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Univalence, strong starlikeness and integral transforms

by M. OBRADOVIC (Belgrad), S. PONNUSAMY (Chennai),
and P. VASUNDHRA (Chennai)

Abstract. Let A represent the class of all normalized analytic functions f in the unit
disc A. In the present work, we first obtain a necessary condition for convex functions
in A. Conditions are established for a certain combination of functions to be starlike or
convex in A. Also, using the Hadamard product as a tool, we obtain sufficient conditions
for functions to be in the class of functions whose real part is positive. Moreover, we derive
conditions on f and p so that the non-linear integral transform S (¢/f(€)* d¢ is univalent

in A. Finally, we give sufficient conditions for functions to be str(())ngly starlike of order a.

1. Introduction. Let H denote the class of all functions analytic in the
unit disc A = {z : |z|] < 1}, and A the class of all normalized functions f
(f(0) = f'(0) =1 =0) in H. Let S denote the univalent subclass of A, and
S* denote the subclass of f € S for which f(A) is starlike with respect to the
origin. Recall the prominent subclasses studied in the theory of univalent
functions (see [7]), for 0 < < 1:

P(ﬂ)z{f&A:Re(@) >6,zeA},
R(B) ={f e A:zf € P(B)},
S*(8) = {feA:Re(zf/(z)> >8 z€ A},

f(z)
e (S0 .00}

KB)={feA:zf € S*(B)}.

It is well known that K = K(0) ¢ §%(1/2). Functions in Sj are called
strongly starlike of order (3, while those in §*(f3) are starlike of order (3. For
B <0,8%B) ¢S, while for 0 < 3 < 1, §*(B) € §* C S, and functions
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2 M. Obradovié et al.

in §*(0) = S* are simply referred to as starlike. For 0 < [ < 1, clearly,
S5 ¢ 8" and ST = S5*.

For a,b,c € Cand ¢ # 0,—1,—2, ..., the Gaussian hypergeometric series
F(a,b;c; z) is defined as

e - (a)n(b)n 2"
F(a? b’ C’ Z) 7;0 (C)n n! Y
where (a), = a(a+1)(a+2)---(a+n—1) and (a)g = 1. This series represents
an analytic function in A and has an analytic continuation throughout the
finite complex plane except at most for the cut [1,00).

Let B denote another important subclass, of all analytic functions w € ‘H
such that w(0) = 0 and w(A) C A. A function f € H is called subordinate to
another function g € H, and one writes f(z) < g(2), if there exists an w € B
such that f(z) = g(w(z)) for all z € A. It is well known that this implies in
particular f(0) = ¢(0) and f(A) C g(A), and that these two conditions are
also sufficient for f(z) < g(z) whenever g is univalent in A. Next, we remark
that if f € H, f(0) =0 and |f(z)| < M on A, then this can be equivalently
expressed in the form

|z] <1,

f(z) = Mw(z), weDB,

and so f(z) < Mz.
In [8], R. Singh and S. Paul showed that for all real A and p with 0 <
i < A/2 one has the following implication:

2f'(2)
We observe that the well known strict inclusion result, namely X C §*(1/2),
does not follow from the above one way implication. In view of this, in
Theorem 2.1 we use a different approach and determine R = R(A\, i) such
that

(1.1) fek = Re< +Mf’12)> >0, zeA

f(z) 1

fek = GA)clweCilu—RI <R} Gz) =05+ 150

for all real values of A and p with |u| < A\/2.
Trimble [11] showed that if f € IC, then F' defined by

F(z)=Xz+(1-X)f(2)

is in §*(B), where = (1 —3X)/(2(2+ \)) with 0 < XA < 1/3. Related
problems were considered in [2, 12], by imposing an additional condition
on f.

