On approximation by Chebyshevian box splines

by Zygmunt Wronicz (Kraków)

Abstract

Chebyshevian box splines were introduced in [5]. The purpose of this paper is to show some new properties of them in the case when the weight functions w_{j} are of the form $$
w_{j}(x)=W_{j}\left(v_{n+j} \cdot x\right)
$$ where the functions W_{j} are periodic functions of one variable. Then we consider the problem of approximation of continuous functions by Chebyshevian box splines.

1. Introduction. Let an integer $n \times s$ matrix $V_{s}=\left\{v_{1}, \ldots, v_{s}\right\}$, $v_{i} \in \mathbb{Z}^{n} \backslash\{0\}, i=1, \ldots, s$, be admissible, i.e. $\operatorname{rank} V_{n}=n$ (the first n columns of V_{s} are linearly independent), $s>n$ and let a sequence $W=$ $\left\{w_{n+1}, \ldots, w_{s}\right\}$ of continuous functions on \mathbb{R}^{n} be given such that
(i) each w_{j} is periodic, i.e. $w_{j}(x+\alpha)=w_{j}(x)$ for $\alpha \in \mathbb{Z}^{n}$,
(ii) $0<a_{j} \leq w_{j}(x) \leq b_{j}<\infty$ for $x \in \mathbb{R}^{n}$, where a_{j} and b_{j} are some constants.

We define Chebyshevian box splines similarly to box splines, using the functions w_{j} as weights (see [5]):

$$
\begin{equation*}
B\left(x \mid V_{n}, W\right)=\frac{\chi_{\left\langle V_{n}\right\rangle}(x)}{\left|\operatorname{det} V_{n}\right|} \tag{1}
\end{equation*}
$$

where $\chi_{\left\langle V_{n}\right\rangle}$ is the characteristic function of the set $\left\langle V_{n}\right\rangle$ and

$$
\begin{equation*}
B\left(x \mid V_{n+k}, W\right)=\int_{0}^{1} w_{k}\left(x-t v_{n+k}\right) B\left(x-t v_{n+k} \mid V_{n+k-1}, W\right) d t \tag{2}
\end{equation*}
$$

for $k=1, \ldots, s-n$, where

$$
\left\langle V_{s}\right\rangle=\left\{\sum_{j=1}^{s} t_{j} v_{j}: 0 \leq t_{j}<1, j=1, \ldots, s\right\}
$$

[^0]For $w_{j}=1, j=n+1, \ldots, s$, we obtain algebraic box splines, denoted by $B\left(x \mid V_{s}\right)$ (see [1-3]).

The purpose of this paper is to show some new properties of Chebyshevian box splines in the case when the functions w_{j} are of the form

$$
\begin{equation*}
w_{j}(x)=W_{j}\left(v_{j} \cdot x\right), \quad j=n+1, \ldots, s, \tag{3}
\end{equation*}
$$

and the W_{j} are periodic functions of one variable. Then we consider the problem of approximation of continuous functions by Chebyshevian box splines.
2. "Polynomials" and box splines. Now we shall define some generalization of homogeneous polynomials. We define them similarly to the construction of the Chebyshev system of one variable (see [4]).

Let $\pi_{i}, i=n+1, \ldots, s$, be hyperplanes in \mathbb{R}^{n} defined by means of the vectors v_{i} :

$$
\begin{equation*}
\pi_{i}: \quad v_{i} \cdot x=0, \quad i=n+1, \ldots, s, \tag{4}
\end{equation*}
$$

$X_{i}(x)$ the orthogonal projection of x on the hyperplane π_{i} and $t_{i}(x)$ the relative distance from x to π divided by the length of v_{i},

$$
\begin{equation*}
t_{i}(x)=\frac{x \cdot v_{i}}{\left|v_{i}\right|^{2}}, \quad i=n+1, \ldots, s \tag{5}
\end{equation*}
$$

