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On approximation by Chebyshevian box splines

by Zygmunt Wronicz (Kraków)

Abstract. Chebyshevian box splines were introduced in [5]. The purpose of this
paper is to show some new properties of them in the case when the weight functions wj
are of the form

wj(x) = Wj(vn+j · x),

where the functions Wj are periodic functions of one variable. Then we consider the
problem of approximation of continuous functions by Chebyshevian box splines.

1. Introduction. Let an integer n × s matrix Vs = {v1, . . . , vs},
vi ∈ Zn \ {0}, i = 1, . . . , s, be admissible, i.e. rankVn = n (the first n
columns of Vs are linearly independent), s > n and let a sequence W =
{wn+1, . . . , ws} of continuous functions on Rn be given such that

(i) each wj is periodic, i.e. wj(x+ α) = wj(x) for α ∈ Zn,
(ii) 0 < aj ≤ wj(x) ≤ bj < ∞ for x ∈ Rn, where aj and bj are some

constants.

We define Chebyshevian box splines similarly to box splines, using the
functions wj as weights (see [5]):

(1) B(x |Vn,W ) =
χ〈Vn〉(x)
|detVn|

,

where χ〈Vn〉 is the characteristic function of the set 〈Vn〉 and

(2) B(x |Vn+k,W ) =
1�

0

wk(x− tvn+k)B(x− tvn+k |Vn+k−1,W ) dt,

for k = 1, . . . , s− n, where

〈Vs〉 =
{ s∑

j=1

tjvj : 0 ≤ tj < 1, j = 1, . . . , s
}
.
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For wj = 1, j = n + 1, . . . , s, we obtain algebraic box splines, denoted
by B(x |Vs) (see [1–3]).

The purpose of this paper is to show some new properties of Chebysh-
evian box splines in the case when the functions wj are of the form

(3) wj(x) = Wj(vj · x), j = n+ 1, . . . , s,

and theWj are periodic functions of one variable. Then we consider the prob-
lem of approximation of continuous functions by Chebyshevian box splines.

2. “Polynomials” and box splines. Now we shall define some gen-
eralization of homogeneous polynomials. We define them similarly to the
construction of the Chebyshev system of one variable (see [4]).

Let πi, i = n + 1, . . . , s, be hyperplanes in Rn defined by means of the
vectors vi:

(4) πi : vi · x = 0, i = n+ 1, . . . , s,

Xi(x) the orthogonal projection of x on the hyperplane πi and ti(x) the
relative distance from x to π divided by the length of vi,

(5) ti(x) =
x · vi
|vi|2

, i = n+ 1, . . . , s.

Using the following scheme:
step 1 step 2 step 3 . . .
u1

u1,1 → u2

u1,2 → u2,1 → u3

. . .

we define the following system of functions:

u0(x) = 1,

u1(x) =
ts(x)�

0

ws[Xs(x) + τ1vs] dτ1,

u2(x) =
ts(x)�

0

ws[Xs(x) + τ1vs](6)

×
ts−1[Xs(x)+τ1vs]�

0

ws−1{Xs−1[Xs(x) + τ1vs] + τ2vs−1} dτ2 dτ1,
. . .

uj(x) =
ts(x)�

0

ws[Xs(x) + τ1vs]uj−1,1[Xs(x) + τ1vs] dτ1,

for j = n+ 1, . . . , s, where
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u0,1(x) = 1,

u1,1(x) =
ts−1(x)�

0

ws−1[Xs−1(x) + τ1vs−1] dτ1,

u2,1(x) =
ts−1(x)�

0

ws−1[Xs−1(x) + τ1vs](7)

×
ts−2[Xs−1(x)+τ1vs]�

0

ws−2{Xs−2[Xs−1(x) + τ1vs−1] + τ2vs−2} dτ2 dτ1,

. . .

uj,1(x) =
ts−1(x)�

0

ws−1[Xs−1(x) + τ1vs−1]

× uj−1,2[Xs−1(x) + τ1vs−1] dτ1,

where uj,2 is defined similarly to uj , starting from j = s− 2.
Because of (3) we may write the systems (6) and (7) as follows:

u0(x) = 1,

u1(x) =
ts(x)�

0

ws[Xs(x) + τ1vs] dτ1,

u2(x) =
ts(x)�

0

ws[Xs(x) + τ1vs](8)

×
ts−1[Xs(x)+τ1vs]�

0

ws−1[Xs−1(x)τ2vs−1] dτ2 dτ1,

. . .

uj(x) =
ts(x)�

0

ws[Xs(x) + τ1vs]uj−1,1[Xs(x) + τ1vs] dτ1,

and
u0,1(x) = 1,

u1,1(x) =
ts−1(x)�

0

ws−1[Xs−1(x) + τ1vs−1] dτ1,

u2,1(x) =
ts−1(x)�

0

ws−1[Xs−1(x) + τ1vs](9)

×
ts−2[Xs−1(x)+τ1vs]�

0

ws−2[Xs−2(x) + τ2vs−2] dτ2 dτ1,

. . .
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uj,1(x) =
ts−1(x)�

0

ws−1[Xs−1(x) + τ1vs−1]uj−1,2[Xs−1(x) + τ1vs−1] dτ1.(9)
[cont.]

