Uniqueness of meromorphic functions sharing three values

by INDRAJIT LAHIRI and ARINDAM SARKAR (Kalyani)

Abstract. We prove a result on the uniqueness of meromorphic functions sharing three values with weights and as a consequence of this result we improve a recent result of W. R. Lü and H. X. Yi.

1. Introduction, definitions and results. Let f and g be two nonconstant meromorphic functions defined in the open complex plane \mathbb{C} . For $a \in \mathbb{C} \cup \{\infty\}$ we say that f and g share the value a CM (counting multiplicities) if f and g have the same set of a-points with the same multiplicities. If we do not take the multiplicities into account, we say that f, g share the value a IM (ignoring multiplicities). For the standard notations and definitions of the value distribution theory we refer to [1].

We denote by $N(r, a; f | \leq k)$ the counting function of *a*-points of *f* with multiplicities not exceeding *k*, where $a \in \mathbb{C} \cup \{\infty\}$ and *k* is a positive integer or infinity. Also we define

$$\delta_{k}(a;f) = 1 - \limsup_{r \to \infty} \frac{N(r,a;f \mid \le k)}{T(r,f)}.$$

In this paper I denotes a set of nonnegative real numbers of infinite linear measure, not necessarily the same in each of its occurrences.

In 1976 M. Ozawa [8] proved the following result.

THEOREM A. Let f and g be two nonconstant entire functions of finite order sharing 0, 1 CM. If $\delta(0; f) > 1/2$ then either $f \equiv g$ or $fg \equiv 1$.

Improving Theorem A, H. Ueda [9] proved the following result.

THEOREM B. Let f and g be two nonconstant meromorphic functions sharing 0, 1, ∞ CM. If

$$\limsup_{r \to \infty} \frac{N(r,0;f) + N(r,\infty;f)}{T(r,f)} < \frac{1}{2}$$

then either $f \equiv g$ or $fg \equiv 1$.

²⁰⁰⁰ Mathematics Subject Classification: Primary 30D35.

Key words and phrases: uniqueness, weighted sharing, meromorphic function.

In 1990 H. X. Yi [10] further improved Theorem B as follows:

THEOREM C. Let f and g be two nonconstant meromorphic functions sharing $0, 1, \infty$ CM. If

$$N(r, 0; f \mid \le 1) + N(r, \infty; f \mid \le 1) < \{\lambda + o(1)\}T(r)$$

for $r \in I$, where $0 < \lambda < 1/2$ and $T(r) = \max\{T(r, f), T(r, g)\}$, then either $f \equiv g$ or $fg \equiv 1$.

Recently W. R. Lü and H. X. Yi [7] investigated the situation when the bound 1/2 in the above theorems is replaced by 1 and proved the following result.

THEOREM D. Let f and g be two distinct nonconstant meromorphic functions sharing 0, 1, ∞ CM. If

$$\limsup_{r \to \infty, \, r \in I} \frac{N(r,0;f \mid \leq 1) + N(r,\infty;f \mid \leq 1)}{T(r,f)} < 1$$

then

$$f = \frac{e^{s\gamma} - 1}{e^{-(k+1-s)\gamma} - 1}$$
 and $g = \frac{e^{-s\gamma} - 1}{e^{(k+1-s)\gamma} - 1}$

where s and k are relatively prime positive integers with $1 \le s \le k$ and γ is a nonconstant entire function.

Considering $f = (e^{\gamma} - 1)^2$ and $g = e^{\gamma} - 1$, where γ is a nonconstant entire function, we see that in Theorem D it is not possible to relax the nature of sharing the value 0 from CM to IM. So one may naturally ask: Is it possible in Theorem D to relax the nature of sharing the value 0?

In this paper we answer this question with the help of the notion of weighted sharing of values which measures how close a shared value is to being shared CM or to being shared IM.

