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Uniqueness of meromorphic functions sharing three values

by Indrajit Lahiri and Arindam Sarkar (Kalyani)

Abstract. We prove a result on the uniqueness of meromorphic functions sharing
three values with weights and as a consequence of this result we improve a recent result
of W. R. Lü and H. X. Yi.

1. Introduction, definitions and results. Let f and g be two non-
constant meromorphic functions defined in the open complex plane C. For
a ∈ C∪{∞} we say that f and g share the value a CM (counting multiplic-
ities) if f and g have the same set of a-points with the same multiplicities.
If we do not take the multiplicities into account, we say that f , g share the

value a IM (ignoring multiplicities). For the standard notations and defini-
tions of the value distribution theory we refer to [1].

We denote by N(r, a; f | ≤k) the counting function of a-points of f with
multiplicities not exceeding k, where a ∈ C∪{∞} and k is a positive integer
or infinity. Also we define

δk)(a; f) = 1 − lim sup
r→∞

N(r, a; f | ≤k)

T (r, f)
.

In this paper I denotes a set of nonnegative real numbers of infinite
linear measure, not necessarily the same in each of its occurrences.

In 1976 M. Ozawa [8] proved the following result.

Theorem A. Let f and g be two nonconstant entire functions of finite

order sharing 0, 1 CM. If δ(0; f) > 1/2 then either f ≡ g or fg ≡ 1.

Improving Theorem A, H. Ueda [9] proved the following result.

Theorem B. Let f and g be two nonconstant meromorphic functions

sharing 0, 1, ∞ CM. If

lim sup
r→∞

N(r, 0; f) + N(r,∞; f)

T (r, f)
<

1

2

then either f ≡ g or fg ≡ 1.

2000 Mathematics Subject Classification: Primary 30D35.
Key words and phrases: uniqueness, weighted sharing, meromorphic function.

[15]



16 I. Lahiri and A. Sarkar

In 1990 H. X. Yi [10] further improved Theorem B as follows:

Theorem C. Let f and g be two nonconstant meromorphic functions

sharing 0, 1, ∞ CM. If

N(r, 0; f | ≤1) + N(r,∞; f | ≤1) < {λ + o(1)}T (r)

for r ∈ I, where 0 < λ < 1/2 and T (r) = max{T (r, f), T (r, g)}, then either

f ≡ g or fg ≡ 1.

Recently W. R. Lü and H. X. Yi [7] investigated the situation when the
bound 1/2 in the above theorems is replaced by 1 and proved the following
result.

Theorem D. Let f and g be two distinct nonconstant meromorphic

functions sharing 0, 1, ∞ CM. If

lim sup
r→∞, r∈I

N(r, 0; f | ≤1) + N(r,∞; f | ≤1)

T (r, f)
< 1

then

f =
esγ − 1

e−(k+1−s)γ − 1
and g =

e−sγ − 1

e(k+1−s)γ − 1
,

where s and k are relatively prime positive integers with 1 ≤ s ≤ k and γ is

a nonconstant entire function.

Considering f = (eγ−1)2 and g = eγ−1, where γ is a nonconstant entire
function, we see that in Theorem D it is not possible to relax the nature of
sharing the value 0 from CM to IM. So one may naturally ask: Is it possible

in Theorem D to relax the nature of sharing the value 0?
In this paper we answer this question with the help of the notion of

weighted sharing of values which measures how close a shared value is to
being shared CM or to being shared IM.

Definition 1.1 ([2, 3]). Let k be a nonnegative integer or infinity. For
a ∈ C ∪ {∞} we denote by Ek(a; f) the set of all a-points of f where an
a-point of multiplicity m is counted m times if m ≤ k and k + 1 times
if m > k. If Ek(a; f) = Ek(a; g), we say that f , g share the value a with

weight k.

The definition implies that if f , g share a value a with weight k then
z0 is a zero of f − a with multiplicity m (≤ k) if and only if it is a zero of
g − a with multiplicity m (≤ k), and z0 is a zero of f − a with multiplicity
m (> k) if and only if it is a zero of g − a with multiplicity n (> k) where
m is not necessarily equal to n.