In Theorem 2.3, we impose conditions on f € A, := {f € A: f(z) =
Z4 300 41 arz"} different from those of [2, 12] and obtain the starlikeness
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of

1
1-A
(1.2) F(z) =Xz + —= /o2 f(tz) dt
o'
0
for all A < 1. It follows that the integral (1.2) is well defined or convergent

only for Rea > 0 and also at @ = 0 as a limiting case, because

1
é§t1/a2+k dt = m {1 — tl_i)lg1+ exp<<é -1+ k:) 1nt>]
1
T (k—Da+1
for k=1,n+1,n+2,..., where the principal branches of possible multiple-

valued power functions are considered. We remark that the relation (1.2)
looks much simpler in the following differential form:

(1.3) azF'(2) + (1 —a)F(2) = Az + (1 = N f(2)
since »
1) = § S ) an
0

Thus, for a given f € A,, there is exactly one solution F € A, of the
equation (1.3) ifand only if « e C\ {—1/j:j=n,n+1,n+2,...}:
oo

_ ak
(1.4) F(z)=z4(1-)) kglmzk

whenever f(z) =2+ > 72 arz*. We use this observation in the proof of
Theorem 2.3.

Also, we provide a condition on § such that Rezf”(z) > —5(1 — \)
implies that Re(f(z)/z) > A (see Theorem 2.6). In addition to these results,
in Theorem 2.7, we obtain conditions so that the non-linear operator

g(2) = § <%>“d<

is univalent. Finally, we derive a sufficient condition for f to be strongly
starlike of order a.

2. Main results

THEOREM 2.1. If f € IC then

f(2) 1 AA+20) | AN+ 2p)
AP I R w7 I e RS R

(2.1)
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for all real X\ and p with 0 < p < \/2, and

f(z)
2.2 A +u
22 Rl
for all real X\ and p with —A\/2 < p < 0.
Proof. Let f € K. Since K C S§*(1/2), we exclude the trivial case pu =
0 < |A| as this may be obtained as a limiting case. Then, for all z and w
in A, it is known that

—)\‘<)\, z €A,

z2f'(2) w > 1
2.3 Re — > -,
2 (- %) > 2
where the expression is defined by its limit when z = w. Further, for f € K

it is also known that Re(f(2)/z) > 1/2 in A and hence, for 0 < p < \/2,
this shows that

(2.4) 0< Re( pe ) 21

< .
wz+Af(z)) = A+2u

Since f € K, the image of f covers the disc |(| < 1/2 and therefore, it can
be readily seen that there exists w € A such that

flw) = =(p/N)z.
From (2.3) and (2.4),

(x770e) =50 )

1 w 1 pw
Saere( ) =2 ()
1 2u A—2u

> = — = :

2 A+2u 20\ +2p)
which proves the first assertion (2.1) for 0 < p < A/2. If ;x = A\/2, then the
last inequality becomes

f(2) 11
Re( A = 0
(55 37) 7O
which is same as (2.1) in the limiting case.
Next, we observe that for —\/2 < u < 0,

A A+ 2
Re<1+ f<z)>< i Mgo
pz 2p

so that

2 1 1
N+ 20 S Re(L+ M ()pz) = Re(l +Af<z>/uz> <0
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This observation shows that

Azf(2) 1
Re| ——~——) >3, A,
e<)\f(z)+,uz 3 FE
which proves the second assertion (2.2). m

COROLLARY 2.2. Let f € K. For z,w € A, define
2 / 22
L
Then, for all real X and p such that 0 < p < \/2, we have
AA+2u) ] AA+2p)
A—2u A—2u
and for —\/2 < p < 0, we have |G(z,w) — A| < A.

G(z,w) —

Proof. Since f'(w) # 0 in A, we consider a disc automorphism of A and
define g by

(I w)/ (L4 W0) — f(w)
90O =y A )

As the convexity is preserved under disc automorphisms, we have g € K if
and only if f € K. Writing z = (w + ¢)/(1 + (w), it can be shown that

A HHE _ arw
¢g'(Q) = Glaw)

where G(z,w) is given by (2.5). Since g € K, the desired conclusion follows
from Theorem 2.1 and the last equality. =

THEOREM 2.3. Letn € N, a e C\{-1/j:5=n,n+1,n+2,...} with
Rea > —1/n and let f € A,, satisfy the condition

(2.6) /()< Es ze4
1-A
for some X\ < 1. Then, for F defined by (1.3), we have
2F'(z)
(a) F(Z)
2F"(2)
® e
Proof. From the representation (1.4), we easily see that
— (k+ 1)k F — 2
zF"(z):(l—)\)ZM:(1—/\)[zf"(z)*<Z z >:|7

1+ ko 1+ ka

k=n k=n

—1’§1f07’0<,u§nRea+1,

<1lfor0<p<(nRea-+1)/2.
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and thus,

1
(2.7) 2F"(2) = (1= \) [tz f" (t%2) dt.

