
ANNALES
POLONICI MATHEMATICI

LXXVIII.2 (2002)

Nontaut foliations and isoperimetric constants

by Konrad Blachowski (Łódź)

Abstract. We study nontaut codimension one foliations on closed Riemannian man-
ifolds. We find an estimate of some constant derived from the mean curvature function of
the leaves of a foliation by some isoperimetric constant of the manifold. Moreover, for foli-
ated 2-tori and the 3-dimensional unit sphere, we find the infimum of the former constants
for all nontaut codimension one foliations.

1. Introduction. In this paper we study nontaut codimension one fo-
liations on closed manifolds. A foliation is said to be taut if there exists a
Riemannian metric on the manifold in which all leaves of the foliation are
minimal submanifolds. For codimension one foliations there are many con-
ditions equivalent to tautness. One of them is that there exists a transverse
loop which meets all leaves of the foliation.

G. Reeb [Re] was the first to find a connection between the volume form
of leaves of a codimension one foliation, the mean curvature function of
the leaves and the volume form of the whole manifold. After almost thirty
years H. Rummler [Ru] showed an analogous relation for any codimension
(so-called Rummler formula).

Let F be an oriented codimension one foliation on a closed Riemannian
manifold M of dimension n+1. Let HF (x) be the mean curvature of the leaf
through x at the point x. The function HF : M → R is smooth. We put
I(F) =

�
M |HF |n+1Ω, where Ω is the volume form of M .

Recently, G. I. Oshikiri [Os] has shown, using the Rummler formula, that
I(F) ≥ I(M) for any nontaut codimension one foliation F . Here, I(M) is the
isoperimetric constant of M . One can ask if this estimate is best possible.
We will show that I(F) > (kF − 1) · I(M), where kF ≥ 2 is an integer
depending on F . Moreover, if M is a 2-dimensional torus or 3-dimensional
unit sphere, then I(F) > 2 · I(M).
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Another question we can ask is: what is the infimum of I(F) for all non-
taut codimension one foliations F on M? The answer is given for foliations
on 2-tori and the 3-dimensional unit sphere. In the case of foliations on
the sphere S3, the infimum found suggests that an isoperimetric constant
coming from separations of S3 by tori is achieved by the Clifford torus.
This statement seems to be close to the so-called Lawson conjecture about
minimal tori on S3.

2. Preliminaries

2.1. Foliations. Let (M,g) be a smooth oriented closed Riemannian n-
manifold and let ∇ be the Levi-Civita connection on (M,g). We denote by
M the family of all closed (n−1)-submanifolds S that separate M into two
connected open submanifolds M1 and M2 satisfying M \ S = M1 ∪M2 and
∂M1 = ∂M2 = S. Then we can define the isoperimetric constant I(M) by

I(M) = inf
S∈M

(Voln−1(S))n

min{Voln(M1),Voln(M2)}n−1 ,(1)

where Voln−1(S) is the (n−1)-volume of S, and Voln(M1) is the n-volume
of M1. It is known that I(M) > 0 (see [Ch]).

Let F be a smooth transversely oriented codimension one foliation on M .
Let x ∈M and U be an open neighbourhood of x such that there exist vector
fields E1, . . . , En−1 on U spanning TF|U . We can assume that g(Ei, Ej) = δji
for i, j = 1, . . . , n−1. Moreover, let N be a unit vector field on U orthogonal
to F . We assume that for any y ∈ U the system {E1(y), . . . , En−1(y)} is
a positively oriented frame of TyLy and {N(y), E1(y), . . . , En−1(y)} is a
positively oriented basis of TyM .

Definition 2.1. Under the above assumptions we locally define the
function HF by

HF =
p∑

i=1

g(∇EiEi, N)(2)

and we call it the mean curvature function of the leaves of F .

Now let Xi ∈ X(M) for i = 1, . . . , n− 1 and

χF (X1, . . . ,Xn−1) = det[g(Ei,Xj)]i,j=1,...,n−1.(3)

Then χF is a well defined (n−1)-form on M and χF |L is the volume form
of a leaf L ∈ F . Let Ω be the volume form of M . We put

I(F) = �
M

|HF |nΩ.(4)

Under the above notations we have the Rummler formula [Ru]

dχF = −HF ·Ω.(5)
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2.2. Nontaut codimension one foliations

Definition 2.2. A foliation F on an oriented compact manifold M is
said to be taut if there exists a Riemannian metric on M such that all the
leaves of F are minimal submanifolds of M (HF ≡ 0).