DEFINITION 1.1 ([2, 3]). Let k be a nonnegative integer or infinity. For $a \in \mathbb{C} \cup \{\infty\}$ we denote by $E_k(a; f)$ the set of all a-points of f where an a-point of multiplicity m is counted m times if $m \leq k$ and k + 1 times if m > k. If $E_k(a; f) = E_k(a; g)$, we say that f, g share the value a with weight k.

The definition implies that if f, g share a value a with weight k then z_0 is a zero of f - a with multiplicity $m (\leq k)$ if and only if it is a zero of g - a with multiplicity $m (\leq k)$, and z_0 is a zero of f - a with multiplicity m (> k) if and only if it is a zero of g - a with multiplicity n (> k) where m is not necessarily equal to n.

We write f, g share (a, k) to mean that f, g share the value a with weight k. Clearly if f, g share (a, k) then f, g share (a, p) for all integers p with $0 \le p < k$. Also we note that f, g share a value a IM or CM if and only if f, g share (a, 0) or (a, ∞) respectively.

We prove the following result which enables us to improve Theorem D.

THEOREM 1.1. Let f and g be two distinct nonconstant meromorphic functions sharing $(0,1), (1,m), (\infty,k)$, where

$$(m-1)(mk-1) > (1+m)^2$$

and

(1.1)
$$\lim_{r \to \infty, r \in I} \sup_{r \to \infty, r \in I} \frac{N(r, 0; f \mid \le 1) + N(r, \infty; f \mid \le 1)}{T(r, f)} < 1.$$

Then f and g satisfy the following relations:

(1.2)
$$\left(1 + \frac{\alpha}{f} - \frac{1}{f}\right)^s \equiv \alpha^{s+t},$$

(1.3)
$$\left(1 + \frac{1}{g\alpha} - \frac{1}{g}\right)^s \equiv \alpha^{-(s+t)},$$

where α is a nonconstant meromorphic function such that $\overline{N}(r, 0; \alpha) + \overline{N}(r, \infty; \alpha) = S(r, f)$ and s, t are relatively prime nonzero integers with s > 0 and $s + t \neq 0$.

The following corollary improves Theorem D.

COROLLARY 1.1. The assertion of Theorem D holds if f and g share $(0,1), (1,\infty), (\infty,\infty)$.

Considering the example mentioned earlier we can easily verify that in Corollary 1.1 sharing (0, 1) cannot be relaxed to sharing (0, 0).

2. Lemmas. In this section we present some lemmas which are required to prove the theorem and the corollary.

LEMMA 2.1 ([4]). Let f and g be two nonconstant meromorphic functions sharing $(0,0), (1,0), (\infty,0)$. Then

 $T(r,f) \leq 3T(r,g) + S(r,f) \quad and \quad T(r,g) \leq 3T(r,f) + S(r,g).$

Hence it follows that S(r, f) = S(r, g) and we denote them by S(r).

LEMMA 2.2 ([4]). Let f and g be two distinct nonconstant meromorphic functions sharing (0,1), (1,m), (∞,k) , where $(m-1)(mk-1) > (1+m)^2$. Then for $a = 0, 1, \infty$,

(i)
$$\overline{N}(r,a;f|\geq 2) = S(r),$$

(ii)
$$\overline{N}(r,a;g|\geq 2) = S(r),$$

where $\overline{N}(r, a; f \mid \geq 2)$ denotes the reduced counting function of multiple *a*-points of *f*.

LEMMA 2.3 ([6]). Let f and g be two distinct nonconstant meromorphic functions sharing (0,0), (1,0), $(\infty,0)$. If f is a bilinear transformation of gthen f and g satisfy one of the following:

(i) $fg \equiv 1$, (ii) $(f-1)(g-1) \equiv 1$, (iii) $f+g \equiv 1$, (iv) $f \equiv cg$, (v) $f-1 \equiv c(g-1)$, (vi) $[(c-1)f+1][(c-1)g-c] + c \equiv 0$, where $c \ (\neq 0, 1)$ is a constant.