0
Suppose that f satisfies condition (2.6), which may be rewritten as

" M
zf"(z) = T (2), weBy,

where B, = {w € H : |w(z)| < 1 and w®(0) = 0 for k = 0,1,...,n — 1}.
Schwarz’ lemma then shows that |w(z)| < |z|" for z € A. Therefore, (2.7)

becomes
1

2F"(2) =p S w(t%z) dt
0
and hence, by the condition on «, it follows that

1z 0
€ A.
nRea+1 nRea+1’ &

’ n

2F(2)| <
Then (see [7, 10]) we have

2F'(z) w/[2nRea + 2]
(28) F) _1' ST ,/PnRea+2]
and
2F"(2) p/[nRea + 1]
(29) Fls) | S T- p/nReat 1]

In particular, F' is starlike for 0 < 4 < nRea + 1 and convex if 0 < p <
(nRea+1)/2. m

The case n = 1 of Theorem 2.3 gives
COROLLARY 2.4. Let Rea > —1 and let f € A satisfy the condition

(2.10) l2f"(2)| < % 2 € A,

for some X\ < 1. Then, for F defined by (1.2), we have
2F'(2)

2F"(2)

b
( ) F/(Z)
Note that z + (¢/2)2? ¢ S whenever |c| > 1. Define
F(2) = 2+ (u/2(1 = A))22.
Now, if welet 1 —p < A < 1, then /(1 —X\) > 1 and hence f is not univalent

but satisfies (2.10). On the other hand, the corresponding F' defined by (1.2)
is starlike for 0 < 4 < Rea+1 and is in fact convex for 0 < u < (Rea+1)/2.

-1

<1lfor0O<pu<Rea+1,

<1for0<p<(Rea+1)/2.
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LEMMA 2.5. Let p be analytic in A and p(0) = 1. Suppose that
Re(2%p"(2) + azp/(2)) > —B(1 = \), z€ A,
for some a > 1, A\ <1 and 0 < 8 < B(«), where

- ala—1)
Bla) = 2[alog2 — F(1,a;a+ 1; —1)]°

Then Rep(z) > A for z € A. In particular, if
Re(2%p"(2) + azp/(2)) > —f
for 0 < B8 < B(«a), then Rep(z) > 0 for z € A.
Proof. We consider a more general differential equation
(2.11) 25'(2) + azp!(2) = B(1 ~ N)(6(2) — 1)
where Re ¢(z) > 0in A, and ¢(0) = 1. If p and ¢ are of the form

p(z) =1+ puz” and ¢(2) =1+ 2",
n=1 n=1

respectively, then, by comparing the coefficients of z™ on both sides of (2.11),
it follows that

nn—1+a)p, =6(1—=N)¢,, n>1,

which gives
o0

P =1460-X - o0

ot (n—1+a) z
It can be easily seen that p(z) has the integral representation (see [5, Propo-
sition 1])
11

p(z) =14+ p6(1-X) S S w2 (p(uvz) — 1) dudo.
00

As Rep(z) > (1 —|z])/(1 + |z]) for z € A, we have
2|uvz| 2uv
1+wvlz| = 14w’

Re(p(uvz) — 1) > z € A,

and therefore,

Rep(z) >1—-28(1—\)

