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Reduction theorem for general connections

by Josef Janyška (Brno)

Abstract. We prove the (first) reduction theorem for general and classical connec-
tions, i.e. we prove that any natural operator of a general connection Γ on a fibered
manifold and a classical connection Λ on the base manifold can be expressed as a zero
order operator of the curvature tensors of Γ and Λ and their appropriate derivatives.

1. Introduction. A classical connection on a manifold M is assumed
to be a linear symmetric connection Λ on TM . Among the most important
results concerning classical connections on manifolds are the replacement
and the (first) reduction theorems which are closely related to the so called
normal coordinates associated with a classical connection Λ. Let us recall
that Λ-normal coordinates centered at x0 ∈ M (see [V1, VT]) are local
coordinates (xλ), λ = 1, . . . ,dimM , such that

(1.1) Λµ
λ
ν(x) =

∑
i=1

1
i!
Nλ
ρ1...ρiµν(x0)xρ1 . . . xρi , Λµ

λ
νx

µxν = 0,

where Ni = (Nλ
ρ1···ρiµν) are the normal tensors satisfying the following iden-

tities:

(1.2) Nλ
ρσ(1)...ρσ(i)µν

= Nλ
ρ1...ρiµν

for any permutation σ of i indices,

(1.3) Nλ
ρ1...ρiµν = Nλ

ρ1...ρiνµ

and

(1.4) Nλ
(ρ1...ρiµν)

= 0,

where (. . . ) denotes symmetrization. The independence of a natural differ-
ential operator from given local coordinates (the main property of natural
operators) implies that any differential operator of order r of Λ is a zero
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order natural operator of the normal tensors Ni, i ≤ r, i.e., if D is a natural
operator with values in a natural bundle, then D(jrΛ) = D̃(0, N1, . . . , Nr).
This result is known as the replacement theorem (see [Th, TM]). The first
reduction theorem now follows from the fact that each Ni can be expressed
as a linear combination, with real coefficients, of covariant derivatives of
order i− 1 of the curvature tensor R[Λ] of Λ and a tensor field constructed
by tensor products and contractions from covariant derivatives of R[Λ] of
orders ≤ i− 2 [S, p. 162], [V2, p. 91].

So, the normal tensors and the covariant derivatives of the curvature
tensor of Λ form two bases of natural operators of Λ. Of course, we can find
many other bases of natural operators of Λ which differ in the right hand
side of the Bianchi–Ricci identities. For instance there is a base satisfying
the so called ideal Bianchi–Ricci identities with vanishing right hand side
(see [JM]).

The replacement theorem was generalized by Horndeski [H] to princi-
pal connections Γ of a principal G-bundle p : P → M and classical con-
nections Λ on M . Γ -normal coordinates (over the Λ-normal coordinates of
the base) are given by normal tensorial gauge concomitants Bk. So any
natural operator of order r in Γ and of order r − 2 in Λ (the minimal
order with respect to Λ we have to use) is of the type D(jrΓ, jr−2Λ) =
D̃(0, B1, . . . , Br, 0, N1, . . . Nr−2). Normal tensorial gauge concomitants are
given by covariant derivatives of R[Γ ] with respect to Γ and Λ (such covari-
ant derivatives are also called double covariant derivatives in the literature)
and covariant derivatives of the curvature tensor of Λ. This leads to the cor-
responding reduction theorem (higher order Utiyama theorem) for principal
connections. The reduction theorem for principal connections was proved
in [J3] and, for the case of general linear connections on a vector bundle
considered as principal connections on the corresponding principal frame
bundle, in [J2]. Another approach to the reduction theorem for principal
connections can be found in [DM]. In all versions of reduction theorems a
key role is played by covariant derivatives of the curvature tensors.

This paper was inspired by the paper by Mikulski [M] who introduced the
so called “special” fibered coordinates associated with a general connection
Γ on a fibered manifold p : Y →M and a classical connection Λ on M . As
a consequence, any natural operator of Γ and Λ with values in a natural
bundle of a certain order can be expressed via “normal” fields which are
sections of a natural bundle over Y whose fibers are (G1

m ×Grn)-manifolds,
m = dimM , m+ n = dimY .

The aim of this paper is to prove the (first) reduction theorem for gen-
eral connections, i.e. to show that any natural operator of Γ and Λ can be
expressed by the curvature tensor of Γ and its “general covariant” and ver-
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tical derivatives and by the curvature tensor of Λ and its standard covariant
derivatives. As a consequence, Mikulski’s normal fields can be expressed as
zero order operators of the curvature tensors of Γ and Λ and their appro-
priate derivatives.

All manifolds and mappings considered are assumed to be smooth.

2. Preliminaries. In this paper we use the terminology and properties
of natural bundles and natural operators in the sense of [KMS, KJ, N, T].

Let us denote by Mf the category of all smooth manifolds and smooth
morphisms, by FM the subcategory of all fibered manifolds and fibered
manifold morphisms, and by FMm,n the subcategory of fibered manifolds
with m-dimensional bases and n-dimensional fibers and fibered diffeomor-
phisms over diffeomorphisms of bases. In this paper we mainly consider nat-
ural bundle functors on the subcategory FMm,n. Standard fibers of such
natural bundle functors are left Grm,n-manifolds, where the group Grm,n is a
subgroup of the rth order differential group Grm+n = inv Jr0 (Rm+n,Rm+n)0.
The elements of Grm,n are r-jets jr(0,0)ϕ, where ϕ : Rm × Rn → Rm × Rn

is a diffeomorphism such that ϕ(0, 0) = (0, 0) and ϕ is projectable onto an
origin preserving diffeomorphism ϕ : Rm → Rm.

We have the group epimorphism πrs : Grm,n → Gsm,n, r > s, given by
πrs(j

r
(0,0)ϕ) = js(0,0)ϕ. Moreover, we have the group epimorphism pr1 : Grm,n →

Grm given by pr1(jr(0,0)ϕ) = jr0ϕ and the group epimorphism pr2 : Grm,n →
Grn given by pr2(jr(0,0)ϕ) = jr0(pr2 ◦ϕ ◦ ι), where ι : Rn → Rm × Rn is the
canonical inclusion and pr2 : Rm×Rn → Rn is the projection on the second
component. On the other hand Grm and Grn can be viewed as subgroups
in Grm,n by extending origin preserving diffeomorphisms of Rm and Rn to
diffeomorphisms of Rm × Rn via the identity on Rn and Rm, respectively.
If we denote by πrs(m) : Grm → Gsm and πrs(n) : Grn → Gsn the canonical
group epimorphisms and by Br

s(m) and Br
s(n) the corresponding kernels,

we obtain the group epimorphisms qrs(m) : Grm,n → Gsm,n × Br
s(m) and

qrs(n) : Grm,n → Gsm,n ×Br
s(n).

In particular G1
m,n is given by matrices of the type

A =

(
aλµ 0
aIµ aIJ

)
, |aλµ| 6= 0, |aIJ | 6= 0, λ, µ = 1, . . . ,m, I, J = 1, . . . , n.

In what follows, a tilde indicates inverse, so we have the following identities
for G1

m,n:

aλρ ã
ρ
µ = δλµ, aIρã

ρ
µ + aIP ã

P
µ = 0, aIP ã

P
J = δIJ ,

which gives, by formal differentiation, identities on Grm,n.
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We say that a natural bundle functor on the category FMm,n is of
order (1, k), k ≥ 1, if its standard fiber is a left (G1

m × Gkn)-manifold.
A typical example of a (1, 1)-order bundle functor is V ⊗

⊗sTB ⊗
⊗rT ∗B

where V is the vertical tangent bundle functor and TB and T ∗B are the tan-
gent and cotangent functors applied to base manifolds. A section Φ : Y →
V Y ⊗Y (

⊗sTM ⊗
⊗rT ∗M) is a (1, 1)-order field and its vertical deriva-

tive V Φ can be considered as a section V Φ : Y → V (V Y ⊗Y (
⊗sTM ⊗⊗rT ∗M))⊗V Y⊗Y (

Ns TM⊗
Nr T ∗M) V

∗Y ), i.e. a field of order (1, 2), and, by
iteration, V kΦ is a field of order (1, k).

