
ANNALES

POLONICI MATHEMATICI

86.1 (2005)

Some new oscillation criteria for second order

elliptic equations with damping

by Rong-Kun Zhuang (Huizhou) and Zheng-an Yao (Guangzhou)

Abstract. Some new oscillation criteria are obtained for second order elliptic differ-
ential equations with damping

n
∑

i,j=1

Di[Aij(x)Djy] +

n
∑

i=1

bi(x)Diy + q(x)f(y) = 0, x ∈ Ω,

where Ω is an exterior domain in R
n. These criteria are different from most known ones

in the sense that they are based on the information only on a sequence of subdomains of
Ω ⊂ R

n, rather than on the whole exterior domain Ω. Our results are more natural in
view of the Sturm Separation Theorem.

1. Introduction. In this paper, we consider the oscillation behavior of
solutions of second order elliptic differential equations with damping

(1.1)
n

∑

i,j=1

Di[Aij(x)Djy] +
n

∑

i=1

bi(x)Diy + q(x)f(y) = 0,

where x ∈ Ω and Ω is an exterior domain in R
n. The following notations

will be adopted throughout: R, R+ are the intervals (−∞,∞), (0,∞) re-

spectively. The Euclidean length of x is |x| =
[
∑n

i=1 x2
i

]1/2
and differen-

tiation with respect to xi is denoted by Di (i = 1, . . . , n). For a constant
a > 0, let Sa = {x ∈ R

n : |x| = a}, G(a,∞) = {x ∈ R
n : |x| > a},

G(a, b) = {x ∈ R
n : a < |x| < b}, G[c, b) = {x ∈ R

n : c ≤ |x| < b},
G(a, c] = {x ∈ R

n : a < |x| ≤ c}. For an exterior domain Ω in R
n, there

exists a positive number a0 such that G(a0,∞) ⊂ Ω. In what follows we
always assume that:

2000 Mathematics Subject Classification: 35B05, 34C10.
Key words and phrases: second order elliptic equation with damping; oscillation; gen-

eralized partial Riccati transformation; domain criteria.
Research supported by NNSF of China (No. 10171113) and NSF of Educational De-

partment of Guangdong Province.

[31]



32 R. K. Zhuang and Z. A. Yao

(C1) A(x) = (Aij(x))n×n is a real symmetric positive definite matrix func-

tion (ellipticity condition) with Aij ∈ C1+µ
loc (Ω), µ ∈ (0, 1), i, j =

1, . . . , n; λmax(x) denotes the largest (necessarily positive) eigenvalue
of the matrix A(x); there exists a function λ ∈ C1(R+, R+) such that
λ(r) ≥ max|x|=r λmax(x) for r > 0;

(C2) bi ∈ C1+µ
loc (Ω, R), q ∈ Cµ

loc(Ω, R), µ ∈ (0, 1) and q(x) 6≡ 0 for |x| ≥ a0;

(C3) f ∈ C1(R, R), yf(y) > 0 and f ′(y) ≥ k > 0 for all y 6= 0 and some
constant k.

A function y ∈ C2+µ
loc (Ω, R), µ ∈ (0, 1), is said to be a solution of

(1.1) in Ω if y(x) satisfies (1.1) for all x ∈ Ω. For the problem of exis-
tence of solutions of (1.1), we refer the reader to the monograph [2]. We
restrict our attention only to nontrivial solutions y(x) of (1.1), i.e., such
that sup{|y(x)| : x ∈ Ω} > 0. A nontrivial solution y(x) of (1.1) is called
oscillatory if the zero set {x : y(x) = 0} of y(x) is unbounded, otherwise it is
called nonoscillatory. Equation (1.1) is called oscillatory if all its nontrivial
solutions are oscillatory.

There are a great number of papers (see, for example, [1, 3, 5–7, 14]
and the references quoted therein) devoted to the particular cases of (1.1),
including the following second order ordinary differential equations:

y′′(t) + q(t)y(t) = 0,(1.2)

(r(t)y′(t))′ + q(t)y(t) = 0,(1.3)

(r(t)y′(t))′ + q(t)f(y) = 0.(1.4)

An important tool in the study of oscillatory behavior of solutions for
(1.2) is the averaging technique. Here we list some known oscillation criteria
for (1.2):

(1.5) lim
t→∞

1

t

t\
t0

s\
t0

q(v) dv ds = ∞ (Wintner [14]);

(1.6) lim inf
t→∞

1

t

t\
t0

s\
t0

q(τ) dτ ds

< lim sup
t→∞

1

t

t\
t0

s\
t0

q(τ) dτ ds ≤ ∞ (Hartman [3]);

(1.7) lim sup
t→∞

1

tm−1

t\
t0

(t − s)m−1q(s) ds = ∞ for some m > 2

(Kamenev [5]).