=1-28(1-X)\v*?log(1l+v)dv

Ot = O e =
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vafl 1 1 1 ,Uafl
=1-206(1—- log(1 —
Bl )\)log( +U)a—10 a—1§1+vdv
log2 F(l,a;a+1;-1)
=1-28(1—\ -
Al ) [a -1 ala—1) ]
alog2 — F(l,a;a+1;—1)
>1-2 1—AX =\
> 1= 29(a)(1 - ) | BTt i)
The desired conclusion follows. m
THEOREM 2.6. Let f € A satisfy the condition
1
" —06(1 — < ——— =~ 1.29435.
Rezf"(z) > —p(1 — ), 0<ﬂ_2(210g2—1) 9435
Then f € P(X\). In particular,
1—1log2
Rezf"(z) > -3 = Re <fiz)) > g02g = 0.4427

for 0 < B <1/log4.

Proof. Define p(z) = f(2)/z. Then 22p"(2)+22p'(z) = zf"(z) and there-
fore, the desired conclusion follows from Lemma 2.5, since F(1,2;3;—1) =
2(1—1og2). m

REMARK. From [1], we recall that if Rezf"(z) > —f for 0 < 3 <
1/log4 ~ 0.721348, then f € S*. We observe that $*(1/2) C P(1/2). From
Theorem 2.6, it follows that if f € A satisfies the differential inequality
(2.12) Re(:2"(2) + 22" (2)) > —B,
then Re f’(z) > 0 whenever 0 < 5 < 1/[4log2 — 2] = [y ~ 1.29435. It is
interesting to recall that if f € A satisfies (2.12) then f is convex whenever

0<pB<B.=1/log4.

Note that Gy > (. and we know that a convex function f € A does not
necessarily satisfy Re f’(z) > 0 for z € A, and conversely, a function f
satisfying the last condition does not always have the convexity property.
Indeed, even the assumption that |f’(z) — 1| < A in A does not necessarily
imply that f is starlike unless A < 2/+v/5 (see [3, 9]).

Our next result, which is of independent interest, is a reformulated ver-
sion of a result from [6] in our setting.

THEOREM 2.7. Let f € A, = {f € A: f(2) = z +ap12"™ +---}
satisfy the condition

1'(2) <—>M+l - 1‘ <A (A>0)
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9(2) = § (%)Mdc.

A
g€R<1— a >
n—p

In particular, Re g'(z) > 0 whenever 0 < pn <n/(1+ ).
(ii) For u =mn,

and let

(i) For 0 < pu <n,

n| £ (0)]
11— ——— —n\|.
g€ R( CES
In particular,
1 (n+1) (o
Reg'(2) >0 whenever 0< A< — — u

n (n+1)!

Proof. For € (0,n) and f(2) # 0 in 0 < |z| < 1, we see that ¢'(z) =

(2/f(2))" and

e =u(75) [ (7)) 70+ 7]

so that

/ Ly z \MH /
0 -6 = (55) 1O
By hypothesis, we can write
(2.13) J(z) — i 2"(2) = 1+ (=)

where w € B,,. Suppose that ¢'(2) = 1+ > 50 prz® and w(z) = Y22 br2”.
Then

A comparison of the coefficient of z¥ on both sides of (2.13) shows that

(1—%)pk:)\bk (k > n)

so that
[e) bk N
! =14+ .
k=n
Since 0 < p < n, we can rewrite the last equality in integral form

gdz)=1-)\ S w(t™Y1z) dt
1
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and therefore (using |w(z)| < |z|" for z € A), it follows that

T A
9'(z) = 1] < A | ¢ /mar = 2
1 n=p

which gives the required conclusion. In particular, for 0 < p < n/(1+ A),
we have Reg/(z) > 0 for z € A.

For the case 1 = n, proceeding as above but with w(z) = > 2, b 2",
we get the required result. =

THEOREM 2.8. Let f € A, 0 < a <1, and A > (1 — a)sin(ra/2).
Suppose that f'(z)f(z)/z # 0 on A and

(2.14) ‘ Im [A Z]{c(z) F (1= Z}cé’;)] ‘ < B(a, ),

where

Bla, \) = % [(a +1) % + (a— l)to}

and ty s the pointwise solution of the equation

2t sin(ar/2) — A(1 — ) = 0.

