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Nontaut foliations and isoperimetric constants

by KONRAD Bracnowsk! (Lédz)

Abstract. We study nontaut codimension one foliations on closed Riemannian man-
ifolds. We find an estimate of some constant derived from the mean curvature function of
the leaves of a foliation by some isoperimetric constant of the manifold. Moreover, for foli-
ated 2-tori and the 3-dimensional unit sphere, we find the infimum of the former constants
for all nontaut codimension one foliations.

1. Introduction. In this paper we study nontaut codimension one fo-
liations on closed manifolds. A foliation is said to be taut if there exists a
Riemannian metric on the manifold in which all leaves of the foliation are
minimal submanifolds. For codimension one foliations there are many con-
ditions equivalent to tautness. One of them is that there exists a transverse
loop which meets all leaves of the foliation.

G. Reeb [Re| was the first to find a connection between the volume form
of leaves of a codimension one foliation, the mean curvature function of
the leaves and the volume form of the whole manifold. After almost thirty
years H. Rummler [Ru| showed an analogous relation for any codimension
(so-called Rummler formula).

Let F be an oriented codimension one foliation on a closed Riemannian
manifold M of dimension n+1. Let Hz(x) be the mean curvature of the leaf
through = at the point x. The function Hr : M — R is smooth. We put
I(F) = §,;|HF|"*102, where £2 is the volume form of M.

Recently, G. I. Oshikiri [Os] has shown, using the Rummler formula, that
I(F) > I(M) for any nontaut codimension one foliation F. Here, I (M) is the
isoperimetric constant of M. One can ask if this estimate is best possible.
We will show that I(F) > (kr — 1) - I(M), where kr > 2 is an integer
depending on F. Moreover, if M is a 2-dimensional torus or 3-dimensional
unit sphere, then I(F) > 2 - I[(M).
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Another question we can ask is: what is the infimum of I(F) for all non-
taut codimension one foliations F on M7 The answer is given for foliations
on 2-tori and the 3-dimensional unit sphere. In the case of foliations on
the sphere S3, the infimum found suggests that an isoperimetric constant
coming from separations of S by tori is achieved by the Clifford torus.
This statement seems to be close to the so-called Lawson conjecture about
minimal tori on S3.

2. Preliminaries

2.1. Foliations. Let (M, g) be a smooth oriented closed Riemannian n-
manifold and let V be the Levi-Civita connection on (M, g). We denote by
A the family of all closed (n—1)-submanifolds S that separate M into two
connected open submanifolds M; and Ma satisfying M \ S = M; U My and
OM; = OMy = S. Then we can define the isoperimetric constant I(M) by
f (Vol,,—1(S5))™
e# min{Vol,, (M), Vol,, (M)}’
where Vol,,_1(S) is the (n—1)-volume of S, and Vol,, (M) is the n-volume
of M. It is known that I(M) > 0 (see [Ch]).

Let F be a smooth transversely oriented codimension one foliation on M.
Let € M and U be an open neighbourhood of = such that there exist vector
fields E1, ..., E,—1 on U spanning TF|iy. We can assume that g(E;, E;) = 6]
fori,7 =1,...,n—1. Moreover, let N be a unit vector field on U orthogonal
to F. We assume that for any y € U the system {E;(y),..., En—_1(y)} is
a positively oriented frame of T, L, and {N(y), E1(y),...,En—1(y)} is a
positively oriented basis of T, M.

(1) I(M) =

DEFINITION 2.1. Under the above assumptions we locally define the
function Hr by

P
(2) Hy = Zg(szE%N)

i=1
and we call it the mean curvature function of the leaves of F.

Now let X; € X(M) fori=1,...,n—1 and
(3) XF(X1, .y Xno1) = det[g( B, Xj)lij=1,...n—1-
Then xr is a well defined (n—1)-form on M and x|z, is the volume form
of a leaf L € F. Let {2 be the volume form of M. We put
(4) 1(F) = | |Hs"2.
M

Under the above notations we have the Rummler formula [Ru]
(5) dX]-‘:—H]:'Q.
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2.2. Nontaut codimension one foliations

DEFINITION 2.2. A foliation F on an oriented compact manifold M is
said to be taut if there exists a Riemannian metric on M such that all the
leaves of F are minimal submanifolds of M (Hr = 0).