Let us recall that classification of natural operators between natural
bundle functors is equivalent to classification of equivariant maps between
standard fibers. An important tool in classifications of equivariant maps is
the orbit reduction theorem [KMS, KJ]. Let p : G → H be a Lie group
epimorphism with kernel K, M be a left G-space, Q be a left H-space and
π : M → Q be a p-equivariant surjective submersion, i.e. π(gx) = p(g)π(x)
for all x ∈ M , g ∈ G. Having p, we can consider every left H-space N as a
left G-space by gy = p(g)y, g ∈ G, y ∈ N .

Theorem 2.1 ([KMS, p. 233]). If each π−1(q), q ∈ Q, is a K-orbit
in M , then there is a bijection between the G-maps f : M → N and the
H-maps ϕ : Q→ N given by f = ϕ ◦ π.

3. General connections on fibered manifolds. Let p : Y → M be
in the category FMm,n. A general connection on Y is defined to be a section
Γ : Y → J1Y , or equivalently a tangent-valued 1-form Γ : Y → TY ⊗T ∗M ,
over the identity of TM . The corresponding horizontal lift will be denoted
by hΓ : Y ×M TM → TY .

We assume (xλ, yI) is a fibered coordinate chart on Y , (xλ, yI , yIλ) is the
induced fibered coordinate chart on J1Y , and (∂λ, ∂I) and (dλ, dI) are the
associated local bases of vector fields and 1-forms, respectively. Then Γ is
given by

(xλ, yI , yIλ) ◦ Γ = (xλ, yI , Γ Iλ(x, y))

or, when considered as a tangent valued 1-form, by

Γ = dλ ⊗ (∂λ + Γ Iλ ∂I).

Moreover, if we identify Γ with its coefficients Γ Iλ(x, y), then Γ can be
considered as a section of the natural bundle GenY → Y , where Gen is a
first order natural bundle functor from FMm,n to FM. The standard fiber
of Gen is SGen = Rn ⊗ Rm∗ with coordinates (Γ Iλ) and an action of the
subgroup G1

m,n ⊂ G1
m+n. The coordinate expression of the action of G1

m,n

on SGen is

(3.1) Γ̄ Iλ = (aIP Γ
P
ρ + aIρ)ã

ρ
λ.
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Let us note that the standard fiber of Jr Gen is the space of (m+ n, r)-
velocities T rm+nSGen = Jr0 (Rm+n, SGen) with the action of Gr+1

m,n given by
composition of jets. For instance, for r = 1, we have the induced action of
G2
m,n on T 1

m+nSGen given by (3.1) and

Γ̄ Iλ,µ = (aIPQ ã
Q
µ + aIPρ ã

ρ
µ)ΓP ρ ã

ρ
λ + aIP (ΓP ρ,Q ãQµ + ΓP ρ,σ ã

σ
µ)ãρλ(3.2)

+ aIP Γ
P
ρ ã

ρ
λµ + (aIρP ã

P
µ + aIρσ ã

σ
µ)ãρλ + aIρ ã

ρ
λµ,

Γ̄ Iλ,J = (aIPQ Γ
P
ρ + aIP Γ

P
ρ,Q + aIρQ) ãρλ ã

Q
J .(3.3)

Remark 3.1. A classical connection is a linear section Λ : TM → J1TM
with the corresponding horizontal lift ḋλ = Λµ

λ
ν(x)ẋµdν , where Λµ

λ
ν =

Λν
λ
µ and we denote by “˙” the induced coordinates on the tangent bundle.

Λ can be considered to be a section of the second order natural bundle
ClaM → M , where the standard fiber of Cla is SCla = Rm∗ ⊗ Rm ⊗ Rm∗

with the action of G2
m given by

(3.4) Λ̄µ
λ
ν = (aλρ Λσ

ρ
τ + aλστ )ãσµã

τ
ν .

If we consider Γ as a tangent-valued 1-form Γ : Y → TY ⊗ T ∗M over
the identity of TM , the curvature of Γ can be defined as the section

R[Γ ] : Y → V Y ⊗
∧2T ∗M

given by R[Γ ] = −[Γ, Γ ], where [ , ] is the Frölicher–Nijenhuis bracket. We
have the coordinate expression

R[Γ ] = −2(∂λΓ Iµ + ΓP λ∂PΓ
I
µ)∂I ⊗ dλ ∧ dµ.

Now, let us consider the standard fiber U0 = Rn⊗
∧2Rm∗ of the natural

bundle functor V ⊗
∧2T ∗B with the induced coordinates (uIλµ) and the ten-

sorial action of the subgroup G1
m ×G1

n ⊂ G1
m,n. Then it is easy to see that

the curvature operator is a natural first order operator Gen → V ⊗
∧2T ∗B

with the corresponding G2
m,n-equivariant mapping RG : T 1

m+nSGen → U0

given by

(3.5) uIλµ ◦ RG = Γ Iλ,µ − Γ Iµ,λ + ΓP µΓ
I
λ,P − ΓP λΓ Iµ,P .

4. General covariant derivatives. A key role in reduction theorems
for (general) linear and principal connections is played by covariant deriva-
tives of curvature tensor fields. But in the case of a general connection we
cannot define the standard covariant derivatives of R[Γ ]. We have to con-
sider a more general concept of general covariant derivatives. In this section
we recall the definition and basic properties of general covariant derivatives
(see [J4]) of vertical-valued tensor fields with respect to general and classical
connections, which allows us to define also general covariant derivatives of
the curvature tensor R[Γ ].
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The general covariant derivative is a first order natural operator trans-
forming sections Φ : Y → V Y ⊗Y (

⊗sTM⊗
⊗rT ∗M) (in order one), general

connections Γ (in order one) and classical connections Λ (in order zero) to
sections of V Y ⊗Y (

⊗sTM ⊗
⊗r+1T ∗M). The coordinate expression of a

general covariant derivative is

(4.1) ∇Γ,ΛΦ =
(
∂µΦ

In
l + ΓP µ∂PΦ

In
l − Φ

P n
l∂PΓ

I
µ

−
s∑

k=1

ΦIν1...ρ...νsl Λµ
νk
ρ +

r∑
j=1

ΦI
n
λ1...ρ...λr

Λµ
ρ
λj

)
∂I ⊗ ∂n ⊗ dl ⊗ dµ,

where we have used multiindices n = (ν1 . . . νs), l = (λ1 . . . λr) and we
have set ∂n = ∂ν1 ⊗ · · · ⊗ ∂νs and dl = dλ1 ⊗ · · · ⊗ dλr . If we consider the
corresponding mappings of standard fibers T 1

m+nSGen × SCla × T 1
m+n(Rn ⊗⊗sRm ⊗

⊗rRm∗) → Rn ⊗
⊗sRm ⊗

⊗r+1Rm∗, and we denote by “;” the
formal general covariant derivative and by “,” the formal partial derivative,
then

ΦI
n
l;µ = ΦI

n
l,µ + ΓP µ Φ

In
l,P − Φ

P n
l Γ

I
µ,P(4.2)

−
s∑

k=1

ΦIν1...ρ...νsl Λµ
νk
ρ +

r∑
j=1

ΦI
n
λ1...ρ...λr

Λµ
ρ
λj .

By iteration we get the kth order general covariant derivative (∇Γ,Λ)kΦ :
Y → V Y ⊗Y (

⊗sTM ⊗
⊗r+kT ∗M) which is a natural operator of order k

with respect to Φ and Γ and of order k − 1 with respect to Λ.
In what follows we shall write simply ∇ instead of ∇Γ,Λ and we shall set

∇(k) = (id = ∇0,∇, . . . ,∇k).