We have the following

Lemma 1. Let

(10) Dvf(x) = lim
t→0+

1
t
[f(x+ tv)− f(x)], Dvi,wjf(x) =

1
wj(x)

Dvif(x).

Then DVSuj(x) = uj−1,1(x) for j = 1, . . . , s− n.

The proof follows directly from (8) and (10).

Example 1. n = 2, v5 = (1, 1), v4 = (−1, 3), v3 = (−2, 1),

w3 = w2 = w1 = 1, π5 : x1 + x2 = 0, π4 : −x1 + 3x2 = 0,

π3 : −2x1 + x2 = 0, u0 = u0,1 = u0,2 = 1,

u1(x) =
x1 + x2

2
, u1,1(x) =

−x1 + 3x2

10
, u1,2(x) =

−2x1 + x2

5
,

u2(x) =
−3x2

1 + 2x1x2 + 5x2
2

40
, u2,1(x) =

7x2
1 − 22x1x2 + 3x2

2

200
,

u3(x) =
4x3

1 − 5x2
1x2 − 6x1x

2
2 + 3x3

2

200
,

∂u3

∂v5
= u2,1,

∂u2

∂v5
= u1,1,

∂u2,1

∂v4
= u1,2,

∂u1

∂v5
= u0,

∂u1,1

∂v4
= u0,

∂u1,2

∂v3
= u0.

Assume that

(11)
1�

0

Wk(t) dt = 1 for k = n+ 1, . . . , s.

As in the algebraic case the shifts of the Chebyshevian box spline
B(x |Vs,W ) form a partition of unity.

Theorem 1.

(12)
∑

α∈Zn
B(x− α |Vk,W ) = 1, x ∈ Rn, k = n, . . . , s.

Proof (by induction on k). For k = 1 this follows from the definition
of B(x |Vn) and 〈Vn〉 (see [2]). Assume that (12) holds for some k ≥ n.
Applying (3) and the fact that wk is periodic we obtain
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∑

α∈Zn
B(x− α |Vk+1,W )

=
∑

α∈Zn

1�

0

wk+1(x− tvk+1 − α)B(x− tvk+1 − α |Vk,W ) dt

=
1�

0

wk+1(x− tvk+1)
∑

α∈Zn
B(x− tvk+1 − α |Vk,W ) dt

=
1�

0

wk+1(x− tvk+1) dt =
1�

0

Wk+1(x · vk+1 − t|vk+1|2) dt

=
1

|vk+1|2
|vk+1|2�

0

Wk+1(x · vk+1 + u) du

=
1

|vk+1|2
|vk+1|2�

0

Wk+1(u) du = 1.

Further we need the following (see [5])

Theorem 2.

(13) Dvs,wsB(x |Vs,W ) = B(x |Vs−1,W )−B(x− vs |Vs−1,W )

at every point of continuity of B(x |Vs−1,W ).

Lemma 2. Let

(14) f(x) =
∑

α∈Zn
u1(α)B(x− α |Vs,W ).

Then for s ≥ n+ 1, f = u1 + C on each line l : x = x0 + vst, where C is a
constant.

Proof. Let x0 be a point of continuity of B(x |Vs−1,W ). Then by (13),

Dvs,wsf(x0) =
∑

α∈Zn
[u1(α)− u1(α− vs)]B(x0 − α |Vs−1,W ),

u1(α)− u1(α− vs) =
ts(α)�

0

ws[Xs(α) + τvs] dτ −
ts(α)−1�

0

ws[Xs(α) + τvs] dτ

=
ts(α)�

ts(α)−1

ws[Xs(α) + τvs] dτ =
1�

0

Ws(τ |vs|2) dτ = 1.

Hence by Theorem 1 we obtain
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Dvs,wsf(x0) = 1 and f(x) = u1(x) + C on each line l : x = x0 + vst,

where C is some constant.
If x0 is not a point of continuity of B(x |Vs−1,W ) then the vectors

vn+1, . . . , vs−1 are parallel to some hyperplane π of dimension n − 1 such
that x0 ∈ π. If vs is not parallel to π then B(x | vs,W ) is continuous and
the function (14) is continuous. If vs is parallel to π then the function (14)
is continuous on the line x = x0 + vst, and from the definition of 〈Vs〉 we
obtain the lemma.

