
ANNALES

POLONICI MATHEMATICI

86.1 (2005)

Conformal nullity of isotropic submanifolds

by Vladimir Rovenski (Haifa)

Abstract. We introduce and study submanifolds with extrinsic curvature and sec-
ond fundamental form related by an inequality that holds for isotropic submanifolds and
becomes equality for totally umbilical submanifolds. The dimension of umbilical subspaces
and the index of conformal nullity of these submanifolds with low codimension are esti-
mated from below. The corollaries are characterizations of extrinsic spheres in Riemannian
spaces of positive curvature.

1. Introduction. Isotropic submanifolds with low codimension have
not been extensively studied apart from the case of isometric immersions
between space forms (see [8], [6], [2], [3]). We introduce the submanifolds
whose extrinsic curvature and second fundamental form are related by an
inequality that holds for isotropic submanifolds and becomes equality for
totally umbilical submanifolds. These submanifolds include the class of sub-
manifolds with nonpositive extrinsic curvature. We study the problem of
characterizing totally umbilical and isotropic submanifolds among all sub-

manifolds satisfying an inequality of the above type.

In 1994 Florit obtained the best estimate for the index of relative nul-
lity of a submanifold with nonpositive extrinsic sectional curvature and low
codimension. In 1987 Borisenko studied submanifolds with nonpositive ex-
trinsic sectional curvature and obtained characterizations of totally geodesic
submanifolds in Riemannian spaces of positive curvature. These results were
generalized in [11] to the case of nonpositive extrinsic qth Ricci curvature.

The present paper continues these studies. Its main goals are estimates
for conformal nullity of isotropic submanifolds with low codimension and
submanifolds with the above mentioned inequality (local Theorems 1, 2)
and characterizations of extrinsic spheres in Riemannian spaces of positive
curvature (Theorems 3, 4). These results presented in Section 2 are based
on the local lemmas of Section 3, where the symmetric bilinear forms with
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qth Ricci curvature bounded from above are studied, and lower estimates
of the index of conformal nullity of a submanifold with extrinsic qth Ricci
curvature bounded from above and small codimension are given. Section 3.2
contains estimates from below of the dimension of umbilical subspaces of
these bilinear forms. In Section 3.3 we find a lower estimate of the index of
conformal nullity of these forms.

2. Conformal nullity of submanifolds. Let Mn be a Riemannian
manifold, q ∈ [1, n) some integer, V = {xi}1≤i≤q ⊂ TmM an orthonormal
system of q vectors at m ∈ M and x0 ⊥ V a unit vector. The qth Ricci

curvature of M is defined as Ricq(x0; V ) =
∑

1≤i≤q K(x0, xi) where K stands

for sectional curvature. Let Mn → Mn+p be a submanifold with the second
fundamental form h. The extrinsic qth Ricci curvature Ricq

h is (see [11])

Ricq
h(x0; V ) =

∑

1≤i≤q

Kh(x0, xi),(1)

where

Kh(x0, xi) = 〈h(x0, x0), h(xi, xi)〉 − h2(x0, xi)

is the extrinsic sectional curvature of h on the plane σ = {x0, xi}. Define

λh(m) = min{|h(x, x)| : x ∈ TmM, |x| = 1} and λh = min
m∈M

λh(m).

The totally umbilical submanifolds obey the equality Kh = λ2
h.

The function λh : M → R also arises in the study of isotropic subman-
ifolds. A submanifold Mn is isotropic at m ∈ M if |h(x, x)| is positive and
does not depend on the choice of the unit vector x ∈ TmM (see [8]). In this
case the function x 7→ |h(x, x)|/x2 at m is constant and equal to λh(m).
If the function λh of an isotropic submanifold Mn is constant, then Mn

is a constant isotropic submanifold . Every totally umbilical submanifold is
isotropic, but not vice versa. For p = 1 the isotropic submanifolds are pre-
cisely the totally umbilical ones.

Proposition 1 (see [8]). Every isotropic submanifold M ⊂ M obeys

the inequality Kh ≤ λ2
h. If equality holds then M is totally umbilical.