We write f, g share (a, k) to mean that f, g share the value a with
weight k. Clearly if f, g share (a, k) then f, g share (a, p) for all integers p
with 0 ≤ p < k. Also we note that f, g share a value a IM or CM if and
only if f, g share (a, 0) or (a,∞) respectively.
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We prove the following result which enables us to improve Theorem D.

Theorem 1.1. Let f and g be two distinct nonconstant meromorphic

functions sharing (0, 1), (1, m), (∞, k), where

(m − 1)(mk − 1) > (1 + m)2

and

(1.1) lim sup
r→∞, r∈I

N(r, 0; f | ≤1) + N(r,∞; f | ≤1)

T (r, f)
< 1.

Then f and g satisfy the following relations:
(

1 +
α

f
−

1

f

)s

≡ αs+t,(1.2)

(

1 +
1

gα
−

1

g

)s

≡ α−(s+t),(1.3)

where α is a nonconstant meromorphic function such that N(r, 0; α) +
N(r,∞; α) = S(r, f) and s, t are relatively prime nonzero integers with

s > 0 and s + t 6= 0.

The following corollary improves Theorem D.

Corollary 1.1. The assertion of Theorem D holds if f and g share

(0, 1), (1,∞), (∞,∞).

Considering the example mentioned earlier we can easily verify that in
Corollary 1.1 sharing (0, 1) cannot be relaxed to sharing (0, 0).

2. Lemmas. In this section we present some lemmas which are required
to prove the theorem and the corollary.

Lemma 2.1 ([4]). Let f and g be two nonconstant meromorphic functions

sharing (0, 0), (1, 0), (∞, 0). Then

T (r, f) ≤ 3T (r, g) + S(r, f) and T (r, g) ≤ 3T (r, f) + S(r, g).

Hence it follows that S(r, f) = S(r, g) and we denote them by S(r).

Lemma 2.2 ([4]). Let f and g be two distinct nonconstant meromorphic

functions sharing (0, 1), (1, m), (∞, k), where (m− 1)(mk − 1) > (1 + m)2.
Then for a = 0, 1,∞,

(i) N(r, a; f | ≥2) = S(r),
(ii) N(r, a; g | ≥2) = S(r),

where N(r, a; f | ≥2) denotes the reduced counting function of multiple

a-points of f .
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Lemma 2.3 ([6]). Let f and g be two distinct nonconstant meromorphic

functions sharing (0, 0), (1, 0), (∞, 0). If f is a bilinear transformation of g
then f and g satisfy one of the following :

(i) fg ≡ 1,
(ii) (f − 1)(g − 1) ≡ 1,
(iii) f + g ≡ 1,
(iv) f ≡ cg,
(v) f − 1 ≡ c(g − 1),
(vi) [(c − 1)f + 1][(c − 1)g − c] + c ≡ 0, where c ( 6= 0, 1) is a constant.

Lemma 2.4 ([11]). Let f1 and f2 be nonconstant meromorphic functions

satisfying N(r, 0; fi) + N(r,∞; fi) = S0(r) for i = 1, 2. Then either N0(r, 1;
f1, f2) = S0(r) or there exist two integers s, t (|s| + |t| > 0) such that

f s
1f t

2 ≡ 1, where N0(r, 1; f1, f2) denotes the reduced counting function of

f1 and f2 related to the common 1-points and T (r) = T (r, f1) + T (r, f2),
S0(r) = o(T (r)) as r → ∞ possibly outside a set of finite linear measure.

Lemma 2.5 ([5]). Let f and g be two distinct nonconstant meromorphic

functions sharing (0, 1), (1, m), (∞, k), where (m− 1)(mk − 1) > (1 + m)2.
If α = (f − 1)/(g − 1) and h = f/g then N(r, a; α) = S(r) and N(r, a; h) =
S(r) for a = 0,∞.