According to Corollary 3 from [Su, p. 220], an oriented codimension one
foliation is taut iff every leaf meets a closed curve transverse to the foliation.
We say that a nonempty compact subset D C M is a positively (negatively)
foliated domain iff D is a union of leaves of F and the unit normal field
points outward (resp. inward) everywhere on the boundary dD. Note that
dD is a finite union of compact leaves. Oshikiri has proved the following

THEOREM 2.3 ([Os]). A transversely oriented codimension one foliation
on an oriented compact manifold is taut if and only if it does not contain
any positively or negatively foliated domain.

Let F be a nontaut transversely oriented codimension one foliation on a
compact oriented manifold M. Then, by Theorem 2.3, the family % (resp.
9_) of positively (resp. negatively) foliated domains is nonempty. It is easy
to see that for D1, Dy € 2 (resp. D1, Dy € Z_) we have either D1N Dy = ()
or DiNDy € P4 (resp. D1NDy € Z_). Denote by @2 (resp. 2) the family
of all minimal positively (resp. negatively) foliated domains. Then a simple
argument leads to the following lemma.

LEMMA 2.4. The set 9° = 92 U 2° is finite and
kr = card (2°) > 2.

2.3. Total curvature of a codimension one foliation of S™. Suppose that
M is an open subset of the unit sphere S™ and that F is an oriented codi-
mension one foliation on M. We denote by N a unit vector field on S™
normal to F. Let Kr(x) be the Gauss—Kronecker curvature of L, C S™ at
the point x and let S(n,n — 1) be the family of all complete totally geodesic
(n—1)-submanifolds of S™, that is, of great spheres S = H N S™, where H is
an n-dimensional vector subspace of R"*1. The set S(n,n — 1) has a natu-
ral structure of a smooth differentiable manifold and has a unique measure
s invariant under the action of the group of isometries of S™ such that
ts(S(n,n—1)) = 1 - Vol 5™

Let S € S§(n,n—1). We denote by F|s the family of all connected compo-
nents of intersections LNS, where L € F. Then for almost all S € S(n,n—1),
Fg is a codimension one foliation on S with only isolated singularities and
the orthogonal projection Ng of the vector field N onto T'S is a tangent
vector field on S with only isolated singularities. Moreover the foliation F|g
has a singularity at = € S iff S is tangent to F at . We denote by X(F|s)
the set of all singular points of F|g. Clearly, if x € S\ X (F|g) then the
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vector Ng(x) is orthogonal to the foliation Fg. Suppose X' (F|g) consists of
isolated points and let z € X'(F|g). We define the sign of a singular point x
of Fg as follows:

(6) sign(z) = i(),

where i(x) is the index of the vector field Ng at x. Langevin [La] shows that
for almost all S € S(n,n — 1) such that Y (F|g) consists of isolated points
we have |i(z)| = 1 for # € X(F|g). We denote by S the subset of S(n,n—1)
of all S such that X'(F|g) consists of isolated points and |i(x)| = 1 for all
S E(]‘—|5)

DEFINITION 2.5. For S € S we put

(7) Ul (F,5) = card(X(Fs))

and if |p|(F, S) < Vg, then

(8) p(F.8)= ) sign(x).
z€X(F|s)

Under the above assumptions the following theorem holds.
THEOREM 2.6 ([Lal], [LaLe], [Lal).

(9) VIEz2=" | |ul(F,S)dus(S).
M S(n,n—1)
Moreover
(10) VEr2= | w(ZF 9)dus(S).
M S(n,n—1)

Now let F be a codimension one foliation on the sphere S3. We suppose
that S € S C §(3,2). By the Poincaré-Hopf theorem (see [Ho]) we have

> sign(x) = x(5) =2,
T€X(F|s)

where x(5) is the Euler characteristic of S. Therefore |u|(F,S) > 2 and
w(F,S) = 2. As a simple corollary of the last theorem we obtain the follow-
ing two theorems.

THEOREM 2.7 ([Lal], [La2], [La]). Let F be an oriented codimension one
foliation on the 3-sphere S®. Then

(11) | IKF|2 > 27,
S3
THEOREM 2.8 ([Lal], [La2], [La]). Under the assumptions of 2.7 we have
(12) | Kr02 =20
S3

We end this subsection with another theorem.
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THEOREM 2.9 ([Lal], [La2], [La]). For any oriented codimension one fo-
liation F on the sphere S* we have
(13) | [KF|2 > 2n.
S3

3. Results
3.1. The main inequality

THEOREM 3.1. Let (M,g) be a closed Riemannian manifold of dimen-
sion n and let F be a nontaut codimension one foliation on M. Then
(14) \ [He"" 2 > (kg — 1) I(M),
M

where (2 is the volume form of M and Hx is the mean curvature function
of the leaves of F.

