
ANNALES
POLONICI MATHEMATICI

102.3 (2011)

Remarks on strongly Wright-convex functions
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and Sergio Rivas (Caracas)

Abstract. Some properties of strongly Wright-convex functions are presented. In
particular it is shown that a function f : D → R, where D is an open convex subset of an
inner product space X, is strongly Wright-convex with modulus c if and only if it can be
represented in the form f(x) = g(x) + a(x) + c‖x‖2, x ∈ D, where g : D → R is a convex
function and a : X → R is an additive function. A characterization of inner product spaces
by strongly Wright-convex functions is also given.

1. Introduction. Let (X, ‖ · ‖) be a normed space, D a convex subset
of X and let c > 0. A function f : D → R is called:

• strongly convex with modulus c if

(1.1) f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y)− ct(1− t)‖x− y‖2

for all x, y ∈ D and t ∈ [0, 1];
• strongly Wright-convex with modulus c if

(1.2) f(tx+(1−t)y)+f((1−t)x+ty) ≤ f(x)+f(y)−2ct(1−t)‖x−y‖2

for all x, y ∈ D and t ∈ [0, 1];
• strongly midconvex (or strongly Jensen convex) with modulus c if (1.1)

is assumed only for t = 1/2, that is,

(1.3) f

(
x + y

2

)
≤ f(x) + f(y)

2
− c

4
‖x− y‖2, x, y ∈ D.

We say that f is strongly convex, strongly Wright-convex, or strongly mid-
convex if it satisfies the condition (1.1), (1.2) or (1.3), respectively, with
some c > 0. Note that every strongly convex function is strongly Wright-
convex, and every strongly Wright-convex function is strongly midconvex
(with the same modulus c), but not the converse (see Example 1.1 below).
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The usual notions of convexity, Wright-convexity and midconvexity corre-
spond to the case c = 0. A comprehensive review on this subject can be
found, for instance, in [Ku], [RV], [N-P]. Strongly convex functions have
been introduced by Polyak [P] and they play an important role in optimiza-
tion theory and mathematical economics. Many properties and applications
of them can be found in the literature (see, for instance, [J], [MN], [M], [P],
[RW], [RV], [V]). Strongly midconvex functions were considered in [AGNS],
[V], [NP].

The aim of this note is to present some properties of strongly Wright-
convex functions. First we prove that a function f : D → R is strongly
Wright-convex with modulus c if and only if f = f1+a, where f1 is a function
strongly convex with modulus c and a is an additive function. This is a
counterpart to the known result of Ng [Ng1]. Next we show that if a strongly
midconvex function f is majorized by a strongly midconcave function then
f is strongly Wright-convex. Finally we prove that in inner product spaces
every function f strongly Wright-convex with modulus c can be represented
in the form f = h + c‖ · ‖2, where h is Wright-convex. Moreover, we show
that this condition characterizes inner product spaces among normed spaces.

As was mentioned above, strong convexity with modulus c implies strong
Wright-convexity with modulus c, which in turn implies strong midconvexity
with modulus c. The following examples show that the converse implications
are not true.

Example 1.1. Let a : R→ R be an additive discontinuous function and
f1(x) = a(x) + x2, x ∈ R. By simple calculation one can check that f1 is
strongly Wright-convex with modulus 1. However, f1 is not strongly convex
(even it is not convex) because it is not continuous.

Now, take the function f2(x) = |a(x)| + x2, x ∈ R. Clearly, f2 is
strongly midconvex, but it is not strongly Wright-convex (it is not even
Wright-convex) because it is discontinuous and bounded from below (see
[N2, Prop.2]).

2. A representation. In [Ng1] Ng proved that a function f defined on
a convex subset of Rn is Wright-convex if and only if it can be represented in
the form f = f1 +a, where f1 is a convex function and a is an additive func-
tion (see also [N2]). Kominek [K1] extended that result to functions defined
on algebraically open subsets of a vector space. In this section we present
a similar representation theorem for strongly Wright-convex functions. We
start with the following useful fact.

Lemma 2.1. Let D be a convex subset of a normed space and c > 0. If a
function f : D → R is convex and strongly midconvex with modulus c, then
it is strongly convex with modulus c.
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Proof. Fix arbitrary x, y ∈ D, x 6= y, and t ∈ (0, 1). Since f is strongly
midconvex with modulus c, it satisfies the condition

(2.1) f(qx + (1− q)y) ≤ qf(x) + (1− q)f(y)− cq(1− q)‖x− y‖2

for all dyadic q ∈ (0, 1) (see [AGNS]). Consider the function g : [0, 1] → R
defined by

g(s) = f(sx + (1− s)y), s ∈ [0, 1].