Proof. Let x, y ∈ TM be unit orthogonal vectors. Then

Kh(x, y) = 〈h(x, x), h(y, y)〉 − h2(x, y) ≤ |h(x, x)| · |h(y, y)| = λ2
h.

To prove the second statement note that equality holds if and only if
h(x, x) = h(y, y) and h(x, y) = 0. From the arbitrariness of x, y it follows
that M is totally umbilical.

Consider now the submanifolds with weaker inequality Ricq
h ≤ qλ2

h for
some q ≥ 1.
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Theorem 1. Let Mn ⊂ Mn+p be a submanifold with λh > 0 and

Ricq
h(m) ≤ qλ2

h(m), m ∈ Mn,

for some q with 1+ δ1q < p ≤ n−2q + δ1q. Then the conformal nullity index

satisfies

µξ ≥ n − 2p − q + 2 + δ1q

for some normal ξ with |ξ| = λh.

Corollary 1. Let Mn ⊂ Mn+p be a submanifold with Ricq
h ≤ 0 for

some q with 1 + δ1q ≤ p < n − 2q + δ1q. Then the relative nullity index

satisfies

µ(M) ≥ n − 2p − q + δ1q.

Here δij is Kronecker’s symbol. Theorem 1 and Corollary 1 are local
(we do not assume completeness and a “curvature-invariant” condition),
i.e. the estimates depend on the second fundamental form at any point
m ∈ M . They follow from Lemmas 4 and 5, respectively. Using Proposition 1
and Theorem 1 with q = 1 we estimate the conformal nullity of isotropic
submanifolds.

Theorem 2. Let Mn ⊂ Mn+p (2 < p < n) be an isotropic submanifold

and m ∈ M . Then µξ ≥ n − 2p + 2 for some nonzero normal ξ at m.

Recall some important properties of conformal nullity distributions.

Definition 1. A vector ξ ∈ TM⊥ is the principal curvature normal if
the conformal nullity subspace Tξ ⊆ TM associated to ξ and given by

Tξ = {x ∈ TM : h(x, y) = ξ〈x, y〉, ∀y ∈ TM}
is at least one-dimensional. The integer µξ = dimTξ is the conformal nullity

index associated to ξ, and |ξ| is the normal curvature of Tξ (see also definition
in Section 3.1). For ξ = 0 we obtain the relative nullity subspace Tµ(m) and
the relative nullity index µ(m) = dim Tµ(m) at a point m ∈ M . Denote by
µ(M) = minm∈M µ(m) the relative nullity index of M .

Proposition 2 ([10]). Let Mn → R
n+p be a submanifold with a non-

vanishing proper principal curvature normal ξ of multiplicity s. Then the

following holds:

(1) Eξ is a umbilical distribution on Mn; its leaves are s-dimensional

round spheres in R
n+p if and only if ξ is parallel in the normal con-

nection of Eξ.

(2) If s > 1 then ξ is parallel in the normal connection of Eξ.

(3) The leaves are totally geodesic in Mn if and only if ∇x(ξ2) = 0
(x ⊥ Eξ).
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For a curvature-invariant submanifold M ⊂ M , i.e. with the condition

R(x, y)z⊥ = 0 (x, y, z ∈ TM),(2)

the distribution Eξ (Eµ) has the same properties (1)–(3) as in Proposition 2;
moreover, if M is complete then the leaves are complete extrinsic spheres
(totally geodesic submanifolds) in M (see [5]).

Using Theorem 1 and Proposition 2 we obtain a characterization of ex-
trinsic spheres, and generalize results in [1], [11].

Theorem 3. Let Mn ⊂ Mn+p be a complete curvature-invariant sub-

manifold with Ricq
h ≤ qλ2

h (λh > 0) for some q with 2+δ1q ≤ p ≤ n−2q+δ1q.

Then M is an extrinsic sphere with normal curvature λh if one of the fol-

lowing conditions holds:

(a) Rics(M) > 0 for some s ≤ n − 4p − 2q + 5 + 2δ1q,

(b) Rics(M)|M > 0 for some s ≤ n − 5p − 2q + 5 + 2δ1q.

