulne) 0 = (2t v, yg, 0, RIT) ),

i.e. X is in the kernel of the projection Vi J'Y ®y T*M — VY @y T*M.
But this kernel is identified with VY ®y (T*M @ T*M) and ¥ = JY(I', A) —
P(I'A) = R[I].

Theorem [5.4] can be applied to find operators with values in a (GL, x GT)-
bundle. For instance there is only the zero operator with values in VY ®y
T*M (this follows from the homogeneous function theorem [KMS, p. 213)).
As a consequence there is no other natural connection on Y given by I
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and A. This implies that any prolongations of I", by means of A, to general
connections on p' : J'Y — M are over I'. So the difference of any two such
prolonged connections is a section of VY @ (T*M&QT*M ). From Theorem
and the homogeneous function theorem we can easily see that all operators
with values in VY ® (T*"M ® T*M) are scalar multiples of R[I"] and we
conclude that any connection on p! : J'Y — M is one of the canonical
prolongations, for instance the flow prolongation, plus scalar multiples of
R[I']. So we have

D(I,A) = JHT,A) +tR[I], teR.

If we put R[I"] = JY(I', A) — P(I', A) we find that all prolonged connections
are affine combinations of the canonical prolongations J!(I', A) and P(I’, A),
which is exactly Proposition 45.8 of [KMS].

As the second example we express normal fields by Mikulski [M] via
derivatives of curvature tensors. Consider the normal field B(; ;) which is
a field of order (1,7 + 1). By Theorem and the homogeneous function
theorem [KMS| p. 213] we get

Blul,...,uiKl...Kj)\ = RI)\(/“;...;;M),KL..K]- + pOla
where pol is a polynomial constructed from the general covariant and verti-
cal derivatives of R[I"] of total orders less than r —1 = i+ j — 1 and from the
covariant derivatives of R[A] of orders less than r — 1. Moreover this polyno-
mial has to satisfy the identities and . For r = 1, 2 this relation is

given in Remark For r = 3 we get By = (B;Inuzusk’B;InuzKA’B£K1K2/\)
given by

I T I T
Bl popsx = B Muipasus) ARy, Ruzpus)A + B R 5\, Ruzpus)pv

I _pI I _pl
B.UIH2K>\ =R Ap1sp2),K> BuKlKgx\ = R \uK Ko
where A, B € R.
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