Remark 4.1. Let p : E → M be a vector bundle with linear fibered
coordinates, K be a (general) linear connection on E, and Φ be a linear
vertical-valued tensor field. Then the general covariant derivative ∇K,ΛΦ is
a linear vertical-valued tensor field which is given by the standard covariant
derivative of Φ with respect to the pair (K,Λ) (see [J1]). So, the general co-
variant derivative generalizes the standard covariant derivatives with respect
to linear connections.

Remark 4.2. Let us recall that for a section s : M → Y we can define
the covariant derivative ∇Γ s : M → V Y ⊗ T ∗M with respect to a general
connection Γ by

∇Γ s = j1s− Γ ◦ s.

In coordinates, if (xλ, yI) ◦ s = (xλ, sI(x)), then

(xλ, yI , uIλ) ◦ ∇Γ s = (xλ, sI(x), ∂λsI(x)− Γ Iλ(x, s(x))),
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i.e.
∇Γ s = (∂λsI − Γ Iλ)∂I ⊗ dλ.

In [CK] the above covariant derivative is called the absolute differential of
s and, by using an auxiliary classical connection on M , the second order
absolute differential of s is defined. The second order absolute differential of
s coincides with the general covariant derivative of ∇Γ s and we can consider
general covariant derivatives of s of any order.

The vertical prolongation V Φ : V Y → V (V Y ⊗Y (
⊗sTM ⊗

⊗rT ∗M))
can be considered as the section

V Φ : Y → V (V Y ⊗Y (
⊗sTM ⊗

⊗rT ∗M))⊗V Y⊗Y (
NsTM⊗

NrT ∗M) V
∗Y

given in coordinates by

V Φ = ∂JΦ
In
l ∂I

l
n ⊗ dJ ,

where we have put ∂I
l
n = ∂/∂uI

n
l. The functor (V ⊗

⊗sTB ⊗
⊗rT ∗B) ⊕

(V (V ⊗
⊗sTB⊗

⊗rT ∗B)⊗V ∗) on the category FMm,n is of order (1, 2) and
the action of the subgroup G1

m × G2
n ⊂ G2

m,n on its standard fiber is given
by

ūI
n
l = aIP a

n
s u

P s
r ã

r

l,(4.3)

ūI
n
lJ = ans (aIPQ u

P s
r + aIP u

P s
rQ) ã

r

l ã
Q
J ,(4.4)

where we have set ans = aν1σ1
. . . aνsσs and ã

r

l = ãρ1λ1
. . . ãρrλr . By iteration we can

deduce that the functor
k⊕
i=1

V (. . . (V (V︸ ︷︷ ︸
i times

⊗
⊗sTB ⊗

⊗rT ∗B)⊗ V ∗) . . . )⊗ V ∗︸ ︷︷ ︸
i−1 times

is of order (1, k) and on its standard fiber we have the action of the group
G1
m ×Gkn given by the formal vertical derivatives of (4.4). The sequence of

operators V (k)Φ = (Φ, V Φ, . . . , V kΦ) has values in sections of
k⊕
i=1

V (. . . (V (V︸ ︷︷ ︸
i times

Y ⊗
⊗sTB ⊗

⊗rT ∗B)⊗ V ∗Y ) . . . )⊗ V ∗Y︸ ︷︷ ︸
(i−1) times

and defines a kth order operator which depends on vertical derivatives of Φ
only.

Let us consider the general covariant derivatives of the curvature tensor
R[Γ ]. Then we obtain the general Bianchi identity [J4].

Lemma 4.3. We have

(4.5) ∇R[Γ ](ξ, η, ζ) +∇R[Γ ](η, ζ, ξ) +∇R[Γ ](ζ, ξ, η) = 0,
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i.e. in coordinates

(4.6) RIλµ;ν +RIµν;λ +RIνλ;µ = 0.

For the second order general covariant derivative we have the following
general Ricci identity [J4].

Lemma 4.4. The antisymmetrization of the second order general covari-
ant derivative is a section Alt∇2Φ : Y → V Y ⊗Y (

⊗sTM ⊗
⊗rT ∗M ⊗∧2T ∗M) given by

2 Alt∇2Φ(α1, . . . , ξr, η, ζ) = ∇2Φ(α1, . . . , ξr, η, ζ)−∇2Φ(α1, . . . , ξr, ζ, η)

= V (Φ(α1, . . . , ξr))(R[Γ ](η, ζ))− V (R[Γ ](η, ζ))(Φ(α1, . . . , ξr))

−
s∑

k=1

Φ(α1, . . . , R[Λ](αk, η, ζ), . . . , αs, ξ1, . . . , ξr)

+
r∑
j=1

Φ(α1, . . . , αs, ξ1, . . . , R[Λ](ξj , η, ζ), . . . , ξr)

for any 1-forms αk, k = 1, . . . , s, and vector fields ξj, η, ζ, j = 1, . . . , r,
on M . In coordinates

2ΦInl;[µ;κ] = ΦI
n
l;µ;κ − Φ

In
l;κ;µ = ΦI

n
l,P R

P
µκ −RIµκ,P ΦP n

l(4.7)

−
s∑

k=1

ΦIν1...ρ...νsl Rρ
νk
µκ +

r∑
j=1

ΦI
n
λ1...ρ...λr

Rλj
ρ
µκ.

We can write

Alt∇2Φ = pol(Φ, V Φ,R[Γ ], V R[Γ ], R[Λ]),

where pol is a polynomial (zero order) operator on the indicated fields.
But Alt∇2Φ is the section of V Y ⊗Y (

⊗sTM ⊗
⊗r+2T ∗M), i.e. a section

of a (1, 1)-order bundle and we can apply general covariant and vertical
derivatives of higher orders. Then we have [J4]

Theorem 4.5. We have

∇r−2(Alt∇2Φ) = pol
(
∇(r−2)Φ, V (∇(r−2)Φ),(4.8)

∇(r−2)R[Γ ], V (∇(r−2)R[Γ ]),∇(r−2)R[Λ]
)
,

V r−2(Alt∇2Φ) = pol(V (r−1)Φ, V (r−1)R[Γ ], R[Λ]).(4.9)

If we apply Theorem 4.5 to the curvature tensor of Γ we get

Corollary 4.6.

∇r−2(Alt∇2R[Γ ]) = pol(∇(r−2)R[Γ ], V (∇(r−2)R[Γ ]),∇(r−2)R[Λ]),(4.10)

V r−2(Alt∇2R[Γ ]) = pol(V (r−1)R[Γ ], R[Λ]).(4.11)
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Remark 4.7. Let us remark that the general Ricci identity differs from
the Ricci identities for (general) linear or principal connections in the order
of fields on the right hand side [J2, J3]. Indeed, in the cases of general linear
and principal connections we have the field Φ and the curvature tensors
R[Γ ] and R[Λ] on the right hand side, i.e. the right hand side is of order
zero with respect to Φ and of order one with respect to connections, so
antisymmetrization decreases the degree with respect to Φ by 2. In the
case of general connections on fibered manifolds the right hand side of the
general Ricci identity is given by the vertical derivatives of Φ and R[Γ ], i.e.
it is of order one with respect to Φ and of order two with respect to Γ , so
antisymmetrization decreases the order with respect to Φ by one, and if we
apply the general Ricci identity for the covariant derivatives of the curvature
tensor, antisymmetrization decreases the order by one.

5. Replacement and reduction theorems. By Mikulski [M] there
are fibered coordinates on Y , over Λ-normal coordinates on M , such that in
a neighborhood of y0 = (0, 0) the coordinate expression of Γ is

(5.1) Γ Iλ =
∑

i≥1,j≥0

1
i!

1
j!
BI
µ1...µiP1...Pjλ

xµ1 . . . xµi yP1 . . . yPj , Γ Iλ x
λ = 0.

Here Br = {B(i,j) = (BI
µ1...µiP1...Pjλ

), i + j = r} are the so called normal
fields which are sections of a natural bundle over Y on whose fibers the
subgroup G1

m ×Grn ⊂ Grm,n acts, i.e. normal fields are sections of a natural
bundle of order (1, r). Moreover, the following identities are satisfied:

BI
(µ1...µiP1...Pjλ) = 0,(5.2)

BI
µ1...µiP1...Pjλ

= BI
µσ(1)...µσ(i)Pρ(1)...Pρ(j)λ

,(5.3)

where (. . . ) denotes symmetrization with respect to the Greek indices only,
while σ and ρ are permutations of i and j indices, respectively.