Lemma 2.6 ([4]). Let f and g be two nonconstant meromorphic functions

sharing (0, 1), (1, m), (∞, k), where (m − 1)(mk − 1) > (1 + m)2. If

2δ1)(0; f) + 2δ1)(∞; f) + min
{

∑

a 6=0,1,∞

δ2)(a; f),
∑

a 6=0,1,∞

δ2)(a; g)
}

> 3

then either f ≡ g or fg ≡ 1. If f has at least one zero or pole then the case

fg ≡ 1 does not arise.

Lemma 2.7 ([5]). Let f and g be two distinct nonconstant meromorphic

functions sharing (0, 1), (1, m) and (∞, k), where (m−1)(mk−1) > (1+m)2.
If f is not a bilinear transformation of g then each of the following holds:

(i) T (r, f) + T (r, g) = N(r, 0; g | ≤1) + N(r, 1; g | ≤1)

+ N(r,∞; g | ≤1) + N0(r) + S(r),

(ii) T (r, f) + T (r, g) = N(r, 0; f | ≤1) + N(r, 1; f | ≤1)

+ N(r,∞; f | ≤1) + N0(r) + S(r),

where N0(r) denotes the counting function of those simple zeros of f−g which

are not the zeros of g(g−1), 1/g and so are not the zeros of f(f−1), 1/f .

Lemma 2.8 ([11]). Let s and t be relatively prime integers with s > 0.
Then xs − 1 and xt − c have one and only one common factor , where c is a

constant satisfying cs = 1.
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3. Proofs of the theorem and the corollary

Proof of Theorem 1.1. Let α = (f − 1)/(g − 1) and h = f/g. Then
clearly α 6≡ 1 and h 6≡ 1. Also we get

(3.1) f = h
1 − α

h − α
and g =

1 − α

h − α
.

We now consider the following cases.

Case I. Let δ1)(0; f) + δ1)(∞; f) > 3/2. Then by Lemma 2.6 we get

fg ≡ 1 and so (1.2) and (1.3) hold for s = 1, t = −2 and α = eβ, where β
is a nonconstant entire function.

Case II. Let δ1)(0; f) + δ1)(∞; f) ≤ 3/2. If possible, suppose that f is
a bilinear transformation of g. Then the possibilities (i)–(vi) of Lemma 2.3
will occur.

If fg ≡ 1 then 0,∞ are exceptional values of f in the sense of Picard
(evP) and so δ1)(0; f) + δ1)(∞; f) = 2, which is a contradiction.

If (f−1)(g−1) ≡ 1 then 1,∞ are evP of f . So by the second fundamental
theorem and Lemma 2.2 we get

T (r, f) ≤ N(r, 0; f) + N(r,∞; f) + N(r, 1; f) + S(r, f)

= N(r, 0; f | ≤1) + S(r, f),

which contradicts (1.1).
If f +g ≡ 1 then 0, 1 are evP of f . So by the second fundamental theorem

and Lemma 2.2 we get

T (r, f) ≤ N(r,∞; f | ≤1) + S(r, f),

which contradicts (1.1).
If f ≡ cg then 1, c are evP of f . So by the second fundamental theorem

and Lemma 2.2 we get

T (r, f) ≤ N(r, 1; f) + N(r, c; f) + N(r,∞; f) + S(r, f)

= N(r,∞; f | ≤1) + S(r, f),

which contradicts (1.1).
If f−1 ≡ c(g−1) then 0, 1−c are evP of f . So by the second fundamental

theorem and Lemma 2.2 we get

T (r, f) ≤ N(r,∞; f | ≤1) + S(r, f),

which contradicts (1.1).
If [(c − 1)f + 1][(c − 1)g − c] + c ≡ 0 then ∞, 1/(1 − c) are evP of f . So

by the second fundamental theorem and Lemma 2.2 we get

T (r, f) ≤ N(r, 0; f | ≤1) + S(r, f),

which contradicts (1.1).
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Therefore f is not a bilinear transformation of g. Noting that f , g share
(1, m), it follows from Lemma 2.7(ii) that

T (r, f) ≤ N(r, 0; f | ≤1) + N(r,∞; f | ≤1) + N0(r) + S(r)

and so by (1.1) we get N0(r) 6= S(r).