Proof. By Theorem 1, the conformal nullity index satisfies the inequality
µξ ≥ n − 2p − q + 2 + δ1q for some continuous normal vector field ξ of con-

stant length λh. By Proposition 2, the leaves {L} of the conformal nullity
distribution Eξ are µξ-dimensional extrinsic spheres in M of normal curva-

ture λh, and they are totally geodesic in M . Assume that M is not totally
umbilical (and hence is not an extrinsic sphere) of normal curvature λh, i.e.,
µξ < n. Let L1, L2 be two sufficiently close leaves. The shortest geodesic
γ(t) (0 ≤ t ≤ 1) of length dist(L1, L2) > 0 between the points mi ∈ Li is
orthogonal to L1 and L2. Since the normals ξ1 = γ̇(0), ξ2 = γ̇(1) to L1, L2

are tangent to M and hence are orthogonal to the mean curvature vectors
of the leaves, we have hi(xi, xi) ⊥ ξi for all xi ∈ Tmi

Li. By the asumption
and the estimate of µξ we have

(a) µξ ≥ (n − 1) + s, (b) µξ ≥ (n + p − 1) + s.

Hence, in both cases (a) and (b) there is an s-dimensional subspace
V1 ⊂ Tm1

L whose parallel translation V1(t) along γ lies in Tm2
L. Let ej(t)

be any orthonormal basis of V1(t). Since the second variation of the energy
of γ along ej(t) is nonnegative, we have

(a)
s∑

j=1

1\
0

K(γ̇, ej(t)) dt ≤ 0, (b)
s∑

j=1

1\
0

K(γ̇, ej(t)) dt ≤ 0,(3)

which contradicts the positivity of the sth Ricci curvature.

For q = 2 and γq
M ≤ 1 Theorem 3 has been proved in [1] under a stronger

assumption on the curvature tensor. From the proof of Theorem 3 with q = 1
and Theorem 2 follows
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Theorem 4. A complete curvature-invariant constant isotropic subman-

ifold Mn ⊂ Mn+p (2 < p < n) is an extrinsic sphere if one of the following

conditions holds:

(a) Rics(M) > 0 for some s ≤ n − 4p + 5,
(b) Rics(M)|M > 0 for some s ≤ n − 5p + 5.

By Theorem 4(a) with s = q = 1, a complete curvature-invariant con-
stant isotropic embedding of a sphere Sn(c) ⊂ Mn+p (c > 0) with codi-
mension 2 < p ≤ n/4 + 1 is totally umbilical. Note that isotropic isometric
immersions between space forms Nn(c) ⊂ Mn+p(c̃) (c ≥ c̃) with codimen-
sion p < 1

2
n(n + 1) are totally umbilical [2].

3. Symmetric bilinear forms with qth Ricci curvature bounded

from above. In 1953 Otsuki proved that the symmetric bilinear form h
with nonpositive sectional curvature and small codimension has a nonzero
asymptotic vector. In 1994 Florit obtained the best estimate for the dimen-
sion of an asymptotic subspace of h and for the index of relative nullity,
µh ≥ n − p. In 1998 the author proved results similar to Florit’s but for
nonnegative qth Ricci curvature. In this section we study the symmetric bi-
linear forms with Ricq

h ≤ qλ2
h and small codimension. We generalize results

by Florit and the author [11, Lemma 6]. For convenience, we collect the
resulting estimates in Table 1.

Table 1. Umbilical and asymptotic subspaces (dimension)

Ricq

h ≤ q λ2
h Ricq

h ≤ 0 Statement

dim T ≥ n−p−q+1+δ1q dimT ≥ n−p−q+δ1q Lemma 2, Corollary 2

µ ≥ dimT − p + 1 µ ≥ dim T − p Propositions 4, 5

µ ≥ n − 2p − q + 2 + δ1q µ ≥ n − 2p − q + δ1q Lemmas 4, 5

Since in the proofs we use only the second fundamental forms at a chosen
point, the results of this section hold for submanifolds in a Riemannian space
with extrinsic qth Ricci curvature bounded from above.