In what follows we shall consider natural operators of order r in general
connections Γ and of order s, r − 2 ≤ s, with respect to Λ. The reason is
that general covariant derivatives of R[Γ ] are natural operators such that
the order with respect to Λ is the order with respect to Γ minus 2.

Now we can prove the replacement theorem for general connections.

Theorem 5.1. Any natural operator of order r ≥ 1 with respect to Γ
and of order s, r − 2 ≤ s, with respect to Λ with values in a natural bundle
factorizes through normal fields of Γ and Λ up to orders r and s, respectively,
i.e.

(5.4) D(jrΓ, jsΛ) = D̃(0, B1, . . . , Br, 0, N1, . . . , Ns).
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Proof. Natural operators are independent of the choice of a local fibered
coordinate chart. In Γ -normal fibered coordinates centered at y0 ∈ Y over
Λ-normal coordinates on the base centered at x0 = p(y0), r-jets of Γ are
given by normal fields B, and s-jets of Λ are given by normal tensors N .

By the above replacement theorem, the Γ -normal and Λ-normal fields
form a basis of natural operators of Γ and Λ. In the rest of the paper we shall
prove that there is another basis of natural operators of Γ and Λ formed by
the general covariant and vertical derivatives of the curvature tensor of Γ
and by the standard covariant derivatives of the curvature tensor of Λ. This
result is the (first) reduction theorem for general connections.

Remark 5.2. For r = 2, s = 0 we can prove the reduction theorem very
easily. Let us put

BI
µλ = RIλµ, BI

µ1µ2λ = RIλ(µ1;µ2), BI
µPλ = RIλµ,P .

Then it is easy to see that the Bianchi identity (4.6) implies the identity
(5.2). On the other hand if we have normal fields (B1, B2) then

RIλµ = BI
µλ, RIλµ1;µ2 =

2
3

(BI
µ1µ2λ −B

I
λµ2µ1

), RIλµ,P = BI
µPλ

is the inverse mapping and the identity (5.2) implies the Bianchi identity.
Then

D̃(0, B1, B2) = ˜̃
D(R[Γ ],∇R[Γ ], V R[Γ ]).

So, the normal fields (B1, B2) and the fields (R[Γ ],∇R[Γ ], V R[Γ ]) form two
different bases of second order natural operators of Γ .

Remark 5.3. If r = 1 then BI
µλ = RIλµ and we see that Utiyama’s

theorem [U] is also true for general connections.

Now, we can formulate the reduction theorem for general connections.

Theorem 5.4. Any natural operator of order r with respect to Γ and of
order s, r− 2 ≤ s, with respect to Λ with values in a (1, r+ 1)-order natural
bundle factorizes through general covariant and vertical derivatives of R[Γ ]
up to order r−1 and through covariant derivatives of R[Λ] up to order s−1,
i.e.

(5.5) D(jrΓ, jsΛ) = D̃(V (j(∇i)R[Γ ]),∇(s−1)R[Λ]), j+i = 0, 1, . . . , r−1.

Remark 5.5. The difference between the reduction theorem and the re-
placement theorem is in the target natural bundle. In the replacement theo-
rem the order of the target natural bundle is arbitrary but in the reduction
theorem the target bundle has to be a natural bundle of order (1, r+1). But
in the last section we shall prove that Γ -normal fields can be expressed via
general covariant and vertical derivatives of R[Γ ] and covariant derivatives
of R[Λ]. So natural differential operators with values in a natural bundle of
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any order can be factorized through curvature tensors and their appropriate
covariant derivatives.

6. Curvature bundles. To prove the above reduction Theorem 5.4 we
have to prove first some technical results.

Let us introduce the following notation.
Let WM = W0M := T ∗M ⊗ TM ⊗

∧2T ∗M , WiM = WM ⊗
⊗iT ∗M ,

i ≥ 0. Let us putW(r)M =W0M ×M · · ·×MWrM . ThenWiM andW(r)M
are natural bundles of order one on the categoryMf , and the corresponding
standard fibers will be denoted by Wi and W(r), where W0 :=W = Rm∗ ⊗
Rm ⊗

∧2Rm∗, Wi = W0 ⊗
⊗iRm∗, i ≥ 0, and W(r) = W0 × · · · × Wr. We

denote by (wµλνκρ1...ρi) the canonical coordinates on Wi.
We denote by

RC,i : T i+1
m SCla →Wi

the Gi+3
m -equivariant map associated with the standard ith covariant deriva-

tive of curvature tensors of classical connections

∇iR[Λ] : C∞(ClaM)→ C∞(WiM).

The map RC,i is said to be the formal curvature map of order i of classical
connections.

Let CC,i ⊂ Wi be the subset given by the identities of the ith co-
variant derivatives of the curvature tensors of classical connections (see
[J3, KMS]). Recall that these identities are the first and second Bianchi
identities of the curvature tensor of classical connections and their covariant
derivatives, and the Ricci identity and its covariant derivatives. Let us put
C

(r)
C = CC,0 × · · · × CC,r and

(6.1) R(r)
C := (RC,0, . . . ,RC,r) : T r+1

m SCla →W(r),

which has values in C
(r)
C . In [KMS] it was proved that C(r)

C is a submani-
fold in W(r) and the restriction of (6.1) to C(r)

C is a surjective submersion.
The corresponding first order natural bundle C(r)

C M is called the rth order
curvature natural bundle for classical connections on M .

In order to describe the curvature bundle for general connections we
have to recall that the general Ricci identity applied to the second order
general covariant derivatives ofR[Γ ] (or∇iR[Γ ]) depends also on the vertical
derivatives of R[Γ ] (or ∇iR[Γ ]). So we have to include into the curvature
bundle for general connections also the vertical prolongation of the bundle
V Y ⊗Y

∧2T ∗M ⊗
⊗iT ∗M .
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Let

UY = U(0,0)Y := V Y ⊗Y
∧2T ∗M,

U(i,j)Y = V (. . . (V︸ ︷︷ ︸
j times

(V Y ⊗Y (
∧2T ∗M ⊗

⊗iT ∗M))⊗ V ∗Y ) . . . )⊗ V ∗Y︸ ︷︷ ︸
j times (symmetric)

,

i ≥ 0, j ≥ 0,

UkY =
¡

i+j=k

U(i,j)Y, U (r)Y =
r¡

k=0

UkY.

Then U (r)Y is a (1, r+1)-order natural graded vector bundle on the category
FMm,n on whose standard fiber the subgroup G1

m × Gr+1
n ⊂ Gr+1

m,n acts.
The corresponding standard fibers will be denoted by U(i,j), Uk and U (r),
respectively, where U(0,0) := U = Rn ⊗

∧2Rm∗, U(i,j) = Rn ⊗
∧2Rm∗ ⊗⊗iRm∗ ⊗ SjRn∗, i, j ≥ 0, Uk =

�
i+j=k U(i,j) and U (r) =

�r
k=0 Uk. We

denote by (uIλµν1...νiK1...Kj ) the canonical coordinates on U(i,j). The action of
the subgroupG1

m×Gr+1
n ⊂ Gr+1

m,n on U (r) can be deduced from iterated formal
vertical derivatives of the tensor action of G1

m×G1
n on Rn⊗

∧2Rm∗⊗
⊗iRm∗.

For instance, for r = 1, we have the coordinates on the standard fiber U (1)

given by (uIλµ, uIλµν , uIλµJ) with the action of the subgroup G1
m × G2

n ⊂
G2
m,n given by

ūIλµ = aIP u
P
ρσ ã

ρ
λ ã

σ
µ, ūIλµν = aIP u

P
ρστ ã

ρ
λ ã

σ
µ ã

τ
ν ,

ūIλµJ = (aIP u
P
ρσQ + aIPQ u

P
ρσ) ãρλ ã

σ
µ ã

Q
J .