Again since T (r, α) + T (r, h) ≤ 2T (r, f) + 2T (r, g) + O(1) and N0(r) ≤
N0(r, 1; α, h), it follows from Lemma 2.4 that there exist integers s and
t (|s| + |t| > 0) such that αths ≡ 1. Without loss of generality we may
assume that s > 0 and s, t are relatively prime. Since f is not a bilinear
transformation of g, we see that t 6= 0 and s + t 6= 0. Now from (3.1) we
get hs(f − 1 + α)s ≡ αsf s and hsgs ≡ (αg + 1 − α)s. Since αths ≡ 1,
we can deduce (1.2) and (1.3). Since f and g are nonconstant, clearly α is
nonconstant. Also by Lemma 2.5 we get N(r, 0; α) + N(r,∞; α) = S(r, f).
This proves the theorem.

Proof of Corollary 1.1. Since f , g share (1,∞), (∞,∞), we can put
α = (f − 1)/(g − 1) = eβ, where β is a nonconstant entire function. Then
from (1.2) and (1.3) we get

f =
eγs − 1

eγ(s+t) − 1
and g =

e−γs − 1

e−γ(s+t) − 1
, where β = γs.

We now consider the following cases.

Case I. Let t > 0 so that s + t ≥ 2. Since s, t are relatively prime and
so are s, s + t, by Lemma 2.8 we get

T (r, f) = (s + t − 1)T (r, eγ) + S(r),

N(r,∞; f | ≤1) = (s + t − 1)T (r, eγ) + S(r),

N(r, 0; f | ≤1) = (s − 1)T (r, eγ) + S(r).

Then

lim sup
r→∞, r∈I

N(r, 0; f | ≤1) + N(r,∞; f | ≤1)

T (r, f)
= 1 +

s − 1

s + t − 1
≥ 1,

which contradicts the given condition.

Case II. Let t < 0. If s + t = 1 then s ≥ 2 and

f =
esγ − 1

eγ − 1
= 1 + eγ + e2γ + · · · + e(s−1)γ.

Hence T (r, f) = (s−1)T (r, eγ)+S(r), N(r, 0; f | ≤1) = (s−1)T (r, eγ)+S(r)
and N(r,∞; f | ≤1) ≡ 0. Therefore

lim sup
r→∞, r∈I

N(r, 0; f | ≤1) + N(r,∞; f | ≤1)

T (r, f)
= 1,

which contradicts the given condition.
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Let s + t ≥ 2. Then as in Case I we arrive at a contradiction. Therefore
s + t ≤ −1. We now put k = −1− t. Then k > 0 and k− s = −t− 1− s ≥ 0
so that 1 ≤ s ≤ k. Also s and 1 + k are relatively prime because s and t are
so. Therefore we get

f =
esγ − 1

e−(k+1−s)γ − 1
and g =

e−sγ − 1

e(k+1−s)γ − 1
.

This proves the corollary.
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[7] W. R. Lü and H. X. Yi, Unicity theorems for meromorphic functions that share

three values, Ann. Polon. Math. 81 (2003), 131–138.
[8] M. Ozawa, Unicity theorems for entire functions, J. Anal. Math. 30 (1976), 411–420.
[9] H. Ueda, Unicity theorems for meromorphic or entire functions II , Kodai Math. J.

6 (1983), 26–36.
[10] H. X. Yi, Meromorphic functions that share two or three values, ibid. 13 (1990),

363–372.
[11] Q. C. Zhang, Meromorphic functions sharing three values, Indian J. Pure Appl.

Math. 30 (1999), 667–682.

Department of Mathematics
University of Kalyani
West Bengal 741235, India
E-mail: ilahiri@vsnl.com, ilahiri@hotpop.com
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Révisé le 21.2.2005 (1548)