LEMMA 2.4 ([11]). Let f_1 and f_2 be nonconstant meromorphic functions satisfying $\overline{N}(r,0;f_i) + \overline{N}(r,\infty;f_i) = S_0(r)$ for i = 1, 2. Then either $\overline{N}_0(r,1;$ $f_1, f_2) = S_0(r)$ or there exist two integers s, t (|s| + |t| > 0) such that $f_1^s f_2^t \equiv 1$, where $\overline{N}_0(r,1;f_1,f_2)$ denotes the reduced counting function of f_1 and f_2 related to the common 1-points and $T(r) = T(r,f_1) + T(r,f_2)$, $S_0(r) = o(T(r))$ as $r \to \infty$ possibly outside a set of finite linear measure.

LEMMA 2.5 ([5]). Let f and g be two distinct nonconstant meromorphic functions sharing (0,1), (1,m), (∞,k) , where $(m-1)(mk-1) > (1+m)^2$. If $\alpha = (f-1)/(g-1)$ and h = f/g then $\overline{N}(r,a;\alpha) = S(r)$ and $\overline{N}(r,a;h) = S(r)$ for $a = 0, \infty$.

LEMMA 2.6 ([4]). Let f and g be two nonconstant meromorphic functions sharing $(0, 1), (1, m), (\infty, k)$, where $(m - 1)(mk - 1) > (1 + m)^2$. If

$$2\delta_{1)}(0;f) + 2\delta_{1)}(\infty;f) + \min\left\{\sum_{a\neq 0,1,\infty}\delta_{2)}(a;f), \sum_{a\neq 0,1,\infty}\delta_{2)}(a;g)\right\} > 3$$

then either $f \equiv g$ or $fg \equiv 1$. If f has at least one zero or pole then the case $fg \equiv 1$ does not arise.

LEMMA 2.7 ([5]). Let f and g be two distinct nonconstant meromorphic functions sharing (0,1), (1,m) and (∞,k) , where $(m-1)(mk-1) > (1+m)^2$. If f is not a bilinear transformation of g then each of the following holds:

(i)
$$T(r, f) + T(r, g) = N(r, 0; g | \le 1) + N(r, 1; g | \le 1)$$

+ $N(r, \infty; g | \le 1) + N_0(r) + S(r)$,
(ii) $T(r, f) + T(r, g) = N(r, 0; f | \le 1) + N(r, 1; f | \le 1)$
+ $N(r, \infty; f | \le 1) + N_0(r) + S(r)$,

where $N_0(r)$ denotes the counting function of those simple zeros of f-g which are not the zeros of g(g-1), 1/g and so are not the zeros of f(f-1), 1/f.

LEMMA 2.8 ([11]). Let s and t be relatively prime integers with s > 0. Then $x^s - 1$ and $x^t - c$ have one and only one common factor, where c is a constant satisfying $c^s = 1$.

3. Proofs of the theorem and the corollary

Proof of Theorem 1.1. Let $\alpha = (f-1)/(g-1)$ and h = f/g. Then clearly $\alpha \neq 1$ and $h \neq 1$. Also we get

(3.1)
$$f = h \frac{1-\alpha}{h-\alpha}$$
 and $g = \frac{1-\alpha}{h-\alpha}$

We now consider the following cases.

CASE I. Let $\delta_{1}(0; f) + \delta_{1}(\infty; f) > 3/2$. Then by Lemma 2.6 we get $fg \equiv 1$ and so (1.2) and (1.3) hold for s = 1, t = -2 and $\alpha = e^{\beta}$, where β is a nonconstant entire function.

CASE II. Let $\delta_{1}(0; f) + \delta_{1}(\infty; f) \leq 3/2$. If possible, suppose that f is a bilinear transformation of g. Then the possibilities (i)–(vi) of Lemma 2.3 will occur.