We denote by

(6.2) RG,(i,j) : T i+j+1
m+n SGen × T i+j−1

m SCla → U(i,j)

the Gi+j+2
m,n -equivariant map associated with the ith general covariant and

the jth vertical derivative of curvature tensors of general connections

V j(∇iR[Γ ]) : C∞(GenY ×Y ClaM)→ C∞(U(i,j)Y ).

The map RG,(i,j) is said to be the formal curvature map of order (i, j) of
general connections. We set

RG,k =
¡

i+j=k

RG,(i,j) : T k+1
m+nSGen × T k−1

m SCla → Uk.

Let CG,(i,j) ⊂ U(i,j) be the subset given by the identities of the (i, j)th
general covariant and vertical derivatives of the curvature tensors of gen-
eral connections which are obtained by taking the general covariant and
vertical derivatives of the general Bianchi and general Ricci identities (see
Lemmas 4.3 and 4.4 or [J4]). Let us put CG,k =

�
i+j=k CG,(i,j) and C(r)

G =



Reduction theorem for general connections 243

�r
k=0CG,k and

(6.3) R(r)
G :=

r¡

k=0

RG,k : T r+1
m+nSGen × T r−1

m SCla → U (r),

which has values in C
(r)
G .

Now we shall prove

Lemma 6.1. If s ≥ r − 2, r ≥ 0, then C
(r)
G × C

(s)
C is a submanifold of

U (r)×W(s). Then C
(r)
G ×C

(s)
C = (R(r)

G ,R(s)
C )(T r+1

m+nSGen×T s+1
m SCla) and the

restricted map

(R(r)
G ,R(s)

C ) : T r+1
m+nSGen × T s+1

m SCla → C
(r)
G × C

(s)
C

is a surjective submersion.

Proof. First, let us recall that C(s)
C is a submanifold of W(s) and R(s)

C :
T s+1
m SCla → C

(s)
C is a surjective submersion [KMS, p. 236].

Next, we prove by induction that C(r)
G is a submanifold of U (r).

For r = 0, C(0)
G = U (0) = U . For r = 1 we have CG,1 = CG,(1,0) ×CG,(0,1)

a linear subspace of U1 = U(1,0) × U(0,1) given by the solution of the formal

general Bianchi identity (4.6). Hence C(1)
G is a vector subbundle of C(0)

G ×U1.
Assume C(r−1)

G ⊂U (r−1) is a submanifold and consider the product bundle
C

(r−1)
G ×Ur. The equations defining CG,r consist of the formal general covari-

ant and vertical derivatives of (4.6) and of formal expressions of alternations
of the second order general covariant derivatives of curvature tensors and
their general covariant and vertical derivatives. By Lemmas 4.3, 4.4 and
Corollary 4.6 we have the following two systems of equations:

uI (λµν1)ν2...νiK1...Kj = 0, i ≥ 1,(6.4)

uIλµν1...[νs−1νs]...νiK1...Kj + pol(C(r−1)
G × C(r−2)

C ) = 0, i ≥ 2,(6.5)

i + j = r, where pol(C(r−1)
G × C(r−2)

C ) are some polynomials in elements of
C

(r−1)
G × C(r−2)

C . The map defined by the left-hand sides of (6.4) and (6.5)
represents an affine bundle morphism C

(r−1)
G ×C(s)

C ×Ur → C
(r−1)
G ×C(s)

C ×RN

of constant rank, N = the number of equations (6.4) and (6.5). Its kernel
C

(r)
G × C

(s)
C is a subbundle of C(r−1)

G × C(s)
C × Ur.

To prove (R(r)
G ,R(s)

C ) is a surjective submersion it is sufficient to prove
that the map R(r)

G (−, js+1
0 λ) : T r+1

m+nSGen → C
(r)
G is a surjective submersion

for any js+1
0 λ ∈ T s+1

m SCla. We shall prove this by induction. For r = 0 we
have R(0)

G (−, js+1
0 λ) ≡ RG and we shall prove RG(T 1

m+nSGen) = C
(0)
G = U .

The coordinate expression of RG is (3.5). This is an affine bundle morphism
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of the affine bundle π1
0 : T 1

m+nSGen → SGen into U of constant rank. We
know that the values of RG lie in U , so that it suffices to prove that the
image is the whole U at one point 0 ∈ SGen. Consider the restriction R̄G of
RG to the fiber (π1

0)−1(0), 0 ∈ SGen. Then

uIλµ ◦ R̄G = Γ Iλ,µ − Γ Iµ,λ.

R̄G is a surjection if and only if

dimU = dim (π1
0)−1(0)− dim Ker R̄P .

But dimU = 1
2nm(m− 1), dim (π1

0)−1(0) = nm2 + n2m and dim Ker R̄G =
1
2nm(m + 1) + n2m. This implies that R̄G is surjective and hence RG is a
surjective submersion.

Assume by induction

R(r−1)
G (−, js+1

0 λ) : T rm+nSGen → C
(r−1)
G

is a surjective submersion. So we have the commutative diagram

T r+1
m+nSGen

R(r)
G (−,js+1

0 λ)
−−−−−−−−−→ C

(r)
G

πr+1
r

y yprrr−1

T rm+nSGen
R(r−1)
G (−,js+1

0 λ)
−−−−−−−−−−→ C

(r−1)
G

where the bottom arrow is by assumption a surjective submersion. The map-
pingR(r)

G (−, js+1
0 λ) is affine (with respect to affine structures of both projec-

tions) and of constant rank on all fibers. Hence if the fibers of the projection
πr+1
r : T r+1

m+nSGen → T rm+nSGen are mapped surjectively onto fibers of the
projection prrr−1 : C(r)

G → C
(r−1)
G , the top arrow is a surjective submersion.

Let us denote by R̄(r)
G (−, js+1

0 λ) the restriction of R(r)
G (−, js+1

0 λ) to the fiber
over 0 ∈ T rm+nSGen. Then R̄(r)

G (−, js+1
0 λ) = R̄G,r(−, js+1

0 λ) : (πr+1
r )−1(0)

→ (CG,r)0, where (CG,r)0 is the fiber of the projection prrr−1 : C(r)
G → C

(r−1)
G

over the zero in C
(r−1)
G .

We shall prove R̄G,r(−, js+1
0 λ) : (πr+1

r )−1(0) → (CG,r)0 is surjective. In
coordinates

(uIλµν1...νiK1...Kj )◦R̄G,(i,j)(−, j
s+1
0 λ) = Γ Iλ,µν1...νiK1...Kj −Γ

I
µ,λν1...νiK1...Kj .

The fiber (CG,(i,j))0 equals

(CG,(0,0) ⊗ SiRm∗ ⊗ SjRn∗) ∩ (CG,(1,0) ⊗ Si−1Rm∗ ⊗ SjRn∗),

which follows from (6.4) and (6.5).
Let us note that (πr+1

r )−1(0) =
�

i+j=r+1 Rn ⊗ Rm∗ ⊗ SiRm∗ ⊗ SjRn∗.
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By induction assumption the map

(R̄G,(1,0) × R̄G,(0,1))(−, js+1
0 λ) :

(Rn ⊗ Rm∗ ⊗ S2Rm∗)× (Rn ⊗ Rm∗ ⊗ Rm∗ ⊗ Rn∗)→ (CG,(1,0) × CG,(0,1))0

is a surjection which splits into two surjective mappings

R̄G,(1,0)(−, js+1
0 λ) : Rn ⊗ Rm∗ ⊗ S2Rm∗ → (CG,(1,0))0,

R̄G,(0,1)(−, js+1
0 λ) : Rn ⊗ Rm∗ ⊗ Rm∗ ⊗ Rn∗ → (CG,(0,1))0,

with the coordinate expressions

uIλµν = Γ Iλ,µν − Γ Iµ,λν , uIλµJ = Γ Iλ,µJ − Γ Iµ,λJ .