3.1. Preliminaries

Definition 2. Let h : R
n × R

n → R
p be a symmetric bilinear map

(e.g. the second fundamental form h of a submanifold Mn ⊂ Mn+p), V =
{xi}1≤i≤q ⊂ R

n an orthonormal system of q vectors and x0 ⊥ V a unit
vector. Define the extrinsic qth Ricci curvature Ricq

h (see [11]) by

Ricq
h(x0; V ) =

∑

1≤i≤q

Kh(x0, xi),(4)
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where Kh(x0, xi) = 〈h(x0, x0), h(xi, xi)〉−h2(x0, xi) is the extrinsic sectional

curvature on the plane σ = {x0, xi}, and 〈·, ·〉 a scalar product in R
p.

Definition 3. A subspace T ⊆ R
n is called an umbilical subspace of h

relative to ξ ∈ R
p if h(x, y) = ξ〈x, y〉 for x, y ∈ T . A vector ξ ∈ R

p is called
a principal curvature normal of h if the conformal nullity subspace Eξ ⊂ R

n

associated to ξ, given by

Eξ = {x ∈ R
n : h(x, y) = ξ〈x, y〉, ∀y ∈ R

n},
is at least one-dimensional. The integer µξ = dim Eξ is the conformal nullity

index of h associated to ξ, and |ξ| is the normal curvature of Eξ. (For ξ = 0
we obtain the notions of asymptotic subspace, relative nullity subspace and
nullity index of h, respectively).

Define λh = min{|h(x, x)| : |x | = 1} and Ah = {|x | = 1 : |h(x, x)| = λh},
the “minimum set” of h. Note that h has no asymptotic vectors when λh > 0,
and if λh = 0 then Ah coincides with the set of asymptotic vectors of h.

Proposition 3. Let h : R
n × R

n → R
p be a symmetric bilinear map

with λh > 0, and suppose two unit vectors x1, x2 ∈ Ah satisfy

|h(x1, x1)| = |h(x2, x2)| = λh, h(x1, x2) = 0.

Then h(x1, x1) = h(x2, x2) and Kh(x1, x2) = λ2
h.

Proof. Assume the opposite, h(x1, x1) 6= h(x2, x2), and consider the unit
vector x0 = (x1 + x2)/

√
2. In view of the triangle inequality, we obtain a

contradiction

|h(x0, x0)| = |h(x1, x1) + h(x2, x2)|/2 < λh.

The following result has been proved by T. Otsuki [9] for q = 1 and
c = 0.

Lemma 1. Let h : R
n × R

n → R
p be a symmetric bilinear map with

Ricq
h ≤ qc2. If p ≤ n − q, then λh ≤ c.

Proof. Assume the opposite, i.e., λh > c ≥ 0. The minimum of a smooth
positive function f(x) = h2(x, x) on the unit sphere Sn−1 is reached at some
vector x0. Let F (x) = f(x) − λ〈x, x〉. Then

1

2
dF (x0)x = 2〈h(x0, x0), h(x0, x)〉 − λ(x0, x) = 0,(5)

1

2
d2F (x0)(x, x) = 2〈h(x0, x0), h(x, x)〉 + 4h2(x0, x) − λ〈x, x〉 ≥ 0,(6)

where x ∈ R
n. From (5) we have λ/2 = |h(x0, x0)|2 ≥ λ2

h and the subspace
V = kerh(x0, ·) is orthogonal to x0. For unit vectors x ∈ V , in view of (6),
we have 〈h(x0, x0), h(x, x)〉 ≥ λ/2. Since dimV ≥ n − p ≥ q, we can find an
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orthonormal system {xi}1≤i≤q ⊂ V . Hence

qc2 ≥ Ricq
h(x0; x1, . . . , xq) =

q∑

i=1

〈h(x0, x0), h(xi, xi)〉 ≥ qλ/2 ≥ qλ2
h,

and we get a contradiction c ≥ λh.

3.2. Umbilical and asymptotic subspaces. In this section we estimate
from below the dimensions of umbilical or asymptotic subspaces. The fol-
lowing result completes Lemma 8 in [11] (corresponding to λh = 0).