Using the following scheme:

step 1		step 2		step 3
u_{1}				
$u_{1,1}$	\rightarrow	u_{2}		
$u_{1,2}$	\rightarrow	$u_{2,1}$	\rightarrow	u_{3}

we define the following system of functions:

$$
\begin{aligned}
u_{0}(x)= & 1, \\
u_{1}(x)= & \int_{0}^{t_{s}(x)} w_{s}\left[X_{s}(x)+\tau_{1} v_{s}\right] d \tau_{1}, \\
u_{2}(x)= & \int_{0}^{t_{s}(x)} w_{s}\left[X_{s}(x)+\tau_{1} v_{s}\right] \\
& \times \int_{0}^{t_{s-1}\left[X_{s}(x)+\tau_{1} v_{s}\right]} w_{s-1}\left\{X_{s-1}\left[X_{s}(x)+\tau_{1} v_{s}\right]+\tau_{2} v_{s-1}\right\} d \tau_{2} d \tau_{1}, \\
& \ldots \\
u_{j}(x)= & \int_{0}^{t_{s}(x)} w_{s}\left[X_{s}(x)+\tau_{1} v_{s}\right] u_{j-1,1}\left[X_{s}(x)+\tau_{1} v_{s}\right] d \tau_{1},
\end{aligned}
$$

for $j=n+1, \ldots, s$, where

$$
\begin{aligned}
& u_{0,1}(x)=1 \\
& u_{1,1}(x)=\int_{0}^{t_{s-1}(x)} w_{s-1}\left[X_{s-1}(x)+\tau_{1} v_{s-1}\right] d \tau_{1}
\end{aligned}
$$

$$
u_{2,1}(x)=\int_{0}^{t_{s-1}(x)} w_{s-1}\left[X_{s-1}(x)+\tau_{1} v_{s}\right]
$$

$$
\times \int_{0}^{t_{s-2}\left[X_{s-1}(x)+\tau_{1} v_{s}\right]} w_{s-2}\left\{X_{s-2}\left[X_{s-1}(x)+\tau_{1} v_{s-1}\right]+\tau_{2} v_{s-2}\right\} d \tau_{2} d \tau_{1}
$$

$$
u_{j, 1}(x)=\int_{0}^{t_{s-1}(x)} w_{s-1}\left[X_{s-1}(x)+\tau_{1} v_{s-1}\right]
$$

$$
\times u_{j-1,2}\left[X_{s-1}(x)+\tau_{1} v_{s-1}\right] d \tau_{1}
$$

where $u_{j, 2}$ is defined similarly to u_{j}, starting from $j=s-2$.
Because of (3) we may write the systems (6) and (7) as follows:

$$
\begin{aligned}
& u_{0}(x)=1 \\
& u_{1}(x)=\int_{0}^{t_{s}(x)} w_{s}\left[X_{s}(x)+\tau_{1} v_{s}\right] d \tau_{1}
\end{aligned}
$$

$$
u_{2}(x)=\int_{0}^{t_{s}(x)} w_{s}\left[X_{s}(x)+\tau_{1} v_{s}\right]
$$

$$
\times \int_{0}^{t_{s-1}\left[X_{s}(x)+\tau_{1} v_{s}\right]} w_{s-1}\left[X_{s-1}(x) \tau_{2} v_{s-1}\right] d \tau_{2} d \tau_{1}
$$

$$
u_{j}(x)=\int_{0}^{t_{s}(x)} w_{s}\left[X_{s}(x)+\tau_{1} v_{s}\right] u_{j-1,1}\left[X_{s}(x)+\tau_{1} v_{s}\right] d \tau_{1}
$$

and

$$
\begin{aligned}
& u_{0,1}(x)=1 \\
& u_{1,1}(x)=\int_{0}^{t_{s-1}(x)} w_{s-1}\left[X_{s-1}(x)+\tau_{1} v_{s-1}\right] d \tau_{1}
\end{aligned}
$$

$$
\begin{align*}
u_{2,1}(x)= & \int_{0} w_{s-1}\left[X_{s-1}(x)+\tau_{1} v_{s}\right] \tag{9}\\
& \times \int_{0}^{t_{s-2}\left[X_{s-1}(x)+\tau_{1} v_{s}\right]} w_{s-2}\left[X_{s-2}(x)+\tau_{2} v_{s-2}\right] d \tau_{2} d \tau_{1}
\end{align*}
$$