Lemma 3. Let
(15) f(x) =

∑

α∈Zn
u2(α)B(x− α |Vs,W ).

Then for s ≥ n + 2, f = u2 + C1u1 + C0u0 on each line l : x = x0 + vst,
where C0 and C1 are some constants.

Proof. Let x be a point of continuity of B(x |Vs−1,W ). Then by (13),

Dvs,wsf(x) =
∑

α∈Zn
[u2(α)− u2(α− vs)]B(x− α |Vs−1,W ).

By (6), (8) and (4) we obtain

u2(α)− u2(α− vs)

=
ts(α)�

ts(α)−1

ws[Xs(α) + τ1vs]

×
ts−1[Xs(α)+τ1vs]�

0

ws−1[Xs−1(α) + τ2vs−1] dτ2dτ1

=
1�

0

ws(α− vs + uvs)

×
ts−1(α−vs+uvs)�

0

ws−1[Xs−1(α− vs + uvs) + τ2vs−1] dτ2 du

=
1�

0

ws(α− vs + uvs)
ts−1(α−vs+uvs)�

0

ws−1[Xs−1(α) + τ2vs−1] dτ2 du

=
1�

0

ws(α− vs + uvs)
ts−1(α)�

0

ws−1[Xs−1(α) + τ2vs−1] dτ2 du

+
1�

0

ws(α− vs + uvs)
ts−1(α−vs+uvs)�

ts−1(α)

ws−1[Xs−1(α) + τ2vs−1] dτ2 du.
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Applying the periodicity of ws and ws−1, (3) and (11) we prove that

u2(α)− u2(α− vs) = u1,1(α) + C,

where C is some constant. Now using Lemma 2 we obtain the assertion.
If x is not a point of continuity of B(x |Vs−1,W ) we proceed as in the

proof of Lemma 2.

Remark 1. Lemmas 2 and 3 cannot be generalized to k ≥ 3 as the
following example shows.

Example 2. Let uj and uj,1 be as in Example 1. Then

u3(x)− u3(x− v5) = u2,1(x) +
x1 + 2x2

50
− 1

50
and it cannot be written in the form u2,1 + αu1,1 + β.

3. Approximation by Chebyshevian box splines. Let fh(x) =
f(x/h), h > 0. We have the following

Theorem 3. There exists a constant C depending only on the matrix Vs
such that for any function f defined on Rn,∣∣∣f(x)−

∑

α∈hZn
f(α)Bh(x− α |Vs,W )

∣∣∣ ≤ ω(f, h),

where ω(f, h) = sup{|f(x + δ) − f(x)| : x, δ ∈ Rn, |δ| ≤ h} is the modulus
of continuity of f .

Proof. Applying Theorem 1 and properties of the modulus of continuity
we obtain∣∣∣f(x)−

∑

α∈hZn
f(α)Bh(x−α |Vs,W )

∣∣∣ ≤
∑

α∈hZn
|f(x)−f(α)|Bh(x−α |Vs,W )

=
∑

α∈A
|f(x)− f(α)|Bh(x− α |Vs,W )

≤ (diamA+ 1)ω(f, h)
∑

α∈A
Bh(x− α |Vs,W ) = Cω(f, h),

where A = {α ∈ hZn : Bh(x− α |Vs,W ) 6= 0} and C = diamA+ 1.

Now we need some definitions, lemmas and theorems.

Definition 1 (see [1–3 ,5]). The family of columns of the matrix Vs
is called unimodular if the first n columns are linearly independent and
∀Y⊂Vs, ]Y=n |detY | ≤ 1.

Let f̂ denote the Fourier transform of f , i.e.

f̂(x) =
�

Rn
f(t)e−2πit·x dt.
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We have the following

Theorem 4 (see [6]). Let the family V = Vs be admissible and unimod-
ular and the functions Wj , j = n + 1, . . . , s, be trigonometric polynomials,
i.e.

Wj(x) =
nj∑

k=−nj
aj,ke

2πik·x

where aj,−k = aj,k, k ∈ Zn, x ∈ Rn. Then

(16) {x ∈ Rn : ∀α∈Zn B̂(x− α |Vs,W ) = 0} = ∅.
Let X = V ∪ −V = {v1, . . . , vs,−v1, . . . ,−vs} and

B̃(x |X,W ) =
�

Rn
B(x− t |V,W )B(t | −V,W−) dt,

where −V = {−v1, . . . ,−vs} and W− = {f : f(−x) ∈W}.
Theorem 5 ([5, Theorem 4], cf. [3]). Let the family V be admissible and

satisfy (16). Then for every x ∈ Rn,

(17) PX,W (x) =
∑

α∈Zn
B̃(α |X,W )e2πiα·x 6= 0.