According to Corollary 3 from [Su, p. 220], an oriented codimension one
foliation is taut iff every leaf meets a closed curve transverse to the foliation.
We say that a nonempty compact subset D ⊂M is a positively (negatively)
foliated domain iff D is a union of leaves of F and the unit normal field
points outward (resp. inward) everywhere on the boundary ∂D. Note that
∂D is a finite union of compact leaves. Oshikiri has proved the following

Theorem 2.3 ([Os]). A transversely oriented codimension one foliation
on an oriented compact manifold is taut if and only if it does not contain
any positively or negatively foliated domain.

Let F be a nontaut transversely oriented codimension one foliation on a
compact oriented manifold M . Then, by Theorem 2.3, the family D+ (resp.
D−) of positively (resp. negatively) foliated domains is nonempty. It is easy
to see that for D1,D2 ∈ D+ (resp. D1,D2 ∈ D−) we have either D1∩D2 = ∅
or D1∩D2 ∈ D+ (resp. D1∩D2 ∈ D−). Denote by D0

+ (resp. D0
−) the family

of all minimal positively (resp. negatively) foliated domains. Then a simple
argument leads to the following lemma.

Lemma 2.4. The set D0 = D0
+ ∪D0

− is finite and

kF = card (D0) ≥ 2.

2.3. Total curvature of a codimension one foliation of Sn. Suppose that
M is an open subset of the unit sphere Sn and that F is an oriented codi-
mension one foliation on M . We denote by N a unit vector field on Sn

normal to F . Let KF (x) be the Gauss–Kronecker curvature of Lx ⊂ Sn at
the point x and let S(n, n−1) be the family of all complete totally geodesic
(n−1)-submanifolds of Sn, that is, of great spheres S = H ∩Sn, where H is
an n-dimensional vector subspace of Rn+1. The set S(n, n− 1) has a natu-
ral structure of a smooth differentiable manifold and has a unique measure
µS invariant under the action of the group of isometries of Sn such that
µS(S(n, n− 1)) = 1

2 ·VolSn.
Let S ∈ S(n, n−1). We denote by F|S the family of all connected compo-

nents of intersections L∩S, where L ∈ F . Then for almost all S ∈ S(n, n−1),
FS is a codimension one foliation on S with only isolated singularities and
the orthogonal projection NS of the vector field N onto TS is a tangent
vector field on S with only isolated singularities. Moreover the foliation F|S
has a singularity at x ∈ S iff S is tangent to F at x. We denote by Σ(F|S)
the set of all singular points of F|S. Clearly, if x ∈ S \ Σ(F|S) then the
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vector NS(x) is orthogonal to the foliation FS. Suppose Σ(F|S) consists of
isolated points and let x ∈ Σ(F|S). We define the sign of a singular point x
of FS as follows:

sign(x) = i(x),(6)

where i(x) is the index of the vector field NS at x. Langevin [La] shows that
for almost all S ∈ S(n, n − 1) such that Σ(F|S) consists of isolated points
we have |i(x)| = 1 for x ∈ Σ(F|S). We denote by S̃ the subset of S(n, n−1)
of all S such that Σ(F|S) consists of isolated points and |i(x)| = 1 for all
x ∈ Σ(F|S).

Definition 2.5. For S ∈ S̃ we put

|µ|(F , S) = card(Σ(F|S))(7)

and if |µ|(F , S) < ℵ0, then

µ(F , S) =
∑

x∈Σ(F|S)

sign(x).(8)

Under the above assumptions the following theorem holds.

Theorem 2.6 ([La1], [LaLe], [La]).

�
M

|KF |Ω = �
S(n,n−1)

|µ|(F , S) dµS(S).(9)

Moreover
�
M

KFΩ = �
S(n,n−1)

µ(F , S) dµS(S).(10)

Now let F be a codimension one foliation on the sphere S3. We suppose
that S ∈ S̃ ⊂ S(3, 2). By the Poincaré–Hopf theorem (see [Ho]) we have

∑

x∈Σ(F|S)

sign(x) = χ(S) = 2,

where χ(S) is the Euler characteristic of S. Therefore |µ|(F , S) ≥ 2 and
µ(F , S) = 2. As a simple corollary of the last theorem we obtain the follow-
ing two theorems.