By (2.1) we have

(2.2) g(q) ≤ qg(1) + (1− q)g(0)− cq(1− q)‖x− y‖2

for all dyadic q ∈ (0, 1). Since f is convex, also g is convex and hence it
is continuous on the open interval (0, 1). Take a sequence (qn) of dyadic
numbers in (0, 1) tending to t. Using (2.2) for q = qn and the continuity of
g at t, we obtain

g(t) ≤ tg(1) + (1− t)g(0)− ct(1− t)‖x− y‖2.

Now, by the definition of g, we get

f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y)− ct(1− t)‖x− y‖2,

which finishes the proof.

Theorem 2.2. Let D be an open convex subset of a normed space X and
c > 0. A function f : D → R is strongly Wright-convex with modulus c if
and only if there exist a function f1 : D → R strongly convex with modulus c
and an additive function a : X → R such that

(2.3) f(x) = f1(x) + a(x), x ∈ D.

Proof. Assume first that f is strongly Wright-convex with modulus c.
Then f is also Wright-convex and hence, by the result of Kominek [K1], f
can be represented in the form f = f1 + a, with some convex function f1

and additive function a. Since f is strongly Wright-convex with modulus c,
the function f − a is also strongly Wright-convex with modulus c and, con-
sequently, it is strongly midconvex with modulus c. Hence, by Lemma 2.1,
f1 = f − a is strongly convex with modulus c, which proves that f has the
representation (2.3). The reverse implication is obvious.

3. Strongly midconvex functions with strongly midconcave
bounds. It is known that if a midconvex function f is bounded from above
by a midconcave function g then f is Wright-convex and g is Wright-concave.
Moreover, there exist a convex function f1, a concave function g1 and an ad-
ditive function a such that f = f1+a and g = g1+a (see [Ng2], [N1], [K2]). In
this section we present a counterpart of that result for strongly midconvex
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functions. We say that a function f is strongly concave (strongly midcon-
cave) with modulus c if −f is strongly convex (strongly midconvex) with
modulus c. In the proof of the theorem below we adopt the method used
in [K2].

Theorem 3.1. Let D be an open convex subset of a normed space X and
c be a positive constant. Assume that f : D → R is strongly midconvex with
modulus c, g : D → R is strongly midconcave with modulus c and f ≤ g on D.
Then there exist an additive function a : X → R, a continuous function f1 :
D → R strongly convex with modulus c and a continuous function g1 : D → R
strongly concave with modulus c such that

(3.1) f(x) = f1(x) + a(x) and g(x) = g1(x) + a(x)

for all x ∈ D.

Proof. Since f is strongly midconvex, it is also midconvex. Therefore, by
the theorem of Rodé [R], there exists a Jensen function a1 : D → R such
that a1(x) ≤ f(x), x ∈ D. This function is of the form

a1(x) = a(x) + b, x ∈ D,

where a : X → R is an additive function and b is a constant (see [Ku]). The
function g1 = g − a is midconcave and

g1(x) = g(x)− a(x) ≥ f(x)− a(x) ≥ b, x ∈ D.

Therefore by the famous Bernstein–Doetsch theorem (see [Ku], [RV]), g1 is
continuous and concave. On the other hand, the function f1 = f − a is mid-
convex and f1 ≤ g1 on D. Hence, applying the Bernstein–Doetsch theorem
once more, we infer that f1 is continuous and convex. Using Lemma 2.1 we
deduce that f1 is strongly convex with modulus c and g1 is strongly concave
with modulus c. Thus we get the representations (3.1), which completes the
proof.

4. A characterization of inner product spaces by strongly
Wright-convex functions. In this section we show that in the case where
D is a convex subset of an inner product space, a function f : D → R is
strongly Wright-convex with modulus c if and only if it is of the form

(4.1) f(x) = h(x) + c‖x‖2, x ∈ D,

where h : D → R is a Wright-convex function. Moreover, we show that the
fact that every strongly Wright-convex function has the representation (4.1)
characterizes inner product spaces among normed spaces. Similar character-
izations of inner product spaces by strongly convex and strongly midconvex
functions are presented in [NP].
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Theorem 4.1. Let (X, ‖ · ‖) be a real normed space. The following con-
ditions are equivalent:

1. (X, ‖ · ‖) is an inner product space.
2. For every c > 0 and for every function f : D → R defined on a convex

subset D of X, f is strongly Wright-convex with modulus c if and only
if h = f − c‖ · ‖2 is Wright-convex.

3. ‖ · ‖2 : X → R is strongly Wright-convex with modulus 1.

Proof. To prove 1⇒2 assume that (X, ‖ · ‖) is an inner product space
and f : D → R is strongly Wright-convex with modulus c. Using elementary
properties of the inner product we get

h(tx + (1− t)y) + h((1− t)x + ty)

= f(tx + (1− t)y)− c‖tx + (1− t)y‖2

+ f((1− t)x + ty)− c‖((1− t)x + ty)‖2

≤ f(x) + f(y)− 2ct(1− t)‖x− y‖2

− c‖tx + (1− t)y‖2 − c‖((1− t)x + ty)‖2

= f(x) + f(y)− c(2t(1− t)(‖x‖2 − 2〈x|y〉+ ‖y‖2)
+ t2‖x‖2 + 2t(1− t)〈x|y〉
+ (1− t)2‖y‖2 + (1− t)2‖x‖2 + 2t(1− t)〈x|y〉+ t2‖y‖2)

= f(x)− c‖x‖2 + f(y)− c‖y‖2 = h(x) + h(y),

which shows that h is Wright-convex.
Conversely, if h is Wright-convex and f = h + c‖ · ‖2, then

f(tx + (1− t)y) + f((1− t)x + ty)

= h(tx + (1− t)y) + c‖tx + (1− t)y‖2

+ h((1− t)x + ty) + c‖((1− t)x + ty)‖2

≤ h(x) + h(y) + c(t2‖x‖2 + 4t(1− t)〈x|y〉
+ (1− t)2‖y‖2 + (1− t)2‖x‖2 + t2‖y‖2)

= h(x)+ c‖x‖2 +h(y)+ c‖y‖2−2ct(1− t)(‖x‖2−2〈x|y〉+‖y‖2)
= f(x) + f(y)− 2ct(1− t)‖x− y‖2,

which proves that f is strongly Wright-convex with modulus c.
To see that 2⇒3 take f = c‖ · ‖2. Then f is strongly Wright-convex

with modulus c because h = f − c‖ · ‖2 = 0 is Wright-convex. Consequently,
‖ · ‖2 = c−1f is strongly Wright-convex with modulus 1.
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To prove 3⇒1 observe that by the strong Wright-convexity with modu-
lus 1 of ‖ · ‖2 we have, for t = 1/2,∥∥∥x + y

2

∥∥∥2
≤ ‖x‖

2 + ‖y‖2

2
− 1

4
‖x− y‖2,

and hence

(4.2) ‖x + y‖2 + ‖x− y‖2 ≤ 2‖x‖2 + 2‖y‖2

for all x, y ∈ X. Now, putting u = x + y and v = x− y in (4.2), we get

(4.3) 2‖u‖2 + 2‖v‖2 ≤ ‖u + v‖2 + ‖u− v‖2, u, v ∈ X.

Conditions (4.2) and (4.3) mean that the norm ‖·‖ satisfies the parallelogram
law. Hence, by the classical Jordan–von Neumann theorem, (X, ‖ · ‖) is an
inner product space.

Using the above Theorem 4.1 and the representation of Wright-convex
functions due to Ng [Ng1] (cf. also Kominek [K1]), or alternatively, using
Theorem 2.2 and the representation of strongly convex functions in inner
product spaces proved by Nikodem and Páles [NP], we obtain the follow-
ing characterization of strongly Wright-convex functions in inner product
spaces.

Corollary 4.2. Let (X, ‖ · ‖) be a real inner product space, D be an
open convex subset of X and c > 0. A function f : D → R is strongly
Wright-convex with modulus c if and only if there exist a convex function
g : D → R and an additive function a : X → R such that

(4.4) f(x) = g(x) + a(x) + c‖x‖2, x ∈ D.

Remark 4.3. It is well known that convex functions defined on an open
subset of a finite-dimensional space are continuous. Therefore, in the case
where X = Rn (with the Euclidean norm), the function g appearing in
the representation (4.4) is convex and continuous. In infinite-dimensional
inner product spaces not every strongly Wright-convex function f can be
represented in the form (4.4) with convex and continuous g (see Example 4.4
below). However, if f is strongly Wright-convex with modulus c and has
a (strongly) midconcave bound then, in view of Theorem 3.1, it has the
representation (4.4) with convex continuous g.

Example 4.4 (cf. [K1]). Assume that X is an infinite-dimensional inner
product space and l : X → R is a discontinuous linear functional. Let f(x) =
|l(x)| + ‖x‖2, x ∈ X. By Theorem 4.1, f is strongly Wright-convex with
modulus 1. Suppose that

(4.5) f(x) = g(x) + a(x) + ‖x‖2, x ∈ X,



Strongly Wright-convex functions 277

with an additive function a and a convex continuous function g. Then |l(x)| =
g(x) + a(x), x ∈ X. Consider U = {x ∈ X : g(x) < 1}. By the conti-
nuity of g, the set U is open and nonempty (0 ∈ U). Since a is additive
and

a(x) = |l(x)| − g(x) > −1, x ∈ U,

it follows that a is continuous. Consequently, in view of (4.5), f is continuous,
which contradicts the definition of f .
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