Lemma 2. Suppose that a symmetric bilinear map h : R
n × R

n → R
p

with λh > 0 obeys the inequality Ricq
h ≤ qλ2

h. If p ≤ n − q then there exists

an umbilical subspace Tξ ⊆ R
n with |ξ| = λh and dimTξ ≥ n−p−q+1+δ1q.

Proof. From the proof of Lemma 1 it follows that there is a unit vector
x0 ∈ Ah such that for unit vectors x ∈ kerh(x0),

Kh(x0, x) = 〈h(x0, x0), h(x, x)〉 = λ2
h.(7)

Here a linear transformation h(x) : R
n → R

p is defined for each x ∈ Ah by
h(x)y = h(x, y). Hence for n − p − q + 1 + δ1q ≤ 1 the proof is complete.

Now assume n−p−q+1+δ1q ≥ 2 and hence dim kerh(x0) ≥ q+1−δ1q.

We set V1 = kerh(x0) ⊕ x0, W1 = {Imh(x0)}⊥ ⊕ ξ0, where ξ0 = h(x0, x0).
For an isotropic form h and q = 1, in view of Proposition 3, h(x, x) =

h(x0, x0) for unit vectors of V1. Hence V1 is an (n − p + 1)-dimensional
umbilical subspace.

For general h define h1 = h|V1×V1
. Note that |ξ0| = λh. With the above

notations we claim that Imh1 ⊆ W1. To prove this, take orthonormal vec-
tors {zi}δ1q≤i≤q ⊂ ker h(x0). From (7) it follows that 〈h(x0, x0), h(zi, zi)〉 =

Kh(x0, zi) = λ2
h. Then for any unit y ∈ R

n with y ⊥ x0 and for all t we
have

(8) 〈h(x0 + ty, x0 + ty), h(zi, zi)〉 − 〈h(x0 + ty, zi), h(x0 + ty, zi)〉
= λ2

h + 2t〈h(x0, y), h(zi, zi)〉 + t2 [〈h(y, y), h(zi, zi)〉 − 〈h(y, zi), h(y, zi)〉].
We can assume y ⊥ V1 (see the coefficient of t in (8)), and then the unit
vector xt = 1√

1+t2
(x0 + ty) is orthogonal to U = {z1, . . . , zq}. Hence for

all t,

(1 + t2)Ricq
h(xt; U) = qλ2

h + 2t
〈
h(x0, y),

q∑

i=1

h(zi, zi)
〉

+ t2Ricq
h(y; U).

In view of Ricq
h ≤ qλ2

h we have 〈h(x0, y),
∑q

i=1
h(zi, zi)〉 = 0 (y ∈ R

n,
y ⊥ x0), i.e.,

∑q
i=1

h(zi, zi) ⊥ Im h(x0). Note that for q = 1 we have
h(z, z) ∈ W1 for all z ∈ V1 and in view of symmetry of h the claim is
proved for this case. So assume q > 1, i.e., δ1q = 0. Since the analogous
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property
∑q−1

i=0
h(zi, zi) ∈ W1 is true, we have h(z0, z0) − h(zq, zq) ∈ W1. In

the same way we obtain h(z0, z0) − h(zi, zi) ∈ W1 for each i and hence

h(z0, z0) =
1

q

q∑

i=1

[h(z0, z0) − h(zi, zi)] +
1

q

q∑

i=1

h(zi, zi) ∈ W1.

Since z0 is an arbitrary unit vector in V1, in view of symmetry of h we have
Im h1 ⊆ W1.

The above claim allows us to proceed inductively as follows. Set V0 = R
n

and W0 = R
p. Given k ≥ 0, for the symmetric bilinear map hk = h|Vk×Vk

:

Vk × Vk → Wk with Ricq
hk

≤ qλ2
h, define a nonnegative integer

rk = max{dim Im hk(x) : x ∈ Ahk
} − 1,

and suppose that if k ≥ 1, then

nk = dimVk ≥ n −
k−1∑

i=0

ri, pk = dim Wk ≤ p −
k−1∑

i=0

ri.