Theorem 2.7 ([La1], [La2], [La]). Let F be an oriented codimension one
foliation on the 3-sphere S3. Then

�
S3

|KF |Ω ≥ 2π2.(11)

Theorem 2.8 ([La1], [La2], [La]). Under the assumptions of 2.7 we have

�
S3

KFΩ = 2π2.(12)

We end this subsection with another theorem.
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Theorem 2.9 ([La1], [La2], [La]). For any oriented codimension one fo-
liation F on the sphere S3 we have

�
S3

|KF |Ω > 2π2.(13)

3. Results

3.1. The main inequality

Theorem 3.1. Let (M,g) be a closed Riemannian manifold of dimen-
sion n and let F be a nontaut codimension one foliation on M . Then

�
M

|HF |n+1Ω > (kF − 1) I(M),(14)

where Ω is the volume form of M and HF is the mean curvature function
of the leaves of F .

Proof. Let M =
⋃kF
i=1Di, where Di are positively or negatively foliated

domains for i = 1, . . . , kF such that intDi ∩ intDj = ∅ for i 6= j. Then
by the Stokes theorem, Rummler formula (5) and Hölder inequality, for all
i ∈ {1, . . . , kF} we have

Area ∂Di =
∣∣∣ �
∂Di

χF
∣∣∣ =

∣∣∣ �
Di

dχF
∣∣∣ =

∣∣∣ �
Di

HFΩ
∣∣∣ ≤ �

Di

|HF |Ω(15)

≤
( �
Di

|HF |n+1Ω
)1/(n+1)( �

Di

Ω
)n/(n+1)

=
( �
Di

|HF |n+1Ω
)1/(n+1)

(VolDi)n/(n+1).

Therefore for all i ∈ {1, . . . , kF},

�
Di

|HF |n+1Ω ≥ (Area ∂Di)n+1

(VolDi)n
.(16)

Since there exists at most one i0 ∈ {1, . . . , kF} such that VolDi0 >
1
2 VolM ,

from inequality (16) we obtain

�
M

|HF |n+1Ω ≥
∑

i∈I

(Area ∂Di)n+1

(VolDi)n
≥ (Area ∂Di0)n+1

(VolDi0)n
+

∑

i∈I\{i0}
I(M)

> (kF − 1)I(M),

where I = {1, . . . , kF}.
Remark 3.2. The first inequality in (15) becomes an equality if the

function HF has a constant sign on Di. The second inequality, by the Hölder
theorem, can be replaced by an equality iff there exist nonvanishing con-
stants C1 and C2 such that C1|HF |n+1 = C2, that is, iff HF is a constant
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function on Di. Hence, in order to get

�
Di

|HF |n+1Ω = I(M)

the function HF must be as above and Di has to be a subset of M such that

I(M) =
(Area ∂Di)

n+1

min{VolDi,Vol (M\ intDi)}n
.

Remark 3.3. When all positively or negatively foliated domains Di are
such that VolDi ≤ 1

2 VolM , the argument in the proof of Theorem 3.1 leads
to

�
M

|HF |n+1Ω ≥ kF · I(M).

3.2. Slanted torus Tα(v, w). Let v, w ∈ R2 be linearly independent vec-
tors and ^(v, w) = α. We assume for simplicity that 0 < α ≤ π/2 and
‖v‖ ≥ ‖w‖. We define an equivalence relation ∼ on R2 by declaring that
x ∼ y (for x, y ∈ R2) iff there exist integers k, l such that x = y+k ·v+ l ·w.
Then Tα(v, w) = R2/∼ with the quotient topology is a smooth closed ori-
ented 2-dimensional differentiable manifold.

Definition 3.4. Tα(v, w) equipped with the Riemannian metric induced
from the canonical metric on R2 is called a slanted torus here.