Some other oscillatory criteria can be found in [8, 12, 16] and the references
therein.
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For the semilinear elliptic equation

(1.8)
n

∑

i,j=1

Di[AijDjy] + q(x)f(y) = 0

Noussair and Swanson [11] first extended the Wintner theorem by using the
following partial Riccati type transformation:

(1.9) w(x) = −
α(|x|)

f(y(x))
(A∇y)(x)

where α ∈ C2 is an arbitrary positive function and ∇y denotes the gradient
of y. Swanson [13] summarized the oscillation results for (1.8) up to 1979. For
recent contributions we refer the reader to Xu et al. [15] and the references
therein.

We see that most known oscillation criteria involve the integral of q(x)
and hence require the knowledge of q(x) on the entire half-line [a0,∞).
However, from the Sturm Separation Theorem, we know that oscillation
is only an interval property, i.e., if there exists a sequence of subintervals
[ai, bi] of [a0,∞), with ai → ∞, such that for each i there exists a solution
of (1.2) that has at least one zero in [ai, bi], then every solution of (1.2) is
oscillatory, no matter how “bad” (1.2) is (or p and q are) on the remaining
parts of [a0,∞).

Taking this into account, Kong [6] established an interval criterion for
oscillation of the second order linear differential equation (1.2). Recently,
Li and Agarwal [9, 10] and Huang [4] further studied interval oscillation
criteria for nonlinear ODEs. However, for second order elliptic differential
equations, whether similar results are true has remained an open ques-
tion.

Motivated by the idea of Kong [6], Li and Agarwal [9, 10], Noussair
and Swanson [11], and Xu et al. [12], in this paper we obtain, by using a
generalized Riccati transformation and integral averaging technique, several
new domain criteria for oscillation, that is, criteria given by the behavior
of (1.1) only on a sequence of subdomains of Ω ⊂ R

n. Our results are
extensions of the results of the above-mentioned authors.

2. Main results. We first introduce a class Φ of functions. Let D0 =
{(r, s) ∈ R

2 : r > s ≥ a0} and D = {(r, s) ∈ R
2 : r ≥ s ≥ a0}. A function

H ∈ C(D, R) is said to belong to Φ if there are h1, h2 ∈ C(D, R), ̺ ∈
C1([a0,∞), R+) and η ∈ C1([a0,∞), R) satisfying the following conditions:

(H1) H(r, r) = 0 for r ≥ a0; H(r, s) > 0 for all (r, s) ∈ D0;
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(H2)
∂

∂r
[H(r, s)] +

[

̺′(r)

̺(r)
+

2k

ω
η(r)r1−n

]

H(r, s) = h1(r, s)
√

H(r, s);

(H3)
∂

∂s
[H(r, s)] +

[

̺′(s)

̺(s)
+

2k

ω
η(s)s1−n

]

H(r, s) = −h2(r, s)
√

H(r, s).

For simplicity, we define functions Q and g as follows: For any given functions
̺ ∈ C1([a0,∞), R+) and λ, η ∈ C1([a0,∞), R), let

Q(r) = ̺(r)

{ \
Sr

[

q(x) −
1

4k
BT A−1B −

1

2k

n
∑

i=1

Dibi

]

dσ

+
k

ω
λ(r)η2(r)r1−n − [λ(r)η(r)]′

}

,

g(r) =
ω

k
λ(r)̺(r)rn−1,

where Sr = {x ∈ R
n : |x| = r} for r > 0, BT = (b1(x), . . . , bn(x)), dσ

denotes the spherical integral element in R
n and ω is the area of the unit

sphere in R
n.