Now we may define the fundamental function ΦX,W as follows (see
[3, 5]):

(18) ΦX,W (x) =
∑

α∈Zn
bX,W (α)B̃(x− α |X,W ),

where bX,W (α) are the coefficients of the Fourier series of the function
1/PX,W , i.e.

1/PX,W (x) =
∑

α∈Rn
bX,W (α)e2πiα·x, bX,W (α) =

�

[0,1]n

1
PX,W (x)

e−2πiα·x dx.

Lemma 4 ([5], cf. [3]). For every α ∈ Zn,

(19) ΦX,W (α) = δ0,α.

Lemma 5 ([5], cf. [6]). There exist constants C > 0 and 0 < q < 1 such
that

(20) |ΦX,W (x)| ≤ Cq‖x‖, x ∈ Rn.
Now we may define interpolating operators I and Ih (see [3, 5]) as follows:

for every function g defined on Zn we put

Ig(x) =
∑

α∈Zn
g(α)ΦX,W (x− α), Ih(x) =

∑

α∈hZn
g(α)ΦX,W

(
x− α
h

)
.
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Lemma 6 (cf. [3]). We have

B(x |V,W ) =
∑

α∈Zn
B(α |V,W )ΦX,W (x− α),(21)

∑

β∈Zn
ΦX,W (x− β) = 1.(22)

Proof. Using the Fourier transforms of ΦX,W and B̃(· |X,W ) in (18) we
obtain (21) exactly as in [3]. Further

∑

β∈Zn
ΦX,W (x− β) =

∑

β∈Zn

∑

α∈Zn
bX,W (α)B̃(x− β − α |X,W )

=
∑

α∈Zn
bX,W (α)

∑

β∈Zn
B̃(x− β − α |X,W )

=
∑

α∈Zn
bX,W (α) =

1
PX,W (0)

=
1

∑
α∈Zn B̃(α |X,W )

= 1

and we have proved (22).

Theorem 6. There exists a constant C > 0 such that for any function
f defined on Rn,

|f(x)− Ihf(x)| ≤ Cω(f, h).

Proof. Let Ak = {α ∈ Zn : k − 1 ≤ |xi − hαi| < k, i = 1, . . . , n}. Then
]Ak = (2k + 1)n − (2k − 1)n, k = 1, 2, . . .

Using (20), (22) and properties of the modulus of continuity we obtain

|f(x)− Ihf(x)| ≤
∑

α∈Zn
|f(x)− f(hα)||ΦX,W (x/h− α)|

≤
∞∑

k=1

∑

α∈Ak
|f(x)− f(hα)|ΦX,W (x/h− α)|

≤ C1

∞∑

k=1

k[(2k + 1)n − (2k − 1)n]qkω(f, h) ≤ Cω(f, h),

where C = C1
∑∞
k=1 k[(2k + 1)n − (2k − 1)n]qk. Since 0 < q < 1 the series

is convergent and we have proved the theorem.

Let
B∗V,W (x) =

∑

α∈Zn
bX,W (α)B(x− α |V,W ), x ∈ Rn.

We have the following
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Lemma 7 (see [5]). For any β ∈ Zn,

(23) (B∗V,W , B(· − β |V,W )) = δ0,β .

Moreover , there exist constants C > 0 and 0 < q < 1 such that

(24) |B∗V,W (x)| ≤ Cq‖x‖, x ∈ Rn,
where (f, g) = � Rn fg dx.

Let

Pf(x) =
∑

α∈Zn
(f,B∗V,W (· − α))B(x− α |V,W ),

Phf(x) =
∑

α∈hZn

(
f,B∗V,W

( · − α
h

))
B

(
x− α
h

∣∣∣∣V,W
)
.

By (24) we obtain

(25) ‖Phf‖∞ ≤ C‖F‖∞,
where ‖f‖∞ = supx∈Rn |f(x)| and C is some constant depending only on
the matrix V .

Theorem 7. There exists a constant C > 0 such that for any function
f ∈ L2(Rn),

‖f − Phf‖∞ ≤ Cω(f, h).

Proof. Let

Sf (x) =
∑

α∈Zn
f(α)B(x− α |V,W ).

Using (23) we obtain PhSf (x) = Sf (x). Hence by (24), (25) and Theorem 3

‖f − Phf‖∞ ≤ ‖f − Sf‖∞ + ‖Sf − Phf‖∞
= ‖f − Sf‖∞ + ‖Ph(f − Sf )‖∞
≤ C1‖f − Sf‖∞ ≤ Cω(f, h).

Problem. Find the order of approximation of a function f by Cheby-
shevian box splines according to the regularity of f .
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