Let F be the family of all nontaut codimension one oriented foliations
on Tα(v, w) and

I(F) = �
Tα(v,w)

|HF |2Ω

for F ∈ F . We will show that

I(F) > 2 · I(Tα(v, w))

for any foliation F ∈ F .
First, we should compute the isoperimetric constant I(Tα(v, w)). Since

a one-dimensional submanifold of Tα(v, w) which divides Tα(v, w) into two
open submanifolds and has shortest boundary is either a union of two closed
geodesics each of length ‖w‖ or a circle, we get

I(Tα(v, w)) =





4π when π‖v‖ sinα < 2‖w‖,
8‖w‖
‖v‖ sinα

when π‖v‖ sinα ≥ 2‖w‖.(17)

Theorem 3.5. For any F ∈ F ,

I(F) > 2 · I(Tα(v, w)).(18)

Moreover , if π‖v‖ sinα ≥ 2‖w‖, then

inf
F∈F

I(F) = 2 · I(Tα(v, w)).(19)
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Proof. Let F be a nontaut dimension one foliation on Tα(v, w). Then F
has nondense leaves. Hence, by Kneser’s theorem [Kn] there exist saturated
subsets Ai ⊂ Tα(v, w), i = 1, . . . ,∞, such that:

(1) Tα(v, w) =
⋃∞
i=1Ai,

(2) for any i = 1, . . . ,∞ the set Ai is an annulus, that is, Ai is connected
and its boundary ∂Ai is a union of two closed curves which are compact
leaves of F from a nonzero homotopy class,

(3) for any i, j = 1, . . . ,∞ connected components of ∂Ai are homotopy
equivalent to components of ∂Aj ,

(4) the annuli Ai are foliated in one of the following ways:

(a) all the leaves of F in Ai are compact, hence they are homotopy
equivalent to components of ∂Ai,

(b) all the leaves of F contained in Ai tend in a spiral way to com-
ponents of ∂Ai which are oriented in this same way,

(c) all the leaves of F contained in Ai approach the components of
∂Ai which are oriented in the opposite way (Reeb components).

It is easy to see that the number kF of minimal positively or negatively
foliated domains of Tα(v, w) is equal to the number of Reeb components
of F . Moreover kF is a positive even integer.

Let A be a set of type (4.c), that is, a Reeb component. Then, since
HF |A is not a constant function, by 3.2 we have

�
A

|HF |2Ω >
(Length ∂A)2

AreaA
.(20)

Since the number of Reeb components of F is at least 2, there are two
distinct Reeb components A,B ⊂ Tα(v, w) and

�
Tα(v,w)

|HF |2Ω ≥ �
A∪B
|HF |2Ω >

(Length∂A)2

AreaA
+

(Length∂B)2

AreaB

≥ 4l2
(

1
AreaA

+
1

AreaB

)
≥ 4l2

(
1

AreaA
+

1
T − AreaA

)

≥ 4l2 inf
a∈(0,T )

(
1
a

+
1

T − a

)
= 4l2

(
2
T

+
2
T

)
=

16l2

T

≥ 16‖w‖2
‖v‖‖w‖ sinα

≥ 2 · I(Tα(v, w)),

where T = AreaTα(v, w) and l is the length of the shortest component of
∂A ∪ ∂B. We have thus shown (18).

Let now α, v and w be such that π‖v‖ sinα ≥ 2‖w‖. We can assume
that v = (‖v‖ sinα, ‖v‖ cosα) and w = (0, ‖w‖). Let r = 1

4‖v‖ sinα. For any
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ε from the interval (0, r] we will construct a foliation Fε ∈ F such that

I(Fε) ≤ 2 · I(Tα(v, w)) + δ(ε),

where δ(ε) > 0 and limε→0 δ(ε) = 0.
We first define fε : (0, r]→ R by

fε = f1 · f ε2 ,(21)

where

f1(x) = −
√
r2 − (x− r)2,(22)

f ε2 (x) =
{

1− 1
xe

1/(x−ε) for x < ε,
1 for x ≥ ε.(23)

The function fε is smooth and has the following properties:

• limx→0+ fε(x) = +∞,
• the graph of fε over (ε, r] is a piece of the circle with center (r, 0) and

radius r.

Let kε(x) be the curvature of the graph of fε at (x, fε(x)). Then kε :
(0, r]→ R is a smooth function with the following properties:

• limx→ε kε(x) = 1/r,
• kε|[ε,r] = 1/r,
• limx→0+ kε(x) = 0 because fε has a vertical asymptote x = 0.