Hence

R̄G,(1,0)(−, js+1
0 λ)⊗ idSi−1Rm∗⊗SjRn∗ :

(Rn ⊗Rm∗ ⊗ S2Rm∗)⊗ Si−1Rm∗ ⊗ SjRn∗ → (CG,(1,0))0 ⊗ Si−1Rm∗ ⊗ SjRn∗

is also a surjection.
Consider an element X ∈ (CG,(i,j))0, i+ j = r. Then there exists

Z ∈ (Rn ⊗ Rm∗ ⊗ S2Rm∗)⊗ Si−1Rm∗ ⊗ SjRn∗

such that
(R̄G,(1,0)(−, js+1

0 λ)⊗ idSi−1Rm∗⊗SjRn∗)(Z) = X,

i.e. in coordinates

XI
λµν1...νiK1...Kj = ZIλµν1...νiK1...Kj − Z

I
µλν1...νiK1...Kj .

Symmetrization gives

Z̄Iλµν1ν2ν3...νiK1...Kj = ZIλµ(ν1ν2)ν3...νiK1...Kj

∈ Rn ⊗ Rm∗ ⊗ Si+1Rm∗ ⊗ SjRn∗ = (πr+1
r )−1(0)

such that R̄G,(i,j)(Z̄, js+1
0 λ) = X and hence R̄G,(i,j)(−, js+1

0 λ) is a surjec-
tion. This implies that the top arrow in the above diagram is a surjective
submersion.

In the above Lemma 6.1 we have proved that C
(r)
G × C

(s)
C is a sub-

manifold of U (r) × W(s). It is easy to see that C(r)
G × C

(s)
C is closed with

respect to the action of the group G1
m × Gr+2

n and, according to the gen-
eral theory of natural bundles, we have the (1, r + 2)-order natural vector
subbundle C

(r)
G Y ×Y C

(s)
C M of the (1, r + 2)-order natural vector bundle

U (r)Y ×Y W(s)M called the (r, s)-order curvature bundle of general and
classical connections.
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7. Orbit reduction theorem for general connections. Let F be
a natural bundle functor of order (1, r + 1), i.e. SF is a left (G1

m × Gr+1
n )-

manifold. From the fact that G1
m ×Gr+1

n is a subgroup of Gr+1
m,n we see that

SF can be considered as a left Gr+1
m,n-manifold. Similarly, as Gsm is a subgroup

of Gsm,n, we can consider T s−2
m SCla as a left Gsm,n-manifold.

Theorem 7.1. Let s ≥ r − 2, r ≥ 0, t = max(r + 1, s + 2). For every
Gtm,n-equivariant map

f : T rm+nSGen × T smSCla → SF

there exists a unique (G1
m ×Gtn)-equivariant map g : C(r−1)

G × C(s−1)
C → SF

satisfying
f = g ◦ (R(r−1)

G ,R(s−1)
C ).

Proof. Let us consider the spaces

SC,s := Rm ⊗ SsRm∗ and SG,(i+1,j) := Rn ⊗ Si+1Rm∗ ⊗ SjRn∗

with coordinates (sλµ1µ2...µs) and (sIµ1...µi+1K1...Kj ), respectively. Let us con-
sider the action of Gsm on SC,s and the action of Gi+j+1

m,n on SG,(i+1,j) such
that the symmetrization maps

σC,s : T smSCla → SC,s+2, σG,r : T rm+nSGen → SG,r+1 :=
¡

i+j=r

SG,(i+1,j)

given by

(sλµ1µ2...µs+2) ◦ σC,s = Λ(µ1

λ
µ2,µ3...µs+2),

(sIµ1...µi+1K1...Kj ) ◦ σG,r = Γ I (µ1,µ2...µi+1)K1...Kj , i+ j = r,

are Gs+2
m - and Gr+1

m,n-equivariant, respectively.
We have the Gs+2

m -equivariant map

ϕC,s := (σC,s, πss−1,RC,s−1) : T smSCla → SC,s+2 × T s−1
m SCla ×Ws−1.

On the other hand we can define the Gs+2
m -equivariant map

ψC,s : SC,s+2 × T s−1
m SCla ×Ws−1 → T smSCla

over the identity of T s−1
m SCla such that

ψC,s ◦ ϕC,s = idT smSCla
.

This map is given by the coordinate expression

Λµ1
λ
µ2,µ3...µs+2 = sλµ1...µs+2 +

∑
σ

Aσwµσ(1)

λ
µσ(2)...µσ(s+2)

(7.1)

− pol(T s−1
m SCla),

where Aσ are real coefficients and σ is a permutation of s + 2 indices (for
details see [J3, KMS]).
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Similarly we have the Gr+1
m,n-equivariant map

ϕG,r := (σG,r, πrr−1 × idT r−2
m SCla

,RG,r−1) : T rm+nSGen × T r−2
m SCla

→ SG,r+1 × T r−1
m+nSGen × T r−2

m SCla × Ur−1

where we have used the notation RG,r−1 =
�

i+j=rRG,(i−1,j) and Ur−1 =
�

i+j=r U(i−1,j), and we define the Gr+1
m,n-equivariant map

ψG,r : SG,r+1 × T r−1
m+nSGen × T r−2

m SCla × Ur−1 → T rm+nSGen × T r−2
m SCla

over the identity of T r−1
m+nSGen × T r−2

m SCla by the coordinate expression

(7.2) Γ Iµ1,µ2...µi+1K1...Kj = sIµ1...µi+1K1...Kj +
∑
σ

Aσu
I
µσ(1)...µσ(i+1)K1...Kj

− pol
(¡
l≥i

SG,(l,r−l+1) × T r−1
m+nSGen × T i−2

m SCla ×
¡

l≥i
U(l−2,r−l+1)

)
,

i+j = r, where σ is a permutation of i+1 indices and Aσ are real coefficients.
ψG,r can be constructed in the following way. First,

Γ Iµ,K1...Kr = sIµK1...Kr .

Second, by taking the (r−1)-order formal vertical derivative of (3.5) we get

uIµ1µ2K1...Kr−1 = 2Γ I [µ1,µ2]K1...Kr−1

+ Γ Iµ1,PK1...Kr−1 Γ
P
µ2 − Γ Iµ2,PK1...Kr−1 Γ

P
µ1 + pol(T r−1

m+nSGen)

= 2Γ I [µ1,µ2]K1...Kr−1

+ sIµ1PK1...Kr−1
ΓP µ2 − sIµ2PK1...Kr−1

ΓP µ1 + pol(T r−1
m+nSGen)

= 2Γ I [µ1,µ2]K1...Kr−1
+ pol(SG,(1,r) × T r−1

m+nSGen),

where [. . . ] denotes antisymmetrization. We can write

Γ Iµ1,µ2K1...Kr−1 = sIµ1µ2K1...Kr−1 + (Γ Iµ1,µ2K1...Kr−1 − Γ I (µ1,µ2)K1...Kr−1
).

Then the term in brackets can be written as

Γ I [µ1,µ2]K1...Kr−1
= 1

2u
I
µ1µ2K1...Kr−1 − pol(SG,(1,r) × T r−1

m+nSGen),

and we get

Γ Iµ1,µ2K1...Kr−1 = sIµ1µ2K1...Kr−1(7.3)

+ 1
2u

I
µ1µ2K1...Kr−1 − pol(SG,(1,r) × T r−1

m+nSGen).

Next, by taking the formal general covariant and the (r−2)-order formal
vertical derivative of (3.5) we get

uIµ1µ2µ3K1...Kr−2 = 2Γ I [µ1,µ2]µ3K1...Kr−2
+ Γ Iµ1,µ3PK1...Kr−2Γ

P
µ2

− Γ Iµ2,µ3PK1...Kr−2Γ
P
µ1 + pol(T r−1

m+nSGen × SCla)
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and from (7.3) we get

uIµ1µ2µ3K1...Kr−2 = 2Γ I [µ1,µ2]µ3K1...Kr−2

+ pol(SG,(2,r−1) × SG,(1,r) × T r−1
m+nSGen × SCla × UG,(0,r−1)).