Proof. Let M = Uf:fl D,;, where D; are positively or negatively foliated
domains for ¢ = 1,...,kr such that int D; Nint D; = () for ¢ # j. Then
by the Stokes theorem, Rummler formula (5) and Holder inequality, for all
ie€{l,...,kr} we have
(15)  AreadD; _‘ | x ‘ ‘ | ax ‘ ‘ ‘ [ 1H702

oD; D; i D;

et
< (J ) (§ )"

}

D;
(S |Hr |"+1r2) 1 ol pyy/ k),
D;

7

oy

Therefore for all i € {1,..., kr},
(AreadD;)" 1

16 Hz|"t 0 >
(16) ) 1H7] = (VolD;)m

D;
Since there exists at most one iy € {1,..., kr} such that Vol D;, > %Vol M,
from inequality (16) we obtain

Area(‘?D . (AreadD;,)" !
H n-‘rlQ > 20
S Al Z VolDy)" = (VolDg) 2.
1€Z\{io}

> (k}— - 1)I(M)7
where Z ={1,...,kr}. u
REMARK 3.2. The first inequality in (15) becomes an equality if the
function H# has a constant sign on D;. The second inequality, by the Holder

theorem, can be replaced by an equality iff there exist nonvanishing con-
stants C7 and Cy such that C1|Hz|""1 = Oy, that is, iff Hr is a constant
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function on D;. Hence, in order to get
[ [Hr 10 = 1(M)
D;
the function H 7 must be as above and D; has to be a subset of M such that
[(M) = — (Area 8DZ')”+.1 .
min{ Vol D;, Vol (M int D;) }"
REMARK 3.3. When all positively or negatively foliated domains D; are

such that Vol D; < % Vol M, the argument in the proof of Theorem 3.1 leads
to

\ [He[" 02 > kg - I(M).
M
3.2. Slanted torus T,(v,w). Let v,w € R? be linearly independent vec-

tors and <((v,w) = a. We assume for simplicity that 0 < o < 7/2 and
|lv]| > ||w||. We define an equivalence relation ~ on R? by declaring that
x ~y (for z,y € R?) iff there exist integers k,  such that =y +k-v+1-w.
Then T, (v,w) = R?/~ with the quotient topology is a smooth closed ori-
ented 2-dimensional differentiable manifold.

DEFINITION 3.4. T, (v, w) equipped with the Riemannian metric induced
from the canonical metric on R? is called a slanted torus here.

Let # be the family of all nontaut codimension one oriented foliations
on T, (v, w) and
1F)= | |HP0
Ta(v,w)
for F € #. We will show that
I(F)>2 - I(Ty(v,w))
for any foliation F € .%.
First, we should compute the isoperimetric constant I(T, (v, w)). Since
a one-dimensional submanifold of T, (v, w) which divides T, (v, w) into two
open submanifolds and has shortest boundary is either a union of two closed
geodesics each of length ||w|| or a circle, we get

47 when 7||v||sina < 2[|w]],

(17) I(To(v,w)) = { _8lw]

when 7||v|| sina > 2[|w]|.

THEOREM 3.5. For any F € &,

(18) I(F) >2-1(Ty(v,w)).
Moreover, if 7||v||sina > 2||wl|, then
(19) jggfg I(F)=2-1(Ty(v,w)).
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Proof. Let F be a nontaut dimension one foliation on Ty, (v, w). Then F
has nondense leaves. Hence, by Kneser’s theorem [Kn| there exist saturated
subsets A; C T, (v,w), i =1,...,00, such that:

(1) Ta(v,w) = U 4,

(2) for any i = 1,...,00 the set A; is an annulus, that is, A; is connected
and its boundary dA; is a union of two closed curves which are compact
leaves of F from a nonzero homotopy class,

(3) for any i,5 = 1,...,00 connected components of JA; are homotopy
equivalent to components of 0A;,

(4) the annuli A; are foliated in one of the following ways:

(a) all the leaves of F in A; are compact, hence they are homotopy
equivalent to components of JA;,

(b) all the leaves of F contained in A; tend in a spiral way to com-
ponents of 0A; which are oriented in this same way,

(c) all the leaves of F contained in A; approach the components of
0A; which are oriented in the opposite way (Reeb components).