Moreover, the function F : DF = (0, r] × (0, r] → R defined by F (ε, x) =
kε(x) is smooth, hence bounded on DF . We put B=sup{F (p); p∈DF }<∞.

Let f̃ε : (0, 2r)→ R be defined by

f̃ε(x) =
{
fε(x) for 0 < x ≤ r,
fε(2r − x) for r < x < 2r.

It is easy to verify that f̃ε is smooth. Moreover, its graph is symmetric
about the line x = r. We denote by W c

ε the graph of f̃ε + c where c ∈ R.
The one-parameter family {W c

ε }c∈R defines a one-dimensional foliation of
(0, 2r) × R invariant under vertical translations. Similarly, we construct a
foliation on (2r, 4r) × R. As a result we get a one-dimensional foliation of
[0, 4r] × R by completing the previous one with the lines x = 0, x = 2r
and x = 4r. Because this foliation is invariant under vertical translations, it
determines a foliation Fε ∈ F .

Therefore, we have

|HFε([(x, y)]∼)| =
{
|kε(x)| for x ∈ (0, 4r) \ {2r},
0 for x ∈ {0, 2r, 4r},(24)
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where 0 ≤ t ≤ 1 and (x, y) = tv + (1− t)w. Moreover, we get

I(Fε) = �
Tα(v,w)

|HFε |2Ω = 4
r

�
0

x ctgα+‖w‖
�

x ctgα

kε(x)2dy dx

= 4‖w‖
r

�
0

kε(x)2 dx = 4‖w‖
ε

�
0

kε(x)2 dx+ 4‖w‖
r

�
ε

kε(x)2 dx

≤ 4‖w‖εB2 + 4‖w‖(r − ε) 1
r2 ≤ 4‖w‖εB2 + 4‖w‖1

r

= 4‖w‖εB2 +
16‖w‖
‖v‖ sinα

= 4‖w‖εB2 + 2 · I(Tα(v, w).

Then, putting δ(ε) = 4‖w‖εB2 we obtain

lim
ε→0

δ(ε) = 0,

hence infF∈F I(F) = 2 · I
(
Tα(v, w)

)
. This ends the proof of Theorem 3.5.

Let T be the family of all one-dimensional submanifolds C of Tα(v, w)
dividing the slanted torus Tα(v, w) into two open submanifolds M1 and M2
of genus 1. We define a new isoperimetric constant as follows:

I1(Tα(v, w)) = inf
C∈T

(LengthC)2

min{AreaM1,AreaM2}
.(25)

Then the reasoning in the proof of Theorem 3.5 yields immediately the
following corollary.

Corollary 3.6. For any nontaut one-dimensional oriented foliation
F ∈ F of Tα(v, w) we have

I(F) > 2 · I1(Tα(v, w)).(26)

Moreover
inf
F∈F

I(F) = I1(Tα(v, w)).(27)

Corollary 3.7. For any nontaut one-dimensional oriented foliation F
of the standard flat torus T 2 = Tπ/2(v, v) (where ‖v‖ = 1) we have

I(F) > 2 · I(T 2).

3.3. Sphere S3. We now consider the three-dimensional sphere S3 =
{x ∈ R4; ‖x‖ = 1} with the Riemannian metric induced from the canonical
metric on R4. We denote by M the family of all closed codimension one
genus one submanifolds T of S3. Then any T ∈ M is a torus separating
S3 into two open connected submanifolds M1 and M2. We define a new
isoperimetric constant I1(S3) by

I1(S3) = inf
T∈M

(AreaT )3

min{VolM1,VolM2}2
.(28)
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Obviously I1(S3) ≥ I(S3). Let now F be the family of all nontaut trans-
versely oriented codimension one foliations on S3. We will show that

I(F) > 2 · I1(S3)(29)

for any F ∈ F .
First of all we will estimate I1(S3). The volume of S3 equals 2π2. Note

that the sets
Ar1 = {(x1, x2, x3, x4) ∈ S3; x2

1 + x2
2 < r2 ∧ x2

3 + x2
4 > 1− r2},

Ar2 = {(x1, x2, x3, x4) ∈ S3; x2
1 + x2

2 > r2 ∧ x2
3 + x2

4 < 1− r2}
are open submanifolds of S3 and ∂Ar1 = ∂Ar2 = Tr, where

Tr = {(x1, x2, x3, x4) ∈ S3; x2
1 + x2

2 = r2 ∧ x2
3 + x2

4 = 1− r2}
is a torus contained in S3. Moreover Ar1 ∪ Ar2 ∪ Tr = S3, hence Tr ∈M . Of
course, AreaTr = 4π2r

√
1− r2. It is easy to see that

VolAr1 = 2π2r2, VolAr2 = 2π2(1− r2).