We can write

Γ Iµ1,µ2µ3K1...Kr−2 = sIµ1µ2µ3K1...Kr−2

+ (Γ Iµ1,µ2µ3K1...Kr−2 − Γ I (µ1,µ2µ3)K1...Kr−2
).

The term in brackets can be written as
2
3Γ

I
[µ1,µ2]µ3K1...Kr−2

+ 2
3Γ

I
[µ1,µ3]µ2K1...Kr−2

= 1
3(uIµ1µ2µ3K1...Kr−2

− pol(SG,(2,r−1) × SG,(1,r) × T r−1
m+nSGen × SCla × UG,(0,r−1)))

+ 1
3 (uIµ1µ3µ2K1...Kr−2

− pol(SG,(2,r−1) × SG,(1,r) × T r−1
m+nSGen × SCla × UG,(0,r−1))),

and we get

(7.4) Γ Iµ1,µ2µ3K1...Kr−2 = sIµ1µ2µ3K1...Kr−2

+ 1
3 (uIµ1µ2µ3K1...Kr−2 + uIµ1µ3µ2K1...Kr−2)

− pol(SG,(2,r−1) × SG,(1,r) × T r−1
m+nSGen × SCla × UG,(0,r−1)).

Continuing in this way by increasing the order of general covariant
derivatives we get (7.2).

Moreover, it is easy to see that

ψG,r ◦ ϕG,r = idT rm+nSGen×T r−2
m SCla

.

Now we have to distinguish three possibilities.

(A) Let s = r − 1. The groups Gr+1
m and Gr+1

m,n acting on T r−1
m SCla and

T rmSGen, respectively, are of the same order. Moreover, we consider Gr+1
m as

a subgroup in Gr+1
m,n.

Let us set

Ar := T r−1
m+nSGen × T r−2

m SCla × Ur−1 ×Wr−2.

Then the map f◦(ψG,r, ψC,r−1) : SG,r+1×SC,r+1×Ar → SF satisfies the con-
ditions of the orbit reduction (see Theorem 2.1) for the group epimorphism
πr+1
r × qr+1

r (n) : Gr+1
m,n → Grm,n × Br+1

r (n) and the surjective submersion
pr3 : SG,r+1 × SC,r+1 × Ar → Ar. Indeed, if we denote by Kr+1

r the kernel
of πr+1

r × qr+1
r (n), then SG,r+1 × SC,r+1 is a Kr+1

r -orbit. Indeed, it is easy
to see that we have the coordinates

(aλµ1...µr+1
, aIµ1...µi+1K1...Kj ), i+ j = r,
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on Kr+1
r and the restriction of the action of Gr+1

m,n on SG,r+1 × SC,r+1 to
Kr+1
r has the coordinate expression

s̄λµ1...µr+1
= sλµ1...µr+1

+ aλµ1...µr+1
,

s̄Iµ1...µi+1K1...Kj = siµ1...µi+1K1...Kj + aIµ1...µi+1K1...Kj .

Hence this action is simply transitive and there exists a unique (Grm,n ×
Br+1
r (n))-equivariant map gr : Ar → SF such that the diagram

SG,r+1 × SC,r+1 ×Ar

Ar �
(πrr−1×π

r−1
r−2 ,RG,r−1,RC,r−2)�

pr 3

T rm+nSGen × T r−1
m SCla

(ψ
G,r ,ψ

C,r−1 )
-

SF
�

f
gr

-

commutes. So f ◦(ψG,r, ψC,r−1) = gr ◦pr3 and if we compose both sides with
(ϕG,r, ϕC,r−1), by considering

pr3 ◦(ϕG,r, ϕC,r−1) = (πrr−1 × πr−1
r−2,RG,r−1,RC,r−2),

we obtain
f = gr ◦ (πrr−1 × πr−1

r−2,RG,r−1,RC,r−2).

In the second step we consider the same construction for the map gr and
obtain the commutative diagram

SG,r × SC,r ×Ar−1 × Ur−1 ×Wr−2

Ar−1 × Ur−1 ×Wr−2
�

(πr−1
r−2×π

r−2
r−3 ,RG,r−2,RC,r−3,idUr−1×Wr−2

)�

pr3,4
,5

Ar

(ψ
G,r−1 ,ψ

C,r−2 ,id)
-

SF
�

gr
gr−1

-

So there exists a unique (Gr−1
m,n × Br+1

r−1(n))-equivariant map gr−1 : Ar−1 ×
Ur−1 ×Wr−2 → SF such that

gr = gr−1 ◦ (πr−1
r−2 × π

r−2
r−3,RG,r−2,RC,r−3, idUr−1×Wr−2),

i.e.
f = gr−1 ◦ (πrr−2 × πr−1

r−3,RG,r−2,RG,r−1,RC,r−3,RC,r−2).
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Proceeding in this way we get in the last step a unique (G1
m,n×Br+1

1 (n))-
equivariant map g1 : SGen × U (r−1) ×W(r−2) → SF such that

f = g1 ◦ (πr0 ◦ pr1,R
(r−1)
G ,R(r−2)

C ).

Finally, g1 satisfies the orbit reduction theorem for the group epimor-
phism G1

m,n × Br+1
1 (n) → G1

m × Gr+1
n , given by the epimorphism p1

1 × p1
2 :

G1
m,n → G1

m × G1
n and the surjective submersion pr2,3 : SGen × U (r−1) ×

W(r−2) → U (r−1) ×W(r−2). Indeed, SGen is an orbit with respect to the ac-
tion of the kernel of the group epimorphism G1

m,n ×Br+1
1 (n)→ G1

m ×Gr+1
n

(this follows from Γ̄ Iλ = Γ Iλ + aIλ, where aIλ are the coordinates on the
kernel of G1

m,n×Br+1
1 (n)→ G1

m×Gr+1
n ). So there is a unique (G1

m×Gr+1
n )-

equivariant map g : U (r−1) × W(r−2) → SF such that g1 = g ◦ pr2,3 and
hence

f = g ◦ (R(r−1)
G ,R(r−2)

C ).

(B) Let s = r− 2. We have the action of the group Grm on T r−2
m SCla and

the action of the group Gr+1
m,n on T rm+nSGen. We consider Grm as a subgroup

in Gr+1
m,n .

Then the map f ◦ (ψG,r idT r−2
m SCla

) : SG,r+1 × T r−1
m+nSGen × T r−2

m SCla

× Ur−1 → SF satisfies the conditions of the orbit reduction (Theorem 2.1)
for the group epimorphism πr+1

r × qr+1
r (n) : Gr+1

m,n → Grm,n × Br+1
r (n) and

the surjective submersion pr2,3,4 : SG,r+1 × T r−1
m+nSGen × T r−2

m SCla ×Ur−1 →
T r−1
m+nSGen×T r−2

m SCla×Ur−1. Indeed, the space SG,r+1 =
�

i+j=r SG,(i+1,j) is
a Kr+1

r -orbit. Let us note that the action of Br+1
r on

�
SG,r+1 is transitive,

but not simply transitive. Hence there exists a unique (Grm,n × Br+1
r (n))-

equivariant map gr : T r−1
m+nSGen × T r−2

m SCla × Ur−1 → SF such that the
diagram

SG,r+1 × T r−1
m+nSGen × T r−2

m SCla × Ur−1

T r−1
m+nSGen × T r−2

m SCla × Ur−1
�

(πrr−1×id,RG,r−1)�

pr2,3
,4

T rm+nSGen × T r−2
m SCla

(ψ
G,r ,id)

-

SF
�

fgr

-

commutes. So f ◦(ψP,r, idT r−2
m SCla

) = gr◦pr2,3,4 and if we compose both sides
with the mapping (ϕG,r, idT r−2

m SCla
), by considering pr2,3,4 ◦(ϕG,r, idT r−2

m SCla
)

= (πrr−1 × idT r−2
m SCla

,RG,r−1), we obtain

f = gr ◦ (πrr−1 × idT r−2
m SCla

,RG,r−1).
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Further we proceed as in the second step in (A) to get a unique (G1
m×Gr+1

n )-
equivariant map g :W(r−3) × U (r−1) → SF such that

f = g ◦ (R(r−1)
G ,R(r−3)

C ).