$\underset{\text { [cont.] }}{(9)} u_{j, 1}(x)=\int_{0}^{t_{s-1}(x)} w_{s-1}\left[X_{s-1}(x)+\tau_{1} v_{s-1}\right] u_{j-1,2}\left[X_{s-1}(x)+\tau_{1} v_{s-1}\right] d \tau_{1}$.
We have the following
Lemma 1. Let

$$
\begin{equation*}
D_{v} f(x)=\lim _{t \rightarrow 0+} \frac{1}{t}[f(x+t v)-f(x)], \quad D_{v_{i}, w_{j}} f(x)=\frac{1}{w_{j}(x)} D_{v_{i}} f(x) \tag{10}
\end{equation*}
$$

Then $D_{V_{S}} u_{j}(x)=u_{j-1,1}(x)$ for $j=1, \ldots, s-n$.
The proof follows directly from (8) and (10).
EXAMPLE 1. $n=2, v_{5}=(1,1), v_{4}=(-1,3), v_{3}=(-2,1)$,

$$
\begin{gathered}
w_{3}=w_{2}=w_{1}=1, \quad \pi_{5}: x_{1}+x_{2}=0, \quad \pi_{4}:-x_{1}+3 x_{2}=0 \\
\pi_{3}:-2 x_{1}+x_{2}=0, \quad u_{0}=u_{0,1}=u_{0,2}=1 \\
u_{1}(x)=\frac{x_{1}+x_{2}}{2}, \quad u_{1,1}(x)=\frac{-x_{1}+3 x_{2}}{10}, \quad u_{1,2}(x)=\frac{-2 x_{1}+x_{2}}{5}, \\
u_{2}(x)=\frac{-3 x_{1}^{2}+2 x_{1} x_{2}+5 x_{2}^{2}}{40}, \quad u_{2,1}(x)=\frac{7 x_{1}^{2}-22 x_{1} x_{2}+3 x_{2}^{2}}{200}, \\
u_{3}(x)=\frac{4 x_{1}^{3}-5 x_{1}^{2} x_{2}-6 x_{1} x_{2}^{2}+3 x_{2}^{3}}{200}, \quad \frac{\partial u_{3}}{\partial v_{5}}=u_{2,1}, \quad \frac{\partial u_{2}}{\partial v_{5}}=u_{1,1}, \\
\frac{\partial u_{2,1}}{\partial v_{4}}=u_{1,2}, \quad \frac{\partial u_{1}}{\partial v_{5}}=u_{0}, \quad \frac{\partial u_{1,1}}{\partial v_{4}}=u_{0}, \quad \frac{\partial u_{1,2}}{\partial v_{3}}=u_{0}
\end{gathered}
$$

Assume that

$$
\begin{equation*}
\int_{0}^{1} W_{k}(t) d t=1 \quad \text { for } k=n+1, \ldots, s \tag{11}
\end{equation*}
$$

As in the algebraic case the shifts of the Chebyshevian box spline $B\left(x \mid V_{s}, W\right)$ form a partition of unity.

Theorem 1.

$$
\begin{equation*}
\sum_{\alpha \in \mathbb{Z}^{n}} B\left(x-\alpha \mid V_{k}, W\right)=1, \quad x \in \mathbb{R}^{n}, k=n, \ldots, s \tag{12}
\end{equation*}
$$