Then f € S}.
Proof. Define
2f'(2) _ <1+w(z)>a
(2.15) i \i—w@)

It suffices to prove that |w(z)| < 1 for z € A. Logarithmic differentiation of
(2.15) gives

z2f"(z)  (1+w(z)\” N 220 (2)
3 - () ey

and therefore,

(2.16) )\(1+ 1) <1+7“’(Z))Q+OM 22w (2)

SO B
.ﬂ@>+“'A)ﬂ@__1—w&) T—w?(2)

Suppose it is not true that |w(z)| < 1, z € A. Then there exists a zp € A
such that |w(z9)| = 1 and, by Jack’s well known lemma, zow'(z0) = kw(20)
with & > 1. If we put w(zg) = €, then from (2.16), we obtain

" / 0\ ¢ 6
(2.17) A (1+%z(§)0)> +(1-A) ZOJCJ;Z(OZ)O) = GJ_FZZ(J +QA%

Aka
pu— 1 2 @ ) .
(icot(6/2)) i
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We consider first the case 0 < 6§ < m. Then taking the imaginary part on
both sides of (2.17), we get

ak

sin

al

M _ 20/"(#0) = cot® sin(am
(AT (-0 B ) = o 0/2)sintan2) +

> cot®(0/2) sin(am/2) +

= t%sin(an/2) + %A (t + %)

=:g(t),  where t = cot(6/2) > 0.
We have
g t) = at* sin(an/2) + ar/2 — a)/(2t?)
and
g"(t) = a(a — 1)t* sin(an/2) + a)/t3 = % [(a — D! sin(am/2) 4+ .
Since lim¢_04+ ¢'(t) = —o0, ¢'(1) = asin(ar/2) > 0 and ¢"(¢t) > 0 for

0<t<1land A\ > (1— «)sin(ra/2), we conclude that the function g(t)
attains its minimum

1
B, X) = glto) = l(a+ 1)/to + (o 1t
where tg € (0,1) is the smallest positive root of the equation ¢'(t) = 0, i.e.
2t sin(ar/2) + M2 — X = 0.

e £"(20) 7'(z0)
20f" (20 z0f (29
Im()\ (o) +(1-=2X) FC20) ) > B(ay, A).
Similarly, for —m < 6 < 0, we obtain
NEUAED) . zOf’(Zo)> Bla ).
Im( e T (1—2) ) S Ble, A)
A combination of these two inequalities shows that
20" (20) B Zof’(ZO)>
(A 00 )2 e,

which contradicts the assumption of the theorem.
So, |lw(z)| < 1 for z € A, and from (2.15), this is equivalent to the
assertion that f € S). =

For A = 1, we have
COROLLARY 2.9. Let f € A be such that f'(z)f(z)/z# 0 on A and

)
)

< Bla), z€A,
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where 0 < a < 1,

Ba) =5 [(a+ Dy + (@ = o

and tg is the pointwise solution of the equation
2t sin(am/2) — (1 — %) = 0.
Then f € S;.
EXAMPLE 2.1. For a = 1, we have the equation (2 + A\)t? — A\ = 0 with

positive root tyg = y/A/(24+ A) and 5(1,A) = /A(2 + A). Now, we have the
following implication (see [4, p. 115]) for f € A with f'(z)f(z)/z # 0 on A:
f'(z) fz)

(50| <5
ie. feS*

A simple computation shows that G(a, A) in Theorem 2.8 is larger than
aX, and f(a, \) is independent of the root ¢y of the appropriate equation.
Namely, if we let

‘Im [)\ 2GR zf/(z)} ‘ < V21N =

8(1) = Bl ) = 5 [(a+ 1)/t + (o~ 1)1
then
§(to) = Q—jo (o +1) + (o — 1)) = % (12— 1)a — (1+2)] <0,

since 0 < tp < 1,0 < @ <1 and A > 0. It means that ¢(t) is a decreasing
function of ¢y € [0, 1] and we have

P(to) > (1) = a.
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