ANNALES
POLONICI MATHEMATICI
LXXVIIL2 (2002)

On approximation by Chebyshevian box splines

by ZyGMUNT WRONICZ (Krakéw)

Abstract. Chebyshevian box splines were introduced in [5]. The purpose of this
paper is to show some new properties of them in the case when the weight functions w;
are of the form

wj(x) = Wj(vnyj - ),
where the functions W; are periodic functions of one variable. Then we consider the
problem of approximation of continuous functions by Chebyshevian box splines.

1. Introduction. Let an integer n x s matrix Vy = {v1,...,vs},
v; € Z"\ {0}, i = 1,...,s, be admissible, i.e. rankV,, = n (the first n
columns of V; are linearly independent), s > n and let a sequence W =
{wn41,...,ws} of continuous functions on R™ be given such that

(i) each wyj is periodic, i.e. wj(z + a) = w;(z) for o € Z",

(ii) 0 < aj < wj(xz) < b; < oo for z € R", where a; and b; are some
constants.

We define Chebyshevian box splines similarly to box splines, using the
functions w; as weights (see [5]):

_ X (@)
|det V|’

where X (v, is the characteristic function of the set (V;,) and

(1) B(x|Va, W)

1

(2)  B@|Vegr, W) = \wi(z — tony 1) B2 — ton ik | Varr—1, W) dt,
0

for k=1,...,s —n, where

<VS>:{thvj;Ogtj<1,j:1,...,s}.
j=1
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For w; =1, j = n+1,...,s, we obtain algebraic box splines, denoted
by B(x|Vy) (see [1-3]).

The purpose of this paper is to show some new properties of Chebysh-
evian box splines in the case when the functions w; are of the form

(3) wi(x) =W;(v;-x), j=n+1,...,s,

and the W; are periodic functions of one variable. Then we consider the prob-
lem of approximation of continuous functions by Chebyshevian box splines.

2. “Polynomials” and box splines. Now we shall define some gen-
eralization of homogeneous polynomials. We define them similarly to the
construction of the Chebyshev system of one variable (see [4]).

Let m;, i =n+1,...,s, be hyperplanes in R"™ defined by means of the
vectors v;:

(4) m: v;rx=0, i=n+1,...,s,

X;(x) the orthogonal projection of z on the hyperplane 7; and ¢;(z) the
relative distance from z to 7w divided by the length of v;,

(5) ti()= 2 j=n+1,...,s
|vi?
Using the following scheme:
step 1 step 2 step 3
Uy
U1,1 - U2
U1,2 — u271 — us

we define the following system of functions:
ug(z) =1,
ts(x)
up(z) = S ws[Xs(z) + T1vs] dry,
0
ts(x)
(6) uz(x) = S ws [ X (2) + T1vs]
0
ts—1[Xs(z)+T10s]
S S wsfl{Xsfl[Xs(x) +7—1vs] +7—2'U571}d7-2 dTl,
0

ts(x)
uj(a:) = S ws[Xs(x) + Tlvs]uj,l,l[Xs(a:) + 7'17)3] dry,
0

for j=n+1,...,s, where
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uo,l(az) = 17
t571($)
uri(z) = S Ws—1[Xs-1(z) + Tvs_1] dm1,
0
ts_l(l‘)
u2,1($) — S wsfl[Xsfl(l') + Tlvs]
0
ts—2[Xs—1(x)+T105]
X S ws—Z{Xs—2[Xs—1(x) +7_1Us—1] +7-2Us—2}d7—2 d7-17
0
ts_l(z)
ujq1(z) = S wWs—1[Xs—1(z) + T1v5-1]
0

X wj—1,2[Xs—1(x) + Tivs_1] dm1,

where u; 5 is defined similarly to u;, starting from j = s — 2.

Because of (3) we may write the systems (6) and (7) as follows:

and

UO(-TJ) = 17
ts(x)
ui(z) = S ws[Xs(z) + mvs| dry,
0
ts(x)
Uz(l’) = S Ws [Xs(aj) + 7'1’1)5]
0
ts—l[Xs (I)+Tlvs}
X S wsfl[Xsfl(ﬂf)Tg'l)s,l] dTg dTl,
0
ts(x)

ui(z) = | wiXo(@) + moduj11[Xo(2) + mvg] dry,
0

uo,l(az) = 17
tsfl(z)
ur(z) = S ws—1[Xs-1(x) + Tvs_1] dm1,
0
ts_l(x)
u2,1($) = S wsfl[Xsfl(l‘) + 7'11)5]
0
ts—2[Xs—1(m)+TIUS]
X S ws [ X5 2(x) + T2vs 2] dTo dTy,

0
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t3,1($)
9) uj1(z) = S wWs—1[Xs—1(z) + mvs—1|uj_1,2[Xs—1(z) + T1vs—1] d7y.