Proof (by induction on k). For $k=1$ this follows from the definition of $B\left(x \mid V_{n}\right)$ and $\left\langle V_{n}\right\rangle$ (see [2]). Assume that (12) holds for some $k \geq n$. Applying (3) and the fact that w_{k} is periodic we obtain

$$
\begin{aligned}
\sum_{\alpha \in \mathbb{Z}^{n}} B(x- & \left.\alpha \mid V_{k+1}, W\right) \\
& =\sum_{\alpha \in \mathbb{Z}^{n}} \int_{0}^{1} w_{k+1}\left(x-t v_{k+1}-\alpha\right) B\left(x-t v_{k+1}-\alpha \mid V_{k}, W\right) d t \\
& =\int_{0}^{1} w_{k+1}\left(x-t v_{k+1}\right) \sum_{\alpha \in \mathbb{Z}^{n}} B\left(x-t v_{k+1}-\alpha \mid V_{k}, W\right) d t \\
& =\int_{0}^{1} w_{k+1}\left(x-t v_{k+1}\right) d t=\int_{0}^{1} W_{k+1}\left(x \cdot v_{k+1}-t\left|v_{k+1}\right|^{2}\right) d t \\
& =\frac{1}{\left|v_{k+1}\right|^{2}} \int_{0}^{\left|v_{k+1}\right|^{2}} W_{k+1}\left(x \cdot v_{k+1}+u\right) d u \\
& =\frac{1}{\left|v_{k+1}\right|^{2}} \int_{0}^{\left|v_{k+1}\right|^{2}} W_{k+1}(u) d u=1
\end{aligned}
$$

Further we need the following (see [5])
Theorem 2.

$$
\begin{equation*}
D_{v_{s}, w_{s}} B\left(x \mid V_{s}, W\right)=B\left(x \mid V_{s-1}, W\right)-B\left(x-v_{s} \mid V_{s-1}, W\right) \tag{13}
\end{equation*}
$$

at every point of continuity of $B\left(x \mid V_{s-1}, W\right)$.
Lemma 2. Let

$$
\begin{equation*}
f(x)=\sum_{\alpha \in \mathbb{Z}^{n}} u_{1}(\alpha) B\left(x-\alpha \mid V_{s}, W\right) . \tag{14}
\end{equation*}
$$

Then for $s \geq n+1, f=u_{1}+C$ on each line $l: x=x_{0}+v_{s} t$, where C is a constant.

Proof. Let x_{0} be a point of continuity of $B\left(x \mid V_{s-1}, W\right)$. Then by (13),

$$
\begin{aligned}
D_{v_{s}, w_{s}} f\left(x_{0}\right) & =\sum_{\alpha \in \mathbb{Z}^{n}}\left[u_{1}(\alpha)-u_{1}\left(\alpha-v_{s}\right)\right] B\left(x_{0}-\alpha \mid V_{s-1}, W\right), \\
u_{1}(\alpha)-u_{1}\left(\alpha-v_{s}\right) & =\int_{0}^{t_{s}(\alpha)} w_{s}\left[X_{s}(\alpha)+\tau v_{s}\right] d \tau-\int_{0}^{t_{s}(\alpha)-1} w_{s}\left[X_{s}(\alpha)+\tau v_{s}\right] d \tau \\
& =\int_{t_{s}(\alpha)-1}^{t_{s}(\alpha)} w_{s}\left[X_{s}(\alpha)+\tau v_{s}\right] d \tau=\int_{0}^{1} W_{s}\left(\tau\left|v_{s}\right|^{2}\right) d \tau=1 .
\end{aligned}
$$

Hence by Theorem 1 we obtain
$D_{v_{s}, w_{s}} f\left(x_{0}\right)=1$ and $f(x)=u_{1}(x)+C$ on each line $l: x=x_{0}+v_{s} t$, where C is some constant.

If x_{0} is not a point of continuity of $B\left(x \mid V_{s-1}, W\right)$ then the vectors v_{n+1}, \ldots, v_{s-1} are parallel to some hyperplane π of dimension $n-1$ such that $x_{0} \in \pi$. If v_{s} is not parallel to π then $B\left(x \mid v_{s}, W\right)$ is continuous and the function (14) is continuous. If v_{s} is parallel to π then the function (14) is continuous on the line $x=x_{0}+v_{s} t$, and from the definition of $\left\langle V_{s}\right\rangle$ we obtain the lemma.