(C) Let s > r− 1. We have the action of the group Gs+2
m on T smSCla and

Gr+1
m,n on T rmSGen. We consider Gs+2

m as a subgroup of Gs+2
m,n and both T smSCla

and T rmSGen as left Gs+2
m,n-manifolds.

By [J2] there exists a Gr+1
m,n-equivariant mapping

gr+1 : T rmSGen × T r−1
m SCla ×Wr−1 × · · · ×Ws−1 → SF

such that

f = gr+1 ◦ (idT rmSGen
×πsr−1,RC,r−1, . . . ,RC,s−1).

gr+1 then satisfies condition (A) and we obtain a unique (G1
m × Gr+1

n )-
equivariant morphism

g : U (r−1) ×W(r−2) → SF

such that gr+1 = g ◦ (R(r−1)
G ,R(r−2)

C , idWr−1×···×Ws−1), i.e.

f = g ◦ (R(r−1)
G ,R(s−1)

C ).

Summarizing all cases we have

f = g ◦ (R(r−1)
G ,R(s−1)

C )

for any s ≥ r− 2 and the restriction of g to C(r−1)
G ×C(r−2)

C is the uniquely
determined map we wished to find.

Let us denote by Kt the kernel of the group epimorphism Gtm,n → G1
m×

Gr+1
n . In the above Theorem 7.1 we have found a map g which factorizes

f , but we have not proved that (R(r−1)
G ,R(s−1)

C ) : T rm+nSGen × T smSCla →
C

(r−1)
G × C(s−1)

C satisfies the orbit condition, that is,

(R(r−1)
G ,R(s−1)

C )−1(r(r−1)
G , r

(s−1)
C )

is a Kt-orbit for any (r(r−1)
G , r

(s−1)
C ) ∈ C(r−1)

G × C(s−1)
C . Now we shall prove

it.

Lemma 7.2. If (jr0γ, j
s
0λ), (jr0 γ́, j

s
0λ́) ∈ T rm+nSGen × T smSCla satisfy

(R(r−1)
G ,R(s−1)

C )(jr0γ, j
s
0λ) = (R(r−1)

G ,R(s−1)
C )(jr0 γ́, j

s
0λ́),

then there is an element h ∈ Kt such that h(jr0 γ́, j
s
0λ́) = (jr0γ, j

s
0λ).

Proof. Consider the orbit set (T rm+nSGen×T smSCla)/Kt. It is a (G1
m×Gtn)-

set. Clearly the factor projection

p : T rm+nSGen × T smSCla → (T rm+nSGen × T smSCla)/Kt
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is a Gtm,n-map. By Theorem 7.1 there is a (G1
m ×Gr+1

n )-equivariant map

g : C(r−1)
G × C(s−1)

C → (T rm+nSGen × T smSCla)/Kt

satisfying p = g ◦ (R(r−1)
G ,R(s−1)

C ). If

(R(r−1)
G ,R(s−1)

C )(jr0γ, j
s
0λ) = (R(r−1)

G ,R(s−1)
C )(jr0 γ́, j

s
0λ́) = (r(r−1)

G , r
(s−1)
C ),

then p(jr0γ, j
s
0λ) = p(jr0 γ́, j

s
0λ́) = g(r(r−1)

P , r
(s−1)
C ). This proves Lemma 7.2.

Proof of Theorem 5.4. From Theorem 7.1 and Lemma 7.2 it follows
that the equivariant mappings associated with natural operators on general
connections on Y and classical connections on M with values in (1, r + 1)-
order natural bundles factorize through formal curvature mappings. So, the
operators factorize through curvature operators and their covariant, general
covariant and vertical derivatives.

8. Examples. We give applications of the reduction Theorem 5.4 for
general connections on concrete examples. The first example is prolongation
of Γ to J1Y →M .

By [KMS] there are two canonical prolongations of Γ , by means of a
classical symmetric connection Λ on M , to general connections on p1 : J1Y
→M . Let Γ be given by its horizontal lift

(8.1) dI = Γ Iλ(x, y)dλ.

Then the flow prolongation J 1(Γ,Λ) is given by (8.1) and

(8.2) dyIµ =
(
∂Γ Iλ
∂xµ

+
∂Γ Iλ
∂yP

yPµ + Λλ
ρ
µ(Γ Iρ − yIρ)

)
dλ.

The second prolongation P (Γ,Λ) is given by (8.1) and

(8.3) dyIµ =
(
∂Γ Iµ
∂xλ

+
∂Γ Iλ
∂yP

(yPµ −ΓP µ) +
∂Γ Iµ
∂yp

ΓP λ−Λλρµ(yIρ−Γ Iρ)
)
dλ.

The difference Σ = J 1(Γ,Λ)− P (Γ,Λ) is a section

Σ : Y → VMJ
1Y ⊗Y T ∗M.

In coordinates this section is given by

(xλ, yI , yIλ, u
I
λ, u

I
λµ) ◦Σ = (xλ, yI , yIλ, 0, R[Γ ]Iλµ),

i.e. Σ is in the kernel of the projection VMJ
1Y ⊗Y T ∗M → V Y ⊗Y T ∗M .

But this kernel is identified with V Y ⊗Y (T ∗M⊗T ∗M) and Σ = J 1(Γ,Λ)−
P (Γ,Λ) = R[Γ ].

Theorem 5.4 can be applied to find operators with values in a (G1
m×Grn)-

bundle. For instance there is only the zero operator with values in V Y ⊗Y
T ∗M (this follows from the homogeneous function theorem [KMS, p. 213]).
As a consequence there is no other natural connection on Y given by Γ
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and Λ. This implies that any prolongations of Γ , by means of Λ, to general
connections on p1 : J1Y →M are over Γ . So the difference of any two such
prolonged connections is a section of V Y ⊗(T ∗M⊗T ∗M). From Theorem 5.4
and the homogeneous function theorem we can easily see that all operators
with values in V Y ⊗ (T ∗M ⊗ T ∗M) are scalar multiples of R[Γ ] and we
conclude that any connection on p1 : J1Y → M is one of the canonical
prolongations, for instance the flow prolongation, plus scalar multiples of
R[Γ ]. So we have

D(Γ,Λ) = J 1(Γ,Λ) + tR[Γ ], t ∈ R.
If we put R[Γ ] = J 1(Γ,Λ)−P (Γ,Λ) we find that all prolonged connections
are affine combinations of the canonical prolongations J 1(Γ,Λ) and P (Γ,Λ),
which is exactly Proposition 45.8 of [KMS].

As the second example we express normal fields by Mikulski [M] via
derivatives of curvature tensors. Consider the normal field B(i,j) which is
a field of order (1, j + 1). By Theorem 5.4 and the homogeneous function
theorem [KMS, p. 213] we get

BI
µ1,...,µiK1...Kjλ = RIλ(µ1;...;µi),K1...Kj + pol,

where pol is a polynomial constructed from the general covariant and verti-
cal derivatives of R[Γ ] of total orders less than r−1 = i+j−1 and from the
covariant derivatives of R[Λ] of orders less than r−1. Moreover this polyno-
mial has to satisfy the identities (5.2) and (5.3). For r = 1, 2 this relation is
given in Remark 5.2. For r = 3 we get B3 = (BI

µ1µ2µ3λ
, BI

µ1µ2Kλ
, BI

µK1K2λ
)

given by

BI
µ1µ2µ3λ = RIλ(µ1;µ2;µ3) +ARIρ(µ1

Rµ2
ρ
µ3)λ +BRIλ(µ1

Rµ2
ρ
µ3)ρ,

BI
µ1µ2Kλ = RIλ(µ1;µ2),K , BI

µK1K2λ = RIλµ,K1K2 ,

where A,B ∈ R.
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