If $fg \equiv 1$ then $0, \infty$ are exceptional values of f in the sense of Picard (evP) and so $\delta_{1}(0; f) + \delta_{1}(\infty; f) = 2$, which is a contradiction.

If $(f-1)(g-1) \equiv 1$ then $1, \infty$ are evP of f. So by the second fundamental theorem and Lemma 2.2 we get

$$T(r,f) \leq \overline{N}(r,0;f) + \overline{N}(r,\infty;f) + \overline{N}(r,1;f) + S(r,f)$$

= $N(r,0;f \mid \leq 1) + S(r,f),$

which contradicts (1.1).

If $f+g \equiv 1$ then 0, 1 are evP of f. So by the second fundamental theorem and Lemma 2.2 we get

$$T(r,f) \le N(r,\infty;f \mid \le 1) + S(r,f),$$

which contradicts (1.1).

If $f \equiv cg$ then 1, c are evP of f. So by the second fundamental theorem and Lemma 2.2 we get

$$\begin{split} T(r,f) &\leq \overline{N}(r,1;f) + \overline{N}(r,c;f) + \overline{N}(r,\infty;f) + S(r,f) \\ &= N(r,\infty;f \mid \leq 1) + S(r,f), \end{split}$$

which contradicts (1.1).

If $f-1 \equiv c(g-1)$ then 0, 1-c are evP of f. So by the second fundamental theorem and Lemma 2.2 we get

$$T(r, f) \le N(r, \infty; f \mid \le 1) + S(r, f),$$

which contradicts (1.1).

If $[(c-1)f+1][(c-1)g-c]+c \equiv 0$ then $\infty, 1/(1-c)$ are evP of f. So by the second fundamental theorem and Lemma 2.2 we get

$$T(r, f) \le N(r, 0; f \mid \le 1) + S(r, f),$$

which contradicts (1.1).

Therefore f is not a bilinear transformation of g. Noting that f, g share (1, m), it follows from Lemma 2.7(ii) that

$$T(r, f) \le N(r, 0; f \mid \le 1) + N(r, \infty; f \mid \le 1) + N_0(r) + S(r)$$

and so by (1.1) we get $N_0(r) \neq S(r)$.

Again since $T(r, \alpha) + T(r, h) \leq 2T(r, f) + 2T(r, g) + O(1)$ and $N_0(r) \leq \overline{N}_0(r, 1; \alpha, h)$, it follows from Lemma 2.4 that there exist integers s and t (|s| + |t| > 0) such that $\alpha^t h^s \equiv 1$. Without loss of generality we may assume that s > 0 and s, t are relatively prime. Since f is not a bilinear transformation of g, we see that $t \neq 0$ and $s + t \neq 0$. Now from (3.1) we get $h^s(f - 1 + \alpha)^s \equiv \alpha^s f^s$ and $h^s g^s \equiv (\alpha g + 1 - \alpha)^s$. Since $\alpha^t h^s \equiv 1$, we can deduce (1.2) and (1.3). Since f and g are nonconstant, clearly α is nonconstant. Also by Lemma 2.5 we get $\overline{N}(r, 0; \alpha) + \overline{N}(r, \infty; \alpha) = S(r, f)$. This proves the theorem.

Proof of Corollary 1.1. Since f, g share $(1, \infty), (\infty, \infty)$, we can put $\alpha = (f-1)/(g-1) = e^{\beta}$, where β is a nonconstant entire function. Then from (1.2) and (1.3) we get

$$f = \frac{e^{\gamma s} - 1}{e^{\gamma(s+t)} - 1} \quad \text{and} \quad g = \frac{e^{-\gamma s} - 1}{e^{-\gamma(s+t)} - 1}, \quad \text{where} \quad \beta = \gamma s.$$

We now consider the following cases.