Therefore

inf
r∈(0,1)

(AreaTr)3

min{VolAr1,VolAr2}2
= inf

r∈(0,1)

(4π2r
√

1− r2)3

min{2π2r2, 2π2(1− r2)}2 = 8π2,

hence I1(S3) ≤ 8π2. Determining the constant I1(S3) is not easy and is
connected with the so-called Lawson conjecture [Law] which says that any
minimal torus in S3 is isometric to the Clifford torus T1/

√
2.

Let Hr and Kr be respectively the mean curvature function and the
Gauss–Kronecker curvature of Tr considered as a submanifold of S3. An
easy computation shows that

|Hr(x)| =
|1− 2r2|
r
√

1− r2
,(30)

Kr(x) = −1,(31)

for any x ∈ Tr. (Hence the Clifford torus T1/
√

2 is a minimal submanifold of
S3.)

We denote by HF and KF respectively the mean curvature function and
the Gauss–Kronecker curvature of the leaves of F ∈ F . Obviously,

H2
F ≥ 2|KF |+ 2KF .(32)

Theorem 3.8. Let F be a transversely oriented codimension one folia-
tion on S3. Then

I(F) = �
S3

|HF |3Ω > 16π2.(33)

Moreover
inf
F∈F

I(F) = 16π2.(34)
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Proof. By the Novikov theorem, any foliation F has a Reeb component,
hence is nontaut.

By (32) and Theorems 2.8 and 2.9 we have

�
S3

H2
FΩ ≥ 2

( �
S3

|KF |Ω + �
S3

KFΩ
)
> 2(2π2 + 2π2) = 8π2.

Moreover, by Hölder’s inequality we get

�
S3

H2
FΩ ≤

( �
S3

(H2
F)3/2

)2/3( �
S3

Ω
)1/3

,

hence

I(F) = �
S3

|HF |3Ω ≥ (VolS3)−1/2
( �
S3

H2
FΩ
)3/2

>
1

π
√

2
(8π2)3/2 = 16π2.

We have thus shown (33).
Now we put r = 1/

√
2 and consider Ar1 and Ar2. Let 0 < ε ≤ r. Similarly

to the case of slanted tori we will construct a foliation Fε ∈ F such that

I(Fε) ≤ 16π2 + δ(ε),

where δ(ε) > 0 and limε→0 δ(ε) = 0. For each ε the sphere S3 will be divided
into two saturated subsets Ar1 and Ar2 and a compact leaf Tr. We will only
describe the foliation on Ar1 (the construction on Ar2 is analogous).

We put Dr = {x ∈ R2; ‖x‖ ≤ r}. Let ψ : Dr × R→ Ar1 be given by

ψ(x1, x2, y) = (x1, x2,
√

1− ‖x‖2 cos y,
√

1− ‖x‖2 sin y),

where x = (x1, x2) and (x1, x2, y) ∈ Dr×R. It is easy to see that ψ(Dr×R)
= Ar1 and that ψ is a covering map, because ψ|Dr×(a,b) is a diffeomorphism
for any a, b ∈ R such that b − a < 2π. We put Scp = {x ∈ S3; x · p = c}
for p ∈ S3 and 0 ≤ c < 1. The set Scp is a two-dimensional sphere of radius√

1− c2 contained in S3. The mean curvature function of Scp is constant and
its absolute value equals 2c/

√
1− c2.