It is easy to see that the number k# of minimal positively or negatively
foliated domains of T, (v, w) is equal to the number of Reeb components
of F. Moreover kx is a positive even integer.

Let A be a set of type (4.c), that is, a Reeb component. Then, since
Hg| 4 is not a constant function, by 3.2 we have

(Length 9A)?

2
(20) S Hr[P2 > Area A

A
Since the number of Reeb components of F is at least 2, there are two
distinct Reeb components A, B C Ty, (v, w) and
(Length9A)?  (Length 9B)?

Hr?0 > Hr|?0
S | H 7] - S | H 7] - Area A Area B

T (v,w) AUB

1 1 1 1
> 417 > 417
- <AreaA * AreaB) - (AreaA * T— AreaA)

1 1 2 2 1612
> 41?7 inf |- 4P =+ =)= —
=% o <a+T—a> <T+T> T

16]|w]?
~ [loll[[w] sine

>2-I(Ty(v,w)),

where T = AreaT,(v,w) and [ is the length of the shortest component of
0A U OB. We have thus shown (18).

Let now «, v and w be such that «|jv|sina > 2|jw||. We can assume
that v = (|[v[|sin e, v cos @) and w = (0, |w]|). Let r = 1|jv||sina. For any
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e from the interval (0, r| we will construct a foliation F. € .# such that
I(F) <2 I(To(v,w)) + d(e),

where 6(¢) > 0 and lim._,0d(e) = 0.
We first define f. : (0,7] — R by

(21) fe=fi- 13,
where
(22) fi(z) = =v/r? = (z —1)?,
ey ) 1— %el/(”_f) for r < ¢,
(23) f2(@) = { 1 for z > e.

The function f. is smooth and has the following properties:

o lim, g+ fo(x) = +o0,
e the graph of f. over (g,r] is a piece of the circle with center (r,0) and
radius 7.

Let k-(xz) be the curvature of the graph of f. at (z, f-(x)). Then k. :
(0,7] — R is a smooth function with the following properties:

o lim, . k.(z) =1/r,

i k8|[a,r] = 1/7"

e lim, 5+ k-(z) = 0 because f. has a vertical asymptote z = 0.
Moreover, the function F' : Dp = (0,7] x (0,7] — R defined by F(e,x) =
k< (x) is smooth, hence bounded on Dp. We put B=sup{F(p); p€ Dp} <oc.

Let f. : (0,2r) — R be defined by

oy | fe(o) forO<az <,
fel@) = {fE(Q’F —x) forr<mz<2r

It is easy to verify that jA’; is smooth. Moreover, its graph is symmetric
about the line z = r. We denote by W¢ the graph of f; + ¢ where ¢ € R.
The one-parameter family {W¢}.cr defines a one-dimensional foliation of
(0,2r) x R invariant under vertical translations. Similarly, we construct a
foliation on (2r,4r) x R. As a result we get a one-dimensional foliation of
[0,47r] x R by completing the previous one with the lines z = 0, z = 2r
and x = 4r. Because this foliation is invariant under vertical translations, it
determines a foliation F. € %.

Therefore, we have

@) Ha(Eall = {FOT e e e
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where 0 < ¢ <1 and (z,y) = tv + (1 — t)w. Moreover, we get
7 xctg ot
I(F.) = § |Hy. 702 = 4| | ke(2)dyda
'U

W 0 rctg o

)
s g T
= 4Hw||Sk€ ?dr = dl|w|| | ke(2)* da + 4l|w]| | k(2)* do
0 0 €
2 1 2 1
< 4f|wlleB” + 4f|wl|(r — &) 5 < 4wlleB” + 4]jw]
16
= 4||w|jeB? + M = 4f|w||eB? + 2 - I(Tp (v, w).
||v]| sin a

Then, putting 6(¢) = 4||w||eB? we obtain
li =
o)
hence infre g I(F) = 2-1(To(v,w)). This ends the proof of Theorem 3.5.