Lemma 2.1. Let y(x) be a nontrivial solution of (1.1) with y(x) > 0 for

x ∈ G[c, b). For any H ∈ Φ, define

W (x) =
1

f(y)
(A∇y)(x) +

1

2k
B, x ∈ G[c, b),(2.1)

V (r) = ̺(r)
[ \

Sr

W (x)γ(x) dσ + λ(r)η(r)
]

, x ∈ G[c, b),(2.2)

where ∇y denotes the gradient of y(x), and γ(x) = x/|x| for |x| 6= 0 is the

outward unit normal to Sr. Then

(2.3)
1

H(b, c)

b\
c

H(b, s)Q(s) ds ≤ V (c) +
1

4H(b, c)

b\
c

g(s)h2
2(b, s) ds.

Proof. A direct computation with the use of (1.1) and (2.1) leads to

div W (x) = −
f ′(y)

f2(y)
(∇y)TA∇y −

1

f(y)
[q(x)f(y) + BT∇y](2.4)

+
1

2k

n
∑

i=1

Dibi

≤ −k

[

W −
1

2k
B

]T

A−1

[

W −
1

2k
B

]

− q(x)

− BT A−1

[

W −
1

2k
B

]

+
1

2k

n
∑

i=1

Dibi

= −kW T A−1W − q(x) +
1

4k
BT A−1B +

1

2k

n
∑

i=1

Dibi.

Applying Green’s formula to (2.2), we get
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(2.5) V ′(r) =
̺′(r)

̺(r)
V (r) + ̺(r)

{ \
Sr

div W (x) dσ + [λ(r)η(r)]′
}

≤
̺′(r)

̺(r)
V (r) − ̺(r)k

\
Sr

W T A−1W dσ

− ̺(r)

{ \
Sr

[

q(x) −
1

4k
BT A−1B −

1

2k

n
∑

i=1

Dibi

]

dσ − [λ(r)η(r)]′
}

.

In view of (C1), we have (W T A−1W )(x) ≥ λ−1
max(x)|W (x)|2, and by the

Cauchy–Schwarz inequality, we have\
Sr

|W (x)|2 dσ ≥
r1−n

ω

[ \
Sr

W (x)γ(x) dσ
]2

.

Hence, by (2.2) and (2.5), we get

(2.6) V ′(r) ≤
̺′(r)

̺(r)
V (r) −

k̺(r)r1−n

ωλ(r)

[ \
Sr

W (x)γ(x) dσ
]2

− ̺(r)

{ \
Sr

[

q(x) −
1

4k
BT A−1B −

1

2k

n
∑

i=1

Dibi

]

dσ − [λ(r)η(r)]′
}

=
̺′(r)

̺(r)
V (r) −

k̺(r)r1−n

ωλ(r)

[

V (r)

̺(r)
− λ(r)η(r)

]2

− ̺(r)

{ \
sr

[

q(x) −
1

4k
BT A−1B −

1

2k

n
∑

i=1

Dibi

]

dσ − [λ(r)η(r)]′
}

= − Q(r) +

[

̺′(r)

̺(r)
+

2k

ω
η(r)r1−n

]

V (r) −
1

g(r)
V 2(r).

Next we multiply (2.6), with r replaced by s, by H(r, s) and integrate from
c to r, to get

(2.7)

r\
c

H(r, s)Q(s) ds ≤ −

r\
c

V ′(s)H(r, s)ds −

r\
c

H(r, s)

g(s)
V 2(s) ds

+

r\
c

[

̺′(s)

̺(s)
+

2k

ω
η(s)s1−n

]

V (s)H(r, s) ds

= H(r, c)V (c) −

r\
c

H(r, s)

g(s)
V 2(s) ds

+

r\
c

{

∂H(r, s)

∂s
+

[

̺′(s)

̺(s)
+

2k

ω
η(s)s1−n

]

H(r, s)

}

V (s) ds

= H(r, c)V (c) −

r\
c

H(r, s)

g(s)
V 2(s) ds −

r\
c

h2(r, s)
√

H(r, s)V (s) ds
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= H(r, c)V (c) −

r\
c

[

√

H(r, s)

g(s)
V (s) +

1

2

√

g(s)h2(r, s)

]2

ds

+
1

4

r\
c

g(s)h2
2(r, s) ds

≤ H(r, c)V (c) +
1

4

r\
c

g(s)h2
2(r, s) ds.

Let r → b− in (2.7). Dividing both sides by H(b, c), we obtain (2.3).