[cont.] 0

We have the following

LEMMA 1. Let

(10)  Dof(e) = lim < [f@+t0) = F@)], Do, f(2) = — Do f(a)
Then Dyguj(x) =uj_11(x) forj=1,...,s —n.

The proof follows directly from (8) and (10).

EXAMPLE 1. n =2, vs = (1,1), vg = (—1,3), v3 = (—2,1),

w3y = wy = w1 = 1, 5t x1 + 22 = 0, Ty —x1 + 3x2 = 0,

w3 @ —2x1 + 22 = 0, Uy = Up,1 = Up,2 = 1,

u(x):lerx? u (x):m w (w):M
1 9 ) 1,1 10 ) 1,2 5 9
—32% + 27129 + 523 723 — 223179 + 323
ua(@) = 10 (@) = 200 ’
s () = 43 — bxixy — 61123 + 373 Oug . Ouy .
3 200 ) 8'[}5 2,1, 81}5 1,1,
81@71 ouq aul,l aul,Q
=Uu — = 1U = U — = Up.
Ovy 1.2 Ovs 0 Oy 0 Ovs 0
Assume that
1
(11) SWk(t)dtzl fork=n+1,...,s.

0

As in the algebraic case the shifts of the Chebyshevian box spline
B(z | Vs, W) form a partition of unity.

THEOREM 1.
(12) ZB(m—a|Vk,W):1, reR" k=n,...,s.
aEL™

Proof (by induction on k). For k = 1 this follows from the definition
of B(x|V,) and (V) (see [2]). Assume that (12) holds for some k > n.
Applying (3) and the fact that wy is periodic we obtain
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Z B(x — a| Vi1, W)

QEL™

1
= Z ka+1($ — tog41 — a)B(x — tvgyr — | Vi, W) dt
a€Z™ 0

1
= ka+1(:1: — tUk41) Z B(x — tvg41 — a| Vi, W) dt
0

agZm
1 1
= ka+1($ — tvgyr) dt = S Wii1 (2 vpp1 — togs ) dt
0 0
1 [vk1®
= W S Wk—i—l(x *Vk+1 + ’U,) du
k+1 0
1 [vk+1]
= e S Wit (u)du =1
k+1 0

Further we need the following (see [5])

THEOREM 2.
(13)  Du,w,B(x|Vs,W) = B(x|Vs—1,W) = B(z — vs [ V51, W)
at every point of continuity of B(x|Vs_1,W).

LEMMA 2. Let

(14) fl) =) w(a)Blx—a|V,,W).

QEL™

Then for s >n+1, f =uy + C on each line l : x = xg + vst, where C is a
constant.

Proof. Let x¢ be a point of continuity of B(z |Vs_1, W). Then by (13),
Dy, . f(20) = Y [w(@) = ur(a = v)|Bwo — | Veer, W),

aczn
ts () ts(a)—1
ur(a) —ur(a—wvs) = S ws[ Xs(a) + Tvg] d7 — S ws[Xs() + Tvs| dr
0 0
ts(a) 1
= S ws | Xs(a) + Tvg] dr = SWS(T\USIQ) dr =1.
ts(a)—1 0

Hence by Theorem 1 we obtain
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Dy, w,f(xg) =1 and f(z) =ui(x) + C on each line [ : x = xg + vst,

where C' is some constant.

If zy is not a point of continuity of B(z|Vs_1, W) then the vectors
Un41,---,VUs—1 are parallel to some hyperplane 7 of dimension n — 1 such
that xo € 7. If vs is not parallel to 7w then B(z |vs, W) is continuous and
the function (14) is continuous. If v, is parallel to 7w then the function (14)
is continuous on the line x = z¢ + vst, and from the definition of (V) we
obtain the lemma.