Lemma 3. Let

$$
\begin{equation*}
f(x)=\sum_{\alpha \in \mathbb{Z}^{n}} u_{2}(\alpha) B\left(x-\alpha \mid V_{s}, W\right) \tag{15}
\end{equation*}
$$

Then for $s \geq n+2, f=u_{2}+C_{1} u_{1}+C_{0} u_{0}$ on each line $l: x=x_{0}+v_{s} t$, where C_{0} and C_{1} are some constants.

Proof. Let x be a point of continuity of $B\left(x \mid V_{s-1}, W\right)$. Then by (13),

$$
D_{v_{s}, w_{s}} f(x)=\sum_{\alpha \in \mathbb{Z}^{n}}\left[u_{2}(\alpha)-u_{2}\left(\alpha-v_{s}\right)\right] B\left(x-\alpha \mid V_{s-1}, W\right)
$$

By (6), (8) and (4) we obtain

$$
\begin{aligned}
& u_{2}(\alpha)-u_{2}\left(\alpha-v_{s}\right) \\
& =\int_{t_{s}(\alpha)} w_{s}\left[X_{s}(\alpha)+\tau_{1} v_{s}\right] \\
& \quad \times \int_{0}^{t_{s-1}\left[X_{s}(\alpha)+\tau_{1} v_{s}\right]} w_{s-1}\left[X_{s-1}(\alpha)+\tau_{2} v_{s-1}\right] d \tau_{2} d \tau_{1}
\end{aligned}
$$

$$
=\int_{0}^{1} w_{s}\left(\alpha-v_{s}+u v_{s}\right)
$$

$$
\times \int_{0}^{t_{s-1}\left(\alpha-v_{s}+u v_{s}\right)} w_{s-1}\left[X_{s-1}\left(\alpha-v_{s}+u v_{s}\right)+\tau_{2} v_{s-1}\right] d \tau_{2} d u
$$

$$
=\int_{0}^{1} w_{s}\left(\alpha-v_{s}+u v_{s}\right) \int_{0}^{t_{s-1}\left(\alpha-v_{s}+u v_{s}\right)} w_{s-1}\left[X_{s-1}(\alpha)+\tau_{2} v_{s-1}\right] d \tau_{2} d u
$$

$$
=\int_{0}^{1} w_{s}\left(\alpha-v_{s}+u v_{s}\right) \int_{0}^{t_{s-1}(\alpha)} w_{s-1}\left[X_{s-1}(\alpha)+\tau_{2} v_{s-1}\right] d \tau_{2} d u
$$

$$
+\int_{0}^{1} w_{s}\left(\alpha-v_{s}+u v_{s}\right) \int_{t_{s-1}(\alpha)}^{t_{s-1}\left(\alpha-v_{s}+u v_{s}\right)} w_{s-1}\left[X_{s-1}(\alpha)+\tau_{2} v_{s-1}\right] d \tau_{2} d u
$$

Applying the periodicity of w_{s} and $w_{s-1},(3)$ and (11) we prove that

$$
u_{2}(\alpha)-u_{2}\left(\alpha-v_{s}\right)=u_{1,1}(\alpha)+C,
$$

where C is some constant. Now using Lemma 2 we obtain the assertion.
If x is not a point of continuity of $B\left(x \mid V_{s-1}, W\right)$ we proceed as in the proof of Lemma 2.

Remark 1. Lemmas 2 and 3 cannot be generalized to $k \geq 3$ as the following example shows.

Example 2. Let u_{j} and $u_{j, 1}$ be as in Example 1. Then

$$
u_{3}(x)-u_{3}\left(x-v_{5}\right)=u_{2,1}(x)+\frac{x_{1}+2 x_{2}}{50}-\frac{1}{50}
$$

and it cannot be written in the form $u_{2,1}+\alpha u_{1,1}+\beta$.
3. Approximation by Chebyshevian box splines. Let $f_{h}(x)=$ $f(x / h), h>0$. We have the following

Theorem 3. There exists a constant C depending only on the matrix V_{s} such that for any function f defined on \mathbb{R}^{n},

$$
\left|f(x)-\sum_{\alpha \in h \mathbb{Z}^{n}} f(\alpha) B_{h}\left(x-\alpha \mid V_{s}, W\right)\right| \leq \omega(f, h),
$$

where $\omega(f, h)=\sup \left\{|f(x+\delta)-f(x)|: x, \delta \in \mathbb{R}^{n},|\delta| \leq h\right\}$ is the modulus of continuity of f.