Picking a unit vector xk ∈ Vk such that |h(xk, xk)| = λhk
and dim Im hk(xk)

= rk + 1, set Vk+1 = kerhk(xk) ⊕ xk ⊆ Vk, and then nk+1 = dim Vk+1 ≥
(nk +1)−(rk +1) ≥ n−

∑k
i=0

ri. Note that nk−pk ≥ n−p ≥ q+1−δ1q. The

above claim implies that Im hk+1 ⊆ Wk+1, where Wk+1 = {Imhk(xk)}⊥ ⊕
ξ0 ⊆ Wk and hk+1 = h|Vk+1×Vk+1

. In view of Proposition 3, h(xk, xk) =
h(x0, x0) = ξ0. Since

0 ≤ pk+1 = dimWk+1 = pk − rk = p −
k∑

i=0

ri,

there exists an integer m > 0 such that rm = 0. This tells us that Ahm
=

kerhm(xm) ⊕ xm. By Lemma 1 for each subspace S ⊆ Vm with dim S >
pm+q−1−δ1q, we have S∩Ahm

6= {0}. Hence, dim Ahm
≥ nm−(pm+q−1−δ1q)

≥ n − p − q + 1 + δ1q. Moreover, since hm = h|Vm×Vm
, we see that

Tξ0 = Ahm
is an umbilical subspace of h (with |ξ0| = λh) and this con-

cludes the proof.

Corollary 2 ([11]). Suppose a symmetric bilinear map h : R
n × R

n

→ R
p obeys the inequality Ricq

h ≤ 0. Then there is an asymptotic subspace

T ⊂ R
n with dim T ≥ n − p − q + δ1q.

Proof. Extend Euclidean subspace R
p+1 = R

p × R(ep+1) so that |ep+1|
= 1, and consider the bilinear form

h̃〈x, y〉 = h〈x, y〉 + 〈x, y〉 ep+1 : R
n × R

n → R
p+1.

Then λ2

h̃
≥ λ2

h + 1 ≥ 1 and Ricq

h̃
= Ricq

h + q ≤ q. Applying Lemma 2, we

obtain an umbilical subspace T ⊂ R
n of h̃ relative to ep+1, and dim T̃ ≥
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n− (p + 1)− q + 1 + δ1q = n− p− q + δ1q. From h̃(x, x) = h(x, x) + x2 ep+1

since h(x, x) ⊥ ep+1 we get h(x, x) = 0 (x ∈ T ). Hence T is the required
asymptotic subspace of h.

3.3. Indices of conformal and relative nullity. In this section we estimate
the index of relative or conformal nullity of the symmetric bilinear form with
extrinsic qth Ricci curvature bounded above.

We say that y ∈ R
n is a regular element of a bilinear map β : R

n × R
m

→ R
p if dim Im β(y) = max{dim Imβ(z) : z ∈ R

n} (see [7]). Note that the
set RE(β) of regular elements of β is open and dense in R

n.

Lemma 3 ([7]). Let β : R
n × R

m → R
p be a bilinear map and let y0 ∈

RE(β). Then β(y, ker(β(y0)) ⊆ Im β(y0) for all y ∈ R
n.

In 1994 Florit [4] obtained the best estimate for the index of relative
nullity µ(h) of a submanifold with nonpositive extrinsic sectional curvature
and small codimension. This result was generalized to the case of nonpositive
extrinsic qth Ricci curvature in [11, Lemma 6]. Lemma 2 and Proposition 4
yield Lemma 4 below that estimates the conformal nullity index of subman-
ifolds with λh > 0 and completes the above mentioned results.

Lemma 4. Let h : R
n × R

n → R
p be a symmetric bilinear map with

λh > 0 and Ricq
h ≤ qλ2

h with 2+ δ1q ≤ p ≤ n− 2q + δ1q. Then the conformal

nullity index satisfies µξ ≥ n−2p−q+2+δ1q for some ξ ∈ R
p with |ξ| = λh.

Proposition 4. Let h : R
n×R

n → R
p be a symmetric bilinear map with

λh > 0 and Ricq
h ≤ qλ2

h, and suppose there is an umbilical subspace T ⊂ R
n

(n−q > dim T > q) for some ξ ∈ R
p with |ξ| = λh. Then µξ ≥ dim T −p+1.