Lemma 2.2. Let y(x) be a nontrivial solution of (1.1) with y(x) > 0 for

x ∈ G(a, c]. For any H ∈ Φ, let W (r), V (r) be defined on G(a, c] by (2.1),
(2.2) respectively. Then

(2.8)
1

H(c, a)

c\
a

H(s, a)Q(s) ds ≤ −V (c) +
1

4H(c, a)

c\
a

g(s)h2
1(s, a) ds.

Proof. The proof is similar to that Lemma 2.1. We multiply (2.6) by
H(s, r) and integrate with respect to s from r to c for r ∈ (a, c] to get

(2.9)

c\
r

H(s, r)Q(s) ds

≤ −

c\
r

V ′(s)H(s, r)ds −

c\
r

H(s, r)

g(s)
V 2(s) ds

+

c\
r

[

̺′(s)

̺(s)
+

2k

ω
η(s)s1−n

]

V (s)H(s, r) ds

= − H(c, r)V (c) −

c\
r

H(s, r)

g(s)
V 2(s) ds

+

c\
r

{

∂H(s, r)

∂s
+

[

̺′(s)

̺(s)
+

2k

ω
η(s)s1−n

]

H(s, r)

}

V (s) ds

= − H(c, r)V (c) −

c\
r

H(s, r)

g(s)
V 2(s) ds +

c\
r

h1(s, r)
√

H(s, r)V (s) ds

= − H(c, r)V (c) −

c\
r

[

√

H(s, r)

g(s)
V (s) −

1

2

√

g(s)h1(s, r)

]2

ds

+
1

4

c\
r

g(s)h2
1(s, r) ds

≤ − H(c, r)V (c) +
1

4

c\
r

g(s)h2
1(s, r) ds.

Let r → a+ in (2.9). Dividing both sides by H(c, a), we obtain (2.8).
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The following theorem is an immediate consequence of Lemmas 2.1
and 2.2.

Theorem 2.1. Assume that for some c ∈ (a, b) and some H ∈ Φ,

(2.10)
1

H(c, a)

c\
a

H(s, a)Q(s) ds +
1

H(b, c)

b\
c

H(b, s)Q(s) ds

>
1

4

(

1

H(c, a)

c\
a

g(s)h2
1(s, a) ds +

1

H(b, c)

b\
c

g(s)h2
2(b, s) ds

)

.

Then every nontrivial solution of (1.1) has at least one zero in G(a, b) =
{x ∈ R

n : a < |x| < b}

Proof. Suppose the contrary. Then without loss of generality we may
assume that there is a solution y(x) of (1.1) such that y(x) > 0 for x ∈
G(a, b). From Lemmas 2.1 and 2.2, we see that both (2.3) and (2.8) hold.
Adding (2.3) and (2.8), we obtain

(2.11)
1

H(c, a)

c\
a

H(s, a)Q(s) ds +
1

H(b, c)

b\
c

H(b, s)Q(s) ds

≤
1

4

(

1

H(c, a)

c\
a

g(s)h2
1(s, a) ds +

1

H(b, c)

b\
c

g(s)h2
2(b, s) ds

)

,

which contradicts the assumption (2.10) and completes the proof.

Theorem 2.2. Suppose for each T ≥a0 there exist H∈Φ and a, b, c∈R

such that T ≤ a < c < b and (2.10) holds. Then equation (1.1) is oscillatory.

Proof. Pick a sequence {Ti} ⊂ [a0,∞) with Ti → ∞ as i → ∞. By the
assumption, for each i ∈ N, there exist ai, bi, ci ∈ R such that Ti ≤ ai <
ci < bi, and (2.10) holds with a, b, c replaced by ai, bi, ci, respectively. From
Theorem 2.1, every solution y(x) has at least one zero x ∈ G(ai, bi). Noting
that |x| > ai ≥ Ti for i ∈ N, we see that the zero set {x ∈ Ω : y(x) = 0}
of y(x) is unbounded. Thus, every nontrivial solution of (1.1) is oscillatory.
The proof is complete.

Theorem 2.3. Suppose for each l ≥ a0 there exists H ∈ Φ such that

(2.12) lim sup
r→∞

r\
l

[

H(s, l)Q(s) −
1

4
g(s)h2

1(s, l)

]

ds > 0

and

(2.13) lim sup
r→∞

r\
l

[

H(r, s)Q(s) −
1

4
g(s)h2

2(r, s)

]

ds > 0.