Proof. Applying Theorem 1 and properties of the modulus of continuity we obtain

$$
\begin{aligned}
\mid f(x)-\sum_{\alpha \in h \mathbb{Z}^{n}} f(\alpha) & B_{h}\left(x-\alpha \mid V_{s}, W\right)\left|\leq \sum_{\alpha \in h \mathbb{Z}^{n}}\right| f(x)-f(\alpha) \mid B_{h}\left(x-\alpha \mid V_{s}, W\right) \\
& =\sum_{\alpha \in A}|f(x)-f(\alpha)| B_{h}\left(x-\alpha \mid V_{s}, W\right) \\
& \leq(\operatorname{diam} A+1) \omega(f, h) \sum_{\alpha \in A} B_{h}\left(x-\alpha \mid V_{s}, W\right)=C \omega(f, h),
\end{aligned}
$$

where $A=\left\{\alpha \in h \mathbb{Z}^{n}: B_{h}\left(x-\alpha \mid V_{s}, W\right) \neq 0\right\}$ and $C=\operatorname{diam} A+1$.
Now we need some definitions, lemmas and theorems.
Definition 1 (see $[1-3,5]$). The family of columns of the matrix V_{s} is called unimodular if the first n columns are linearly independent and $\forall_{Y \subset V_{s}, \sharp Y=n}|\operatorname{det} Y| \leq 1$.

Let \widehat{f} denote the Fourier transform of f, i.e.

$$
\widehat{f}(x)=\int_{\mathbb{R}^{n}} f(t) e^{-2 \pi i t \cdot x} d t .
$$

We have the following
Theorem 4 (see [6]). Let the family $V=V_{s}$ be admissible and unimodular and the functions $W_{j}, j=n+1, \ldots, s$, be trigonometric polynomials, i.e.

$$
W_{j}(x)=\sum_{k=-n_{j}}^{n_{j}} a_{j, k} e^{2 \pi i k \cdot x}
$$

where $a_{j,-k}=\bar{a}_{j, k}, k \in \mathbb{Z}^{n}, x \in \mathbb{R}^{n}$. Then

$$
\begin{equation*}
\left\{x \in \mathbb{R}^{n}: \forall_{\alpha \in \mathbb{Z}^{n}} \widehat{B}\left(x-\alpha \mid V_{s}, W\right)=0\right\}=\emptyset \tag{16}
\end{equation*}
$$

Let $X=V \cup-V=\left\{v_{1}, \ldots, v_{s},-v_{1}, \ldots,-v_{s}\right\}$ and

$$
\widetilde{B}(x \mid X, W)=\int_{\mathbb{R}^{n}} B(x-t \mid V, W) B\left(t \mid-V, W^{-}\right) d t
$$

where $-V=\left\{-v_{1}, \ldots,-v_{s}\right\}$ and $W^{-}=\{f: f(-x) \in W\}$.
Theorem 5 ([5, Theorem 4], cf. [3]). Let the family V be admissible and satisfy (16). Then for every $x \in \mathbb{R}^{n}$,

$$
\begin{equation*}
P_{X, W}(x)=\sum_{\alpha \in \mathbb{Z}^{n}} \widetilde{B}(\alpha \mid X, W) e^{2 \pi i \alpha \cdot x} \neq 0 \tag{17}
\end{equation*}
$$