LEMMA 3. Let

(15) fla) =) us(@)Blax—a|V,,W).

aEZ™
Then for s > n+ 2, f = us + Cruy + Coug on each line l : x = xy + vst,
where Cy and C1 are some constants.
Proof. Let x be a point of continuity of B(x | Vs_1, W). Then by (13),
Dy, f(2) = Y [ug(e) — up(a — v0)| Bz — | Vay, W).
agZm
By (6), (8) and (4) we obtain
uz () — uz (o — vg)
ts(a)
= S ws [ Xs(a) + T 0]
ts(a)—1
tsfl[Xs(a)'i‘Tl'Us}
X S ’U)S_l[Xs_l(Oé) —|—T2’l)s_1]d7'2d7'1
0

1
= Sws(a — Vs + uvy)
0

ts—1(a—vstuvs)

X S Ws—1[Xs—1(a — vs + uvs) + Tov5_1] dT2 du
0
1 ts—1(a—vs+uvs)
= Sws(a — Vs + uvy) S ws—1[Xs—1(a) + Tov5-1] d1o du
0 0

1 ts—1(a)
Sws(a — v + uvy) S ws—1[Xs—1(a) + Tovs_1] d1o du
0 0

1 ts—1(a—vstuvy)
+ Sws(a — Vs + uvy) S Ws—1[Xs—1(a) + T2v5-1] d72 du.
0 ts—1(a)
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Applying the periodicity of wy and ws_1, (3) and (11) we prove that
ug (@) — ug(a — vs) = ug 1(a) + C,
where C' is some constant. Now using Lemma 2 we obtain the assertion.

If z is not a point of continuity of B(x|Vs_1, W) we proceed as in the
proof of Lemma, 2.

REMARK 1. Lemmas 2 and 3 cannot be generalized to k > 3 as the
following example shows.
EXAMPLE 2. Let u; and u;; be as in Example 1. Then
T1 + 229 1

() — g (= v5) = w1 (2) + T —

and it cannot be written in the form us; + auy 1 + 3.

3. Approximation by Chebyshevian box splines. Let fp(z) =
f(z/h), h > 0. We have the following

THEOREM 3. There exists a constant C' depending only on the matriz Vy
such that for any function f defined on R™,

F@) = 3 J@Bu - al Ve, W)| S w(fh),
a€chZn
where w(f,h) = sup{|f(z +0) — f(z)] : x,6 € R™, |§| < h} is the modulus
of continuity of f.

Proof. Applying Theorem 1 and properties of the modulus of continuity
we obtain

F@)= 3 J@)Bue- arvs,w1 3" If (@)~ f(@)[Bu(z —a| Ve, W)
aEhZ™ aEhZ™
= > 1f(@) = f(@)|Bu(x — a|V,, W)
acA
< (diam A + Dw(f,h) > Bp(z — o| Ve, W) = Cw(f, ),
acA

where A = {a € hZ" : Bp(z — a| V5, W) # 0} and C = diam A + 1.
Now we need some definitions, lemmas and theorems.

DEFINITION 1 (see [1-3 ,5]). The family of columns of the matrix Vj
is called unimodular if the first n columns are linearly independent and
VYCVS,tiY:n |det Y‘ § 1.

Let fdenote the Fourier transform of f, i.e.

Flay = | £ ar.

R
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We have the following
THEOREM 4 (see [6]). Let the family V =V, be admissible and unimod-

ular and the functions W;, j =n+1,...,s, be trigonometric polynomials,
i.e.
nj
Z aj7k627rik~z
k'anj

where a; _, = aj, k € Z", x € R". Then

(16) {2 € R™ : Vaezn Bz — | Vo, W) = 0} = 0.
Let X =V U-V ={vy,...,vs5,—01,...,—0s} and
B(x| X, W)= | Bx —t|V,W)B(t|-V,W")dt,
R
where =V = {—wvy,...,—vs} and W~ ={f: f(—z) € W}.

THEOREM 5 ([5, Theorem 4], cf. [3]). Let the family V' be admissible and
satisfy (16). Then for every x € R™,

(17) Pxw(x) =Y Bla| X, W)™ £0.
o™
Now we may define the fundamental function @x w as follows (see
3, 5]):
(18) @XW ZbXW l‘—Oé|XW)
a€gzn

where by w(a) are the coefficients of the Fourier series of the function
1/PX,W7 i.e.

1/Pxw(z Z byx,w (@)™, by w(a) = S
a€R™ (0,1]7

1

— 2Tl
e dx.
Py w(z)

LEMMA 4 ([5], cf. [3]). For every a € Z",
(19) @Xy[/(a) = (50704.