Then equation (1.1) is oscillatory.
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Proof. For any T ≥ a0, let a = T. In (2.12) we choose l = a. Then there
exists c > a such that

(2.14)

c\
a

[

H(s, a)Q(s) −
1

4
g(s)h2

1(s, a)

]

ds > 0.

In (2.13) we choose l = c. Then there exists b > c such that

(2.15)

b\
c

[

H(b, s)Q(s) −
1

4
g(s)h2

2(b, s)

]

ds > 0.

Combining (2.14) and (2.15) we obtain (2.10). The conclusion thus comes
from Theorem 2.2. The proof is complete.

From the above oscillation criteria, we can obtain various sufficient con-
ditions for oscillation of (1.1) for different choices of H(r, s), ̺(s) and η(s).

In Theorem 2.2, if we choose η(s) ≡ 0, and H = H(r − s) ∈ Φ, we
have ∂H(r − s)/∂r = −∂H(r − s)/∂s; if we denote this common value by
h(r − s), then

h1(r, s) =
h(r − s)

√

H(r − s)
+

̺′(r)

̺(r)

√

H(r − s),

h2(r, s) =
h(r − s)

√

H(r − s)
−

̺′(s)

̺(s)

√

H(r − s).

The subclass of Φ consisting of such H(r − s) is denoted by Φ0. Applying
Theorem 2.2 to Φ0, we obtain the following result.

Theorem 2.4. Suppose for each l ≥ a0 there exists H ∈ Φ0 and a, c ∈ R

such that T ≤ a < c and

(2.16)

c\
a

H(s−a)[Q(s)+Q(2c−s)] ds >
1

4

c\
a

[g(s)+g(2c−s)]
h2(s − a)

H(s − a)
ds

+
1

2

c\
a

[

g(s)
̺′(s)

̺(s)
− g(2c − s)

̺′(2c − s)

̺(2c − s)

]

h(s − a) ds

+
1

4

c\
a

[

g(s)
̺′2(s)

̺2(s)
+ g(2c − s)

̺′2(2c − s)

̺2(2c − s)

]

H(s − a) ds.

Then equation (1.1) is oscillatory.

Proof. Let b = 2c − a. Then H(b − c) = H(c − a) = H((b − a)/2) and
for any φ ∈ L[a, b], we have

b\
c

φ(s) ds =

c\
a

φ(2c − s) ds.
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Thus if (2.16) holds then (2.10) holds for H ∈ Φ0, ̺ ∈ C1([a0,∞), R+) and
therefore (1.1) is oscillatory by Theorem 2.2. The proof is complete.

Define

Λ(r) =

r\
a0

s1−n

̺(s)λ(s)
ds, r ≥ a0,

and let

H(r, s) = [Λ(r) − Λ(s)]µ (µ > 1), η(s) ≡ 0.

Based on the above results, we obtain the following oscillation criteria of
Kamenev’s type.

Theorem 2.5. Assume that limr→∞ Λ(r) = ∞. If for each b ≥ a0, there

exists µ > 1 such that

(2.17) lim sup
r→∞

1

Λµ−1(r)

r\
b

[Λ(s) − Λ(b)]µQ(s) ds >
ωµ2

4k(µ − 1)

and

(2.18) lim sup
r→∞

1

Λµ−1(r)

r\
b

[Λ(r) − Λ(s)]µQ(s) ds >
ωµ2

4k(µ − 1)
,

then equation (1.1) is oscillatory.

Proof. It is easy to see that

h1(r, s) = µ[Λ(r) − Λ(s)](µ−2)/2 r1−n

̺(r)λ(r)
,

h2(r, s) = µ[Λ(r) − Λ(s)](µ−2)/2 s1−n

̺(s)λ(s)
,

g(r) =
ω

k
̺(r)λ(r)rn−1.

Hence we have
r\
b

g(s)h2
1(s, b) ds =

r\
b

ω

k
̺(s)λ(s)sn−1µ2[Λ(s) − Λ(b)]µ−2 (s1−n)2

̺2(s)λ2(s)
ds

=
ωµ2

k

r\
b

[Λ(s) − Λ(b)]µ−2 s1−n

̺(s)λ(s)
ds

=
ωµ2

k(µ − 1)
[Λ(r) − Λ(b)]µ−1

and
r\
b

g(s)h2
2(r, s)ds =

r\
b

ω

k
̺(s)λ(s)sn−1µ2[Λ(r) − Λ(s)]µ−2 (s1−n)2

̺2(s)λ2(s)
ds
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=
ωµ2

k

r\
b

[Λ(r) − Λ(s)]µ−2 s1−n

̺(s)λ(s)
ds

=
ωµ2

k(µ − 1)
[Λ(r) − Λ(b)]µ−1.