Now we may define the fundamental function $\Phi_{X, W}$ as follows (see $[3,5])$:

$$
\begin{equation*}
\Phi_{X, W}(x)=\sum_{\alpha \in \mathbb{Z}^{n}} b_{X, W}(\alpha) \widetilde{B}(x-\alpha \mid X, W) \tag{18}
\end{equation*}
$$

where $b_{X, W}(\alpha)$ are the coefficients of the Fourier series of the function $1 / P_{X, W}$, i.e.
$1 / P_{X, W}(x)=\sum_{\alpha \in \mathbb{R}^{n}} b_{X, W}(\alpha) e^{2 \pi i \alpha \cdot x}, \quad b_{X, W}(\alpha)=\int_{[0,1]^{n}} \frac{1}{P_{X, W}(x)} e^{-2 \pi i \alpha \cdot x} d x$.
Lemma 4 ([5], cf. [3]). For every $\alpha \in \mathbb{Z}^{n}$,

$$
\begin{equation*}
\Phi_{X, W}(\alpha)=\delta_{0, \alpha} \tag{19}
\end{equation*}
$$

Lemma 5 ([5], cf. [6]). There exist constants $C>0$ and $0<q<1$ such that

$$
\begin{equation*}
\left|\Phi_{X, W}(x)\right| \leq C q^{\|x\|}, \quad x \in \mathbb{R}^{n} \tag{20}
\end{equation*}
$$

Now we may define interpolating operators I and I_{h} (see $[3,5]$) as follows: for every function g defined on \mathbb{Z}^{n} we put

$$
I g(x)=\sum_{\alpha \in \mathbb{Z}^{n}} g(\alpha) \Phi_{X, W}(x-\alpha), \quad I_{h}(x)=\sum_{\alpha \in h \mathbb{Z}^{n}} g(\alpha) \Phi_{X, W}\left(\frac{x-\alpha}{h}\right)
$$

Lemma 6 (cf. [3]). We have

$$
\begin{gather*}
B(x \mid V, W)=\sum_{\alpha \in \mathbb{Z}^{n}} B(\alpha \mid V, W) \Phi_{X, W}(x-\alpha), \tag{21}\\
\sum_{\beta \in \mathbb{Z}^{n}} \Phi_{X, W}(x-\beta)=1
\end{gather*}
$$

Proof. Using the Fourier transforms of $\Phi_{X, W}$ and $\widetilde{B}(\cdot \mid X, W)$ in (18) we obtain (21) exactly as in [3]. Further

$$
\begin{aligned}
\sum_{\beta \in \mathbb{Z}^{n}} \Phi_{X, W}(x-\beta) & =\sum_{\beta \in \mathbb{Z}^{n}} \sum_{\alpha \in \mathbb{Z}^{n}} b_{X, W}(\alpha) \widetilde{B}(x-\beta-\alpha \mid X, W) \\
& =\sum_{\alpha \in \mathbb{Z}^{n}} b_{X, W}(\alpha) \sum_{\beta \in \mathbb{Z}^{n}} \widetilde{B}(x-\beta-\alpha \mid X, W) \\
& =\sum_{\alpha \in \mathbb{Z}^{n}} b_{X, W}(\alpha)=\frac{1}{P_{X, W}(0)} \\
& =\frac{1}{\sum_{\alpha \in \mathbb{Z}^{n}} \widetilde{B}(\alpha \mid X, W)}=1
\end{aligned}
$$

and we have proved (22).
THEOREM 6. There exists a constant $C>0$ such that for any function f defined on \mathbb{R}^{n},

$$
\left|f(x)-I_{h} f(x)\right| \leq C \omega(f, h)
$$

Proof. Let $A_{k}=\left\{\alpha \in \mathbb{Z}^{n}: k-1 \leq\left|x_{i}-h \alpha_{i}\right|<k, i=1, \ldots, n\right\}$. Then $\sharp A_{k}=(2 k+1)^{n}-(2 k-1)^{n}, k=1,2, \ldots$

Using (20), (22) and properties of the modulus of continuity we obtain

$$
\begin{aligned}
\left|f(x)-I_{h} f(x)\right| & \leq \sum_{\alpha \in \mathbb{Z}^{n}}|f(x)-f(h \alpha)|\left|\Phi_{X, W}(x / h-\alpha)\right| \\
& \leq \sum_{k=1}^{\infty} \sum_{\alpha \in A_{k}}|f(x)-f(h \alpha)| \Phi_{X, W}(x / h-\alpha) \mid \\
& \leq C_{1} \sum_{k=1}^{\infty} k\left[(2 k+1)^{n}-(2 k-1)^{n}\right] q^{k} \omega(f, h) \leq C \omega(f, h)
\end{aligned}
$$

where $C=C_{1} \sum_{k=1}^{\infty} k\left[(2 k+1)^{n}-(2 k-1)^{n}\right] q^{k}$. Since $0<q<1$ the series is convergent and we have proved the theorem.