CASE I. Let t > 0 so that $s + t \ge 2$. Since s, t are relatively prime and so are s, s + t, by Lemma 2.8 we get

$$\begin{split} T(r,f) &= (s+t-1)T(r,e^{\gamma}) + S(r), \\ N(r,\infty;f \mid \leq 1) &= (s+t-1)T(r,e^{\gamma}) + S(r), \\ N(r,0;f \mid \leq 1) &= (s-1)T(r,e^{\gamma}) + S(r). \end{split}$$

Then

$$\limsup_{r \to \infty, \, r \in I} \frac{N(r, 0; f \mid \le 1) + N(r, \infty; f \mid \le 1)}{T(r, f)} = 1 + \frac{s - 1}{s + t - 1} \ge 1,$$

which contradicts the given condition.

CASE II. Let t < 0. If s + t = 1 then $s \ge 2$ and

$$f = \frac{e^{s\gamma} - 1}{e^{\gamma} - 1} = 1 + e^{\gamma} + e^{2\gamma} + \dots + e^{(s-1)\gamma}$$

Hence $T(r, f) = (s-1)T(r, e^{\gamma}) + S(r)$, $N(r, 0; f \mid \leq 1) = (s-1)T(r, e^{\gamma}) + S(r)$ and $N(r, \infty; f \mid \leq 1) \equiv 0$. Therefore

$$\limsup_{r \to \infty, r \in I} \frac{N(r, 0; f \mid \le 1) + N(r, \infty; f \mid \le 1)}{T(r, f)} = 1,$$

which contradicts the given condition.

Let $s + t \ge 2$. Then as in Case I we arrive at a contradiction. Therefore $s + t \le -1$. We now put k = -1 - t. Then k > 0 and $k - s = -t - 1 - s \ge 0$ so that $1 \le s \le k$. Also s and 1 + k are relatively prime because s and t are so. Therefore we get

$$f = \frac{e^{s\gamma} - 1}{e^{-(k+1-s)\gamma} - 1}$$
 and $g = \frac{e^{-s\gamma} - 1}{e^{(k+1-s)\gamma} - 1}$.

This proves the corollary.

Acknowledgements. The authors are thankful to the referee for valuable suggestions.

References

- [1] W. K. Hayman, Meromorphic Functions, The Clarendon Press, Oxford, 1964.
- [2] I. Lahiri, Weighted sharing and uniqueness of meromorphic functions, Nagoya Math. J. 161 (2001), 193–206.
- [3] —, Weighted value sharing and uniqueness of meromorphic functions, Complex Var. Theory Appl. 46 (2001), 241–253.
- [4] —, On a result of Ozawa concerning uniqueness of meromorphic functions II, J. Math. Anal. Appl. 283 (2003), 66–76.
- [5] —, Characteristic functions of meromorphic functions sharing three values with finite weights, Complex Var. Theory Appl. 50 (2005), 69–78.
- [6] I. Lahiri and A. Sarkar, On a uniqueness theorem of Tohge, Arch. Math. (Basel) 84 (2005), 461–469.
- [7] W. R. Lü and H. X. Yi, Unicity theorems for meromorphic functions that share three values, Ann. Polon. Math. 81 (2003), 131–138.
- [8] M. Ozawa, Unicity theorems for entire functions, J. Anal. Math. 30 (1976), 411–420.
- H. Ueda, Unicity theorems for meromorphic or entire functions II, Kodai Math. J. 6 (1983), 26–36.
- [10] H. X. Yi, Meromorphic functions that share two or three values, ibid. 13 (1990), 363–372.
- Q. C. Zhang, Meromorphic functions sharing three values, Indian J. Pure Appl. Math. 30 (1999), 667–682.

Department of Mathematics University of Kalyani West Bengal 741235, India E-mail: ilahiri@vsnl.com, ilahiri@hotpop.com

> Reçu par la Rédaction le 13.12.2004 Révisé le 21.2.2005 (1548)