Noting that limr→∞ Λ(r) = ∞, we have

(2.19) lim
r→∞

1

4Λµ−1(r)

r\
b

g(s)h2
1(s, b) ds =

ωµ2

4k(µ − 1)

and

(2.20) lim
r→∞

1

4Λµ−1(r)

r\
b

g(s)h2
2(r, s) ds =

ωµ2

4k(µ − 1)
.

From (2.17) and (2.19), we have

lim
r→∞

1

Λµ−1(r)

r\
b

{

[Λ(s) − Λ(b)]µQ(s) −
1

4
g(s)h2

1(s, b)

}

ds

= lim
r→∞

1

Λµ−1(r)

r\
b

[Λ(s) − Λ(b)]µQ(s) ds − lim
r→∞

1

Λµ−1(r)

r\
b

1

4
g(s)h2

1(s, b) ds

= lim
r→∞

1

Λµ−1(r)

r\
b

[Λ(s) − Λ(b)]µQ(s) ds −
ωµ2

4k(µ − 1)
> 0,

i.e., (2.12) holds. Similarly, (2.18) implies (2.13) holds. From Theorem 2.3,
equation (1.1) is oscillatory.

Remark. If the assumption (C3) is replaced by

f(y)/y ≥ k > 0, y 6= 0,

then we can obtain the same results when q(x) ≥ 0 for x ∈ Ω ⊂ R
n.

Example 1. Consider the second order nonlinear elliptic differential
equation

(2.21)
∂

∂ x1

[

α

r2

∂y

∂x1

]

+
∂

∂x2

[

β

r2

∂y

∂x2

]

+
α

r3

∂y

∂x1
+

β

r3

∂y

∂x2

+
(α + β + 4)r − 6(αx1 + βx2)

4r5
(y + y3) = 0,

where r =
√

x2
1 + x2

2, r ≥ 1, n = 2, α ≥ β > 0. It is easy to see that

λ(r) =
α

r2
, q(x) =

(α + β + 4)r − 6(αx1 + βx2)

4r5
, f(y) = y + y3.
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Let ̺ = 1. Then

Λ(r) =

r\
1

s1−n

λ(s)
ds =

1

2α
(r2−1), Q(r) =

2π

r3
, f ′(y) = 1+3y2 ≥ 1, ω = 2π.

Then, for any b ≥ 1,

(2.22) lim
r→∞

1

Λµ−1(r)

r\
b

[Λ(s)−Λ(b)]µQ(s) ds = lim
r→∞

[Λ(r) − Λ(b)]µ · 2π/r3

(µ − 1)Λµ−2r/α

=
2πα

µ − 1
lim

r→∞

[Λ(r) − Λ(b)]µ

Λµ−2r4
=

2π

4(µ − 1)α
.

For any α < 1, there exists µ > 1 such that 2π
4(µ−1)α > 2πµ2

4(µ−1) , so (2.17)

holds.
Noting that
r\
b

{[Λ(r) − Λ(s)]µ − [Λ(s) − Λ(b)]µ}
2π

s3
ds

≥
2π

r3

r\
b

{[Λ(r) − Λ(s)]µ − [Λ(s) − Λ(b)]µ} ds = 0,

we get
r\
b

[Λ(r) − Λ(s)]µQ(s) ds ≥

r\
b

[Λ(s) − Λ(b)]µQ(s) ds.

Hence

lim
r→∞

1

Λµ−1(r)

r\
b

[Λ(r) − Λ(s)]µQ(s) ds

≥ lim
r→∞

1

Λµ−1(r)

r\
b

[Λ(s) − Λ(b)]µQ(s) ds

=
2π

4(µ − 1)α
.

This means that (2.18) holds for the same µ > 1. Applying Theorem 2.5,
we find that equation (2.21) is oscillatory for α < 1.
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Révisé le 18.7.2005 (1560)