Proof. Define a bilinear map β : T ′ × T → R
p by β = h|T ′×T . Take unit

vectors y0 ∈ RE(β) ⊂ T ′, x0 ∈ T , and orthonormal systems {xi}1≤i≤q ⊂
kerβ(y0) ⊆ T , {yi}1≤i≤q ⊂ T ′ that are also orthogonal to x0 and y0, resp.
Using only the assumption Kh(xi, xj) = 〈h(xj, xj), h(xi, xi)〉 = λ2

h and
h(xj, xi) = δijξ on T and h(xi, y0) = 0 (i > 0), we see for small s, t ∈ R

that

〈h(ty0 + x0, ty0 + x0), h(syi + xi, syi + xi)〉 − h2(ty0 + x0, syi + xi)

= λ2
h + 2s{2t〈h(x0, y0), h(xi, yi)〉 + 〈h(xi, yi), ξ〉} + 2t〈h(x0, y0), ξ〉 + Ai,

where Ai contains the terms with s2 or t2. Then for the orthonormal sys-

tem ỹ0 = 1√
1+t2

(ty0 + x0), ỹi = 1√
1+s2

(syi + xi) and Ṽ = {ỹi}1≤i≤q we

obtain

(9) Ricq
h(ỹ0; Ṽ ) = qλ2

h + 2s[2t〈ξ, η〉 + 〈ξ, η〉] + 2t〈h(x0, y0), (q − 1)ξ〉 + A,

where η =
∑q

i=1
h(xi, yi) and A contains the terms with s2 or t2. Since

Ricq
h ≤ qλ2

h, equate to zero the linear terms in s and t. This implies
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〈h(x0, y0), ξ〉 = 0, i.e.,

h(x0, y0) ⊥ ξ ⇔ dim Imβ(y0) ≤ p − 1(10)

and

2t〈h(x0, y0), η〉 + 〈ξ, η〉 = 0.(11)

Equate to zero the linear and constant terms in t of (11) to obtain

〈h(x0, y0), η〉 = 0, 〈ξ, η〉 = 0.(12)

Note that terms in η of (12) change sign under the transformation xi ⇒ −xi

or yi ⇒ −yi for each i, while the equations themselves still hold. Thus
from (12) we obtain

〈h(x, y), h(x0, y0)〉 = 0 (y ∈ T ′, x ∈ kerβ(y0))(13)

and, as h(x, y0) = 0, one can drop the assumption x0 ⊥ x. Now from the
arbitrariness of x0 ∈ T and x ∈ ker β(y0) it follows that β(y, kerβ(y0)) ⊥
Im β(y0). This together with Lemma 3 tells us that

h(x, y) = 0 (y ∈ T ′, x ∈ kerβ(y0)).(14)

But since ker β(y0) ⊆ T , we obtain kerβ(y0) ⊆ Eξ. (Note that a princi-
pal curvature normal ξ of Eξ is the same as for T .) Then, in view of the
equivalence (10),

µξ ≥ dim kerβ(y0) = dim T − dim Imβ(y0) ≥ dim T − p + 1.

From Corollary 2 and Proposition 4 we obtain

Proposition 5. Let h : R
n × R

n → R
p be a symmetric bilinear map

with Ricq
h ≤ 0, and suppose there is an asymptotic subspace T ⊂ R

n (n−q >
dimT > q). Then the relative nullity index satisfies µh ≥ dim T − p.

Corollary 2 and Proposition 5 yield Lemma 5 below that estimates the
relative nullity index of submanifolds and improves results of [11].

Lemma 5. Let h : R
n × R

n → R
p be a symmetric bilinear map such

that Ricq
h ≤ 0 for some q with 1 + δ1q ≤ p < n − 2q + δ1q. Then µh ≥

n − 2p − q + δ1q.

Note that Lemma 6 of [11] was formulated without the condition 1+δ1q ≤
p < n−2q+δ1q. The proof of Lemma 5 is similar to the proof of Corollary 2.
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