Let .7 be the family of all one-dimensional submanifolds C' of T, (v, w)
dividing the slanted torus T, (v, w) into two open submanifolds M; and My
of genus 1. We define a new isoperimetric constant as follows:

(Length C)?
(25) Il (Ta(vg 'ZU)) - égfg mln{Area M17 Area MQ}

Then the reasoning in the proof of Theorem 3.5 yields immediately the
following corollary.

COROLLARY 3.6. For any nontaut one-dimensional oriented foliation
Fe.Z of To(v,w) we have

(26) I(F)>2 -Ii(Ty(v,w)).
Moreover
(27) ot I(F) = L(Tu(v,w))

COROLLARY 3.7. For any nontaut one-dimensional oriented foliation F
of the standard flat torus T? = Ty 5(v,v) (where ||v|| = 1) we have

I(F) >2-I(T?).

3.3. Sphere S3. We now consider the three-dimensional sphere S3 =
{x € RY; |lz| = 1} with the Riemannian metric induced from the canonical
metric on R*. We denote by .# the family of all closed codimension one
genus one submanifolds T of S3. Then any T € .# is a torus separating
53 into two open connected submanifolds M; and M,. We define a new
isoperimetric constant I (S%) by

s (AreaT)?
(28) L(57) = Tlg/f/z min{ Vol My, Vol M3}?
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Obviously I;(S3) > I(S?). Let now .# be the family of all nontaut trans-
versely oriented codimension one foliations on S3. We will show that
(29) I(F)>2-I;(5%
for any F € Z.
First of all we will estimate I7(S%). The volume of S® equals 272. Note
that the sets
A = {(w1, 29, 3, 14) € S%; 22 + 23 <r? Al +xi>1-1r%),
AL = {(x1, 0, 3, 04) € S 22 + 23 >rP Aad + 23 <1 —12)
are open submanifolds of S3 and A} = dAL = T,., where
T, = {(z1, 20, 23,24) € % a¥+ 22 =r*Aad 422 =117}

is a torus contained in S3. Moreover A7 U A5 UT, = S3, hence T, € #. Of
course, Area T, = 4n%rv/1 — r2. It is easy to see that
Vol A7 = 2r%2, Vol A = 27%(1 — ).
Therefore
g (AreaT;)3 g (472ry/1 —r2)3 g2
11 = 11 = T
re(0,1) min{Vol A7, Vol A5}2  re(0,1) min{272r2, 272(1 — r2)}2 ’
hence I1(S3) < 872. Determining the constant I1(S®) is not easy and is
connected with the so-called Lawson conjecture [Law| which says that any
minimal torus in S2 is isometric to the Clifford torus T, 13
Let H, and K, be respectively the mean curvature function and the
Gauss—Kronecker curvature of T, considered as a submanifold of S3. An
easy computation shows that

(30) ()| = 122
ol = A
(31) K. (z) = -1,

for any € T;.. (Hence the Clifford torus 7T} V3 is a minimal submanifold of
S3.)

We denote by Hr and K r respectively the mean curvature function and
the Gauss—Kronecker curvature of the leaves of F € .%. Obviously,

(32) H% > 2|Kr| 4+ 2KF.

THEOREM 3.8. Let F be a transversely oriented codimension one folia-
tion on S3. Then

(33) 1(F) =\ |HF*2 > 167,
SB

Moreover

(34) inf I(F) = 167>

FeF



Nontaut foliations and isoperimetric constants 107

Proof. By the Novikov theorem, any foliation F has a Reeb component,
hence is nontaut.

By (32) and Theorems 2.8 and 2.9 we have

| H20> 2( | 1512+ § Kfrz) > 2272 + 272) = 82,
S3 S3 S3

Moreover, by Holder’s inequality we get

583 H20 < <5§3(H3:)3/2)2/3<SX3 Q)1/37
hence
1

8n%)3/2 = 167>
7T\[(W) 0

3/2
1(F)= | |HFP2 > (VO153)—1/2( { HJ%Q)
53 g3
We have thus shown (33).
Now we put r =1/ v/2 and consider A7 and A5. Let 0 < e < r. Similarly

to the case of slanted tori we will construct a fohatlon F. € % such that
I(F) < 1672 +0(¢e),

where 0(¢) > 0 and lim._ §(¢) = 0. For each ¢ the sphere S will be divided
into two saturated subsets A} and A5 and a compact leaf T,.. We will only
describe the foliation on A] (the construction on A% is analogous).