Let

$$
B_{V, W}^{*}(x)=\sum_{\alpha \in \mathbb{Z}^{n}} b_{X, W}(\alpha) B(x-\alpha \mid V, W), \quad x \in \mathbb{R}^{n}
$$

We have the following

Lemma 7 (see [5]). For any $\beta \in \mathbb{Z}^{n}$,

$$
\begin{equation*}
\left(B_{V, W}^{*}, B(\cdot-\beta \mid V, W)\right)=\delta_{0, \beta} \tag{23}
\end{equation*}
$$

Moreover, there exist constants $C>0$ and $0<q<1$ such that

$$
\begin{equation*}
\left|B_{V, W}^{*}(x)\right| \leq C q^{\|x\|}, \quad x \in \mathbb{R}^{n} \tag{24}
\end{equation*}
$$

where $(f, g)=\int_{\mathbb{R}^{n}} f \bar{g} d x$.
Let

$$
\begin{aligned}
P f(x) & =\sum_{\alpha \in \mathbb{Z}^{n}}\left(f, B_{V, W}^{*}(\cdot-\alpha)\right) B(x-\alpha \mid V, W) \\
P_{h} f(x) & =\sum_{\alpha \in h \mathbb{Z}^{n}}\left(f, B_{V, W}^{*}\left(\frac{-\alpha}{h}\right)\right) B\left(\left.\frac{x-\alpha}{h} \right\rvert\, V, W\right)
\end{aligned}
$$

By (24) we obtain

$$
\begin{equation*}
\left\|P_{h} f\right\|_{\infty} \leq C\|F\|_{\infty}, \tag{25}
\end{equation*}
$$

where $\|f\|_{\infty}=\sup _{x \in \mathbb{R}^{n}}|f(x)|$ and C is some constant depending only on the matrix V.

Theorem 7. There exists a constant $C>0$ such that for any function $f \in L^{2}\left(\mathbb{R}^{n}\right)$,

$$
\left\|f-P_{h} f\right\|_{\infty} \leq C \omega(f, h)
$$

Proof. Let

$$
S_{f}(x)=\sum_{\alpha \in \mathbb{Z}^{n}} f(\alpha) B(x-\alpha \mid V, W)
$$

Using (23) we obtain $P_{h} S_{f}(x)=S_{f}(x)$. Hence by (24), (25) and Theorem 3

$$
\begin{aligned}
\left\|f-P_{h} f\right\|_{\infty} & \leq\left\|f-S_{f}\right\|_{\infty}+\left\|S_{f}-P_{h} f\right\|_{\infty} \\
& =\left\|f-S_{f}\right\|_{\infty}+\left\|P_{h}\left(f-S_{f}\right)\right\|_{\infty} \\
& \leq C_{1}\left\|f-S_{f}\right\|_{\infty} \leq C \omega(f, h)
\end{aligned}
$$

Problem. Find the order of approximation of a function f by Chebyshevian box splines according to the regularity of f.

References

[1] B. D. Bojanov, H. A. Hakopian and A. A. Sahakian, Spline Functions and Multivariate Interpolations, Kluwer, 1993.
[2] C. de Boor, K. Hollig and S. Riemenschneider, Box Splines, Springer-Verlag, 1993.
[3] K. Dziedziul, Box Splines, Wyd. P.G., Gdańsk, 1997 (in Polish).
[4] Z. Wronicz, Chebyshevian splines, Dissertationes Math. 305 (1990).
[5] -, On some generalization of box splines, Ann. Polon. Math. 72 (1999), 261-271.
[6] -, On the linear independence of translates of a Chebyshevian box spline, in: Approximation Theory and