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Remarks on strongly Wright-convex functions

by NELSON MERENTES (Caracas), KAzIMIERZ NIKODEM (Bielsko-Biata)
and SERGIO Rivas (Caracas)

Abstract. Some properties of strongly Wright-convex functions are presented. In
particular it is shown that a function f : D — R, where D is an open convex subset of an
inner product space X, is strongly Wright-convex with modulus ¢ if and only if it can be
represented in the form f(z) = g(x) + a(x) + ¢||z||?, z € D, where g : D — R is a convex
function and a : X — R is an additive function. A characterization of inner product spaces
by strongly Wright-convex functions is also given.

1. Introduction. Let (X, | - ||) be a normed space, D a convex subset
of X and let ¢ > 0. A function f: D — R is called:

e strongly convex with modulus c if
(1.1) fltz+ (1 =t)y) <tf(z) + (1 —=1)f(y) = ct(l = )|z -y
for all z,y € D and t € [0, 1];
o strongly Wright-convex with modulus c if
(12)  flz+1-t)y)+f(1-tha+ty) < f2)+f(y)—2ct(1-t) |z -y
for all z,y € D and t € [0, 1];

o strongly midconvex (or strongly Jensen convex) with modulus c if (|1.1))
is assumed only for t = 1/2, that is,

(1.3) f(“y) <T@FIW ey syen.

2 2 4

We say that f is strongly convex, strongly Wright-convex, or strongly mid-
convex if it satisfies the condition , or , respectively, with
some ¢ > 0. Note that every strongly convex function is strongly Wright-
convex, and every strongly Wright-convex function is strongly midconvex
(with the same modulus ¢), but not the converse (see Example 1.1 below).
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The usual notions of convexity, Wright-convexity and midconvexity corre-
spond to the case ¢ = 0. A comprehensive review on this subject can be
found, for instance, in [Ku|, |[RV], |[N-P]. Strongly convex functions have
been introduced by Polyak [P] and they play an important role in optimiza-
tion theory and mathematical economics. Many properties and applications
of them can be found in the literature (see, for instance, [J], [MN]|, [M], [P],
[RW], [RV], [V]). Strongly midconvex functions were considered in [AGNS],
V], [NP].

The aim of this note is to present some properties of strongly Wright-
convex functions. First we prove that a function f : D — R is strongly
Wright-convex with modulus c if and only if f = fi+4a, where f; is a function
strongly convex with modulus ¢ and a is an additive function. This is a
counterpart to the known result of Ng [NgI]. Next we show that if a strongly
midconvex function f is majorized by a strongly midconcave function then
f is strongly Wright-convex. Finally we prove that in inner product spaces
every function f strongly Wright-convex with modulus ¢ can be represented
in the form f = h + ¢| - ||?, where h is Wright-convex. Moreover, we show
that this condition characterizes inner product spaces among normed spaces.

As was mentioned above, strong convexity with modulus ¢ implies strong
Wright-convexity with modulus ¢, which in turn implies strong midconvexity
with modulus ¢. The following examples show that the converse implications
are not true.

EXAMPLE 1.1. Let a : R — R be an additive discontinuous function and
fi(z) = a(z) + 2%, * € R. By simple calculation one can check that f is
strongly Wright-convex with modulus 1. However, f; is not strongly convex
(even it is not convex) because it is not continuous.

Now, take the function fo(z) = |a(z)| + 2%, * € R. Clearly, fy is
strongly midconvex, but it is not strongly Wright-convex (it is not even
Wright-convex) because it is discontinuous and bounded from below (see
IN2, Prop.2]).

2. A representation. In [Ngl| Ng proved that a function f defined on
a convex subset of R™ is Wright-convex if and only if it can be represented in
the form f = f; 4+ a, where f is a convex function and « is an additive func-
tion (see also [N2]). Kominek [K1| extended that result to functions defined
on algebraically open subsets of a vector space. In this section we present
a similar representation theorem for strongly Wright-convex functions. We
start with the following useful fact.