We put D, = {x € R?; |z|| <r}. Let ¢ : D, x R — A7 be given by

Y(w1,20,y) = (21, 22,1/1 — ||2|? cosy, /1 — ||z|? siny),

where r = (z1,72) and (71, 22,y) € Dy X R. It is easy to see that 1)(D, x R)
= Af and that ¢ is a covering map, because ¥|p, (4, is a diffeomorphism
for any a,b € R such that b —a < 27. We put S; = {z € S3; z-p=c}
for p € 83 and 0 < ¢ < 1. The set S, 1s a two-dimensional sphere of radius
V1 — ¢2 contained in 3. The mean curvature function of S, is constant and
its absolute value equals 2¢/v/1 — 2.

We note that
T-Us;
peC

where C = {(z1,22,23,74) € 5%, 21 =0 A 23 =0 A 2% +2% = 1}. Indeed,
first we will show that S C A7 for any p € C. Let = € Sy, v = (z3,74) and
w = (p3,p4). Then [v]? = |v|? |w|2 > (v-w)? =1/2, hence 73 + 23 > 1/2 and
z € A7. Let now x € A} and (x3,74) = R(cosa,sina), where R? > 1/2.
Then there exists € R such that cos(3 — a) = 1/(R+/2), hence z € S, for
p = (0,0, cos 3,sin 3).
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Moreover we observe that for any p € C the set 11)_1(55) is a countable
union of surfaces of revolution. Indeed, for p = (0,0, cos 3, sin (3) we see that

(z,y) € ¢71(Sp) it cos(y — B) = (2(1 — [l]*) "2,

hence for any = € D, with ||z|| = R the equality cos(y— ) = (2(1—R?))~1/2
holds iff y = yg+2km or y = —yo+2kn for some k € Z, where yg is the unique
real number such that cos(yo — 8) = (2(1 — R?))""/2 and 8 < yo < B + .
The set p~1(Sy) N ({z € Dy; ||z = R} x R) is thus a countable union of
horizontal circles of radius R. Moreover,

NSy = (U{(2,9) € Dy x I; cos(y — B) = (2(1 — [|=[|*))"*/?},

keZ

where I, = [ — 7/4 + 2km, 3 + w/4 4+ 2kx]. Our observation follows from
the above and the fact that ©|p, «(3—r/4—cg+r/4+e) is a diffeomorphism for
€ > 0 small enough.

Let ¢ <r. We put
(35) F.=F - F;,

where Fy : [0,1/v/2) — [~7/4,0] and F§ : [0,1//2) — (—00, 1] are defined

by
Fi(||z]) arccos( ! >
1 = - |
V2y/1— ]

1
14+ ——M=e=llzl) i |I2]| > r—g,
Fy(llz]) = lzll =~ -

1 if ||lz|| <7 —e.

Now, we rotate the graph of F. around the line {0} x R to obtain a surface
of revolution. The family of the graphs of the functions F.o||- ||+, t € R, is
a two-dimensional foliation of the cylinder D, x R invariant under vertical
translations. In this way we get a foliation on the set A} by lifting the latter
foliation by the map . Since F5 has analogous properties to those of f5 in
(23), the foliation F. has the following properties:

e on A]7¢, the leaves of F. are parts of spheres of radius 1/v/2, hence
‘H«FE ’A"l«iE’ = 27
e cach leaf of . accumulates on the torus 7T;

e for any leaf L € F. and a sequence (x,)nen of points of L converging
to some = € T, we have lim,_.o |[Hzr. (x,)| = 0;

e there exists a positive number B such that B > |Hz. (z)| for any z € A}
and 0<e<r.
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We complete F. with the boundary leaf T).. Then
I(F)=\|HrP2=2\HrP0=2 | |HeP0+2 | |Hz|’2

5 A A7 Ap\AT
<2-8Vol AT + 2B Vol(A] \ A7)
=16-2%(r —e)? +2B3 - 272 (1% — (r — €)?)
<16 - 272 4 472 B3 (2r — £) = 167% + §(e),

where §(¢) = 4m2B3¢(2r —¢) > 0 and lim._,+ 6(¢) = 0. This ends the proof
of (34) and of Theorem 3.8. m

COROLLARY 3.9. For any transversely oriented codimension one folia-
tion F on the sphere S® we have

I(F)>2-1(S% >2-1(5%).

Equality (34) suggests that I1(S%) = 872,
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