LEMMA 5 ([5], cf. [6]). There exist constants C >0 and 0 < ¢ < 1 such
that

(20) [Dxw(x) < Cql™l, 2z er™

Now we may define interpolating operators I and I}, (see [3, 5]) as follows:
for every function g defined on Z" we put

M= X sosute=a 1= X s (557

aEL™ aERZ™
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LEMMA 6 (cf. [3]). We have

(21) B(z|V,W)= > Bla|V,W)dxw(x—a),
aEL™
(22) Y Oxwl—p8) =1
Bez™

Proof. Using the Fourier transforms of @ x y and B(-| X, W) in (18) we
obtain (21) exactly as in [3]. Further

Z@X,W(CE— Z bew a;— —O[|X7W)

Bezn ﬁeZn ann
= > bxw(®) Y Bx-pB-a|lX,W)
aEZm BGZ"
> ;
= X W
a€Zm PX W(O)

1
ZaEZ" E(a ’ X7 W)

and we have proved (22).
THEOREM 6. There exists a constant C' > 0 such that for any function
f defined on R"™,
[f (@) = Inf(z)] < Cw(f, h).
Proof. Let Ay ={a€Z":k—1<|z;—ha;| <k,i=1,...,n}. Then
fAL = (2k+1)" — (2k — 1)", k=1,2,...
Using (20), (22) and properties of the modulus of continuity we obtain

f(2) = Inf ()] < > [f(@) = f(ha)|Pxw(z/h — o)
aczn
<Z > 1f(@) = f(ha)|@xw(x/h — o)
k=1a€cAyg

< fjk[(% F1)7 = (26— 1)) < Culf.h),

k=1
where C' = C1 Y_p2, k[(2k + 1)™ — (2k — 1)"]¢". Since 0 < g < 1 the series
is convergent and we have proved the theorem.
Let
By w(z bew Bz —al|V,W), zecR™

aEL™

We have the following
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LEMMA 7 (see [5]). For any 8 € Z™,

(23) (By,w, B(- = B[V, W)) = b0,
Moreover, there exist constants C' > 0 and 0 < g < 1 such that
(24) Bl ()] < Cql*l,  zeRe,
where (f,9) = §y. 7 de.
Let
Pfx)= > (f,Biw(-—a)B(z—a|V,W),
agzn
. - T —«
.Fhf($):: 2{: <1113VJW'<__Ef_>:>13<: h LC]4/>'
aEhZm™
By (24) we obtain
(25) 1P flloe < CllFlo,

where || f|looc = sup,egrn |f(2)| and C is some constant depending only on
the matrix V.

THEOREM 7. There exists a constant C' > 0 such that for any function
f e L*R"),
1f = Prflls < Cw(f,h).
Proof. Let
Sp@) =) fla)B(z—a|V,W).
agZm
Using (23) we obtain P, Sy(x) = S¢(x). Hence by (24), (25) and Theorem 3

1f = Prfllcc < If = Silloc + 1S5 = Puflloo
= If = Stlloc + I1Pu(f = Sp)lloo
< CUlf = Stllee < Cw(f;h).

PROBLEM. Find the order of approximation of a function f by Cheby-
shevian box splines according to the regularity of f.

References

[1] B. D. Bojanov, H. A. Hakopian and A. A. Sahakian, Spline Functions and Multi-
variate Interpolations, Kluwer, 1993.

[2] C. de Boor, K. Hollig and S. Riemenschneider, Boz Splines, Springer-Verlag, 1993.

[3] K. Dziedziul, Bozx Splines, Wyd. P.G., Gdanisk, 1997 (in Polish).



Approximation by Chebyshevian box splines 121

[4] Z. Wronicz, Chebyshevian splines, Dissertationes Math. 305 (1990).

[5] —, On some generalization of box splines, Ann. Polon. Math. 72 (1999), 261-271.

[6] —, On the linear independence of translates of a Chebyshevian box spline, in: Ap-
proximation Theory and its Applications, Papers of the Institute of Mathematics of
the National Academy of Sciences of Ukraine 31, Kiev, 2000, 477-481.

Faculty of Applied Mathematics
Academy of Mining and Metallurgy
Al. Mickiewicza 30

30-059, Krakéw, Poland

E-mail: wronicz@uci.agh.edu.pl

Rec¢u par la Rédaction le 14.7.2000
Révisé le 28.5.2001 (1183)