We note that
Ar1 =

⋃

p∈C
Srp ,

where C = {(x1, x2, x3, x4) ∈ S3; x1 = 0 ∧ x2 = 0 ∧ x2
3 +x2

4 = 1}. Indeed,
first we will show that Srp ⊂ Ar1 for any p ∈ C. Let x ∈ Srp , v = (x3, x4) and
w = (p3, p4). Then |v|2 = |v|2|w|2 ≥ (v ·w)2 = 1/2, hence x2

3 +x2
4 ≥ 1/2 and

x ∈ Ar1. Let now x ∈ Ar1 and (x3, x4) = R(cosα, sinα), where R2 ≥ 1/2.
Then there exists β ∈ R such that cos(β − α) = 1/(R

√
2), hence x ∈ Srp for

p = (0, 0, cosβ, sinβ).
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Moreover we observe that for any p ∈ C the set ψ−1(Srp) is a countable
union of surfaces of revolution. Indeed, for p = (0, 0, cosβ, sinβ) we see that

(x, y) ∈ ψ−1(Srp) iff cos(y − β) = (2(1− ‖x‖2))−1/2,

hence for any x ∈ Dr with ‖x‖ = R the equality cos(y−β) = (2(1−R2))−1/2

holds iff y = y0+2kπ or y = −y0+2kπ for some k ∈ Z, where y0 is the unique
real number such that cos(y0 − β) = (2(1 − R2))−1/2 and β ≤ y0 ≤ β + π.
The set ψ−1(Srp) ∩ ({x ∈ Dr; ‖x‖ = R} × R) is thus a countable union of
horizontal circles of radius R. Moreover,

ψ−1(Srp) =
⋃

k∈Z
{(x, y) ∈ Dr × Ik; cos(y − β) = (2(1− ‖x‖2))−1/2},

where Ik = [β − π/4 + 2kπ, β + π/4 + 2kπ]. Our observation follows from
the above and the fact that ψ|Dr×(β−π/4−ε,β+π/4+ε) is a diffeomorphism for
ε > 0 small enough.

Let ε ≤ r. We put

Fε = F1 · F ε2 ,(35)

where F1 : [0, 1/
√

2) → [−π/4, 0] and F ε2 : [0, 1/
√

2) → (−∞, 1] are defined
by

F1(‖x‖) = − arccos
(

1√
2
√

1− ‖x‖2

)
,

F ε2 (‖x‖) =





1 +
1

‖x‖ − r e
1/(r−ε−‖x‖) if ‖x‖ > r − ε,

1 if ‖x‖ ≤ r − ε.

Now, we rotate the graph of Fε around the line {0} ×R to obtain a surface
of revolution. The family of the graphs of the functions Fε ◦‖ ·‖+ t, t ∈ R, is
a two-dimensional foliation of the cylinder Dr × R invariant under vertical
translations. In this way we get a foliation on the set Ar1 by lifting the latter
foliation by the map ψ. Since F ε2 has analogous properties to those of f ε2 in
(23), the foliation Fε has the following properties:

• on Ar−ε1 , the leaves of Fε are parts of spheres of radius 1/
√

2, hence
|HFε |Ar−ε1

| = 2;

• each leaf of Fε accumulates on the torus Tr;
• for any leaf L ∈ Fε and a sequence (xn)n∈N of points of L converging

to some x ∈ Tr we have limn→∞ |HFε(xn)| = 0;
• there exists a positive numberB such thatB ≥ |HFε(x)| for any x ∈ Ar1

and 0 < ε ≤ r.
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We complete Fε with the boundary leaf Tr. Then

I(Fε) = �
S3

|HFε |3Ω = 2 �
Ar1

|HFε |3Ω = 2 �
Ar−ε1

|HFε |3Ω + 2 �
Ar1\Ar−ε1

|HFε |3Ω

≤ 2 · 8 VolAr−ε1 + 2B3 Vol(Ar1 \ Ar−ε1 )

= 16 · 2π2(r − ε)2 + 2B3 · 2π2(r2 − (r − ε)2)

≤ 16 · 2π2r2 + 4π2B3ε(2r − ε) = 16π2 + δ(ε),

where δ(ε) = 4π2B3ε(2r− ε) > 0 and limε→0+ δ(ε) = 0. This ends the proof
of (34) and of Theorem 3.8.

Corollary 3.9. For any transversely oriented codimension one folia-
tion F on the sphere S3 we have

I(F) > 2 · I1(S3) ≥ 2 · I(S3).

Equality (34) suggests that I1(S3) = 8π2.
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