LEMMA 2.1. Let D be a convex subset of a normed space and ¢ > 0. If a
function f: D — R is convex and strongly midconvex with modulus c, then
it 1s strongly convex with modulus c.
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Proof. Fix arbitrary z,y € D, x # y, and t € (0,1). Since f is strongly
midconvex with modulus ¢, it satisfies the condition

(2.1) flaz+ (1 —q)y) < qf(@) + (1= q)f(y) — cq(1 = g)[|x — yl|

for all dyadic ¢ € (0,1) (see JAGNS]). Consider the function ¢ :[0,1] — R
defined by

g(s) = f(sz+(1—-19)y), se€][0,1].
By we have
(2.2) 9(q) < q9(1) + (1 — @)g(0) — cq(1 — q) ||z — y]|?

for all dyadic ¢ € (0,1). Since f is convex, also g is convex and hence it
is continuous on the open interval (0,1). Take a sequence (g,) of dyadic
numbers in (0, 1) tending to ¢. Using for ¢ = g, and the continuity of
g at t, we obtain

g(t) <tg(1) + (1 —1)g(0) — ct(1 —t) |z — y[*.
Now, by the definition of g, we get
fltz+ (1 —t)y) < tf(x) + (1 —1)f(y) —ct(l = 1)z —yl|*,
which finishes the proof. =

THEOREM 2.2. Let D be an open convex subset of a normed space X and
¢ > 0. A function f : D — R is strongly Wright-convex with modulus c if
and only if there exist a function fi : D — R strongly convex with modulus c
and an additive function a : X — R such that

(2.3) f(z) = filz) +a(x), x€D.

Proof. Assume first that f is strongly Wright-convex with modulus c.
Then f is also Wright-convex and hence, by the result of Kominek [KI], f
can be represented in the form f = f; + a, with some convex function f;
and additive function a. Since f is strongly Wright-convex with modulus c,
the function f — a is also strongly Wright-convex with modulus ¢ and, con-
sequently, it is strongly midconvex with modulus c¢. Hence, by Lemma 2.1,
f1 = f — a is strongly convex with modulus ¢, which proves that f has the
representation . The reverse implication is obvious. =

3. Strongly midconvex functions with strongly midconcave
bounds. It is known that if a midconvex function f is bounded from above
by a midconcave function g then f is Wright-convex and g is Wright-concave.
Moreover, there exist a convex function f1, a concave function g; and an ad-
ditive function a such that f = fi+a and g = g1+a (see [Ng2], [N1], [K2]). In
this section we present a counterpart of that result for strongly midconvex
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functions. We say that a function f is strongly concave (strongly midcon-
cave) with modulus ¢ if —f is strongly convex (strongly midconvex) with
modulus c¢. In the proof of the theorem below we adopt the method used
in [K2].

THEOREM 3.1. Let D be an open convex subset of a normed space X and
¢ be a positive constant. Assume that f : D — R is strongly midconvex with
modulus c, g : D — R 1is strongly midconcave with modulus ¢ and f < g on D.
Then there exist an additive function a : X — R, a continuous function fi :
D — R strongly convex with modulus ¢ and a continuous function gy : D — R
strongly concave with modulus ¢ such that

(3.1) f(@) = filz) +alz) and  g(z) = gi(z)+alz)
forallx € D.

Proof. Since f is strongly midconvex, it is also midconvex. Therefore, by
the theorem of Rodé [R], there exists a Jensen function a; : D — R such
that a1 (z) < f(z), € D. This function is of the form

ai(z) =a(x)+b, z€D,

where a : X — R is an additive function and b is a constant (see [Kul). The
function g1 = g — a is midconcave and

g1(z) = g(x) —a(z) > f(x) —a(x) >b, x€D.

Therefore by the famous Bernstein—Doetsch theorem (see [Kul, [RV]), g1 is
continuous and concave. On the other hand, the function f; = f — a is mid-
convex and f; < g1 on D. Hence, applying the Bernstein—Doetsch theorem
once more, we infer that fi is continuous and convex. Using Lemma 2.1 we
deduce that fi is strongly convex with modulus ¢ and g; is strongly concave
with modulus ¢. Thus we get the representations , which completes the
proof. m

4. A characterization of inner product spaces by strongly
Wright-convex functions. In this section we show that in the case where
D is a convex subset of an inner product space, a function f : D — R is
strongly Wright-convex with modulus ¢ if and only if it is of the form

(4.1) f(x) = h(z) +c|z||*, =ze€D,

where h : D — R is a Wright-convex function. Moreover, we show that the
fact that every strongly Wright-convex function has the representation
characterizes inner product spaces among normed spaces. Similar character-
izations of inner product spaces by strongly convex and strongly midconvex
functions are presented in [NPJ.
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THEOREM 4.1. Let (X, |- ||) be a real normed space. The following con-
ditions are equivalent:

1. (X, ]| -]|) is an inner product space.

2. For every ¢ > 0 and for every function f : D — R defined on a convex
subset D of X, f is strongly Wright-convex with modulus c if and only
if h=f—c| | is Wright-convez.

3. |- |17 : X — R is strongly Wright-convex with modulus 1.

Proof. To prove 1=-2 assume that (X, || - ||) is an inner product space
and f: D — R is strongly Wright-convex with modulus c. Using elementary
properties of the inner product we get

h(tz + (1 —t)y) + h((1 — )z + ty)

= flte + (1 = t)y) - clte + (1 - t)y|
+ (L =tz +ty) — cll(1 - t)z + ty)|
< flz) + fy) = 2et(1 = t) [z -yl
—cfte+ (1= t)y|* — ]| (1 — )z + ty)|?
= f@) + fy) — et = t)([l«]* - 2{zly) + )
+ 82|z 4 26(1 — t)(ly)
+ (L= t)ly* + (1 = )2l ]|* + 2¢(1 — t)(aly) + £]ly]?)
= f(@) —cll|® + f(y) = clly|* = h(z) + h(y),
which shows that h is Wright-convex.
Conversely, if h is Wright-convex and f = h + c|| - ||?, then

[z + (1 =t)y) + f(1 =)z + ty)
= h(tz + (1 — t)y) + |tz + (1 — t)y||?
+ (1 =)z +ty) + (1 = t)a + ty)[|?
< h(x) + h(y) + c(®|l2]|* + 4t(1 — t)(z]y)
+ (L= )2yl + (1 = )?||]* + [y [I*)
= h(@) +cl|z|* +h(y) + cllyll” —2¢t(1 =) ([l2]|* = 2(z[y) + |y]*)
= f@) + f(y) — 2ct(1 = )]z - y]?,
which proves that f is strongly Wright-convex with modulus c.
To see that 2=3 take f = c|| - ||>. Then f is strongly Wright-convex

with modulus ¢ because h = f —c|| - ||* = 0 is Wright-convex. Consequently,
| - ||? = ¢~ 1f is strongly Wright-convex with modulus 1.
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To prove 3=-1 observe that by the strong Wright-convexity with modu-
lus 1 of || - ||? we have, for t = 1/2,

93+3/H2 ||+ llyll* 1 2

< — |y —

e Lo = vl

and hence

(4.2) Iz + ylI* + [l — yl* < 2[|z[|* + 2]y

for all z,y € X. Now, putting u = x +y and v =z — y in (4.2]), we get
(4.3) 20ul® + 2[ol® < lu+ol* + lu—v]?,  wveX

Conditions (4.2)) and (4.3) mean that the norm ||-|| satisfies the parallelogram
law. Hence, by the classical Jordan—von Neumann theorem, (X, | - ||) is an

inner product space. m

Using the above Theorem 4.1 and the representation of Wright-convex
functions due to Ng [Ngl] (cf. also Kominek [KIJ), or alternatively, using
Theorem 2.2 and the representation of strongly convex functions in inner
product spaces proved by Nikodem and Péles [NP], we obtain the follow-
ing characterization of strongly Wright-convex functions in inner product
spaces.

COROLLARY 4.2. Let (X, | - ||) be a real inner product space, D be an
open convexr subset of X and ¢ > 0. A function f : D — R is strongly
Wrright-convex with modulus ¢ if and only if there exist a convex function
g: D — R and an additive function a : X — R such that

(4.4) f(z) = g(z) + a(z) +¢|z||?>, xe€D.

REMARK 4.3. It is well known that convex functions defined on an open
subset of a finite-dimensional space are continuous. Therefore, in the case
where X = R”™ (with the Euclidean norm), the function g appearing in
the representation is convex and continuous. In infinite-dimensional
inner product spaces not every strongly Wright-convex function f can be
represented in the form with convex and continuous g (see Example 4.4
below). However, if f is strongly Wright-convex with modulus ¢ and has
a (strongly) midconcave bound then, in view of Theorem 3.1, it has the
representation with convex continuous g.

EXAMPLE 4.4 (cf. [K1]). Assume that X is an infinite-dimensional inner
product space and [ : X — R is a discontinuous linear functional. Let f(x) =
ll(x)] + ||z||?, = € X. By Theorem 4.1, f is strongly Wright-convex with
modulus 1. Suppose that

(4.5) f(@) = g(z) +a(x) + |2*, zeX,
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with an additive function a and a convex continuous function g. Then |I(z)| =
g(x) + a(z), v € X. Consider U = {z € X : g(x) < 1}. By the conti-
nuity of g, the set U is open and nonempty (0 € U). Since a is additive
and

a(z) = [l(z)] —g(z) > -1, xeU,

it follows that a is continuous. Consequently, in view of (4.5)), f is continuous,
which contradicts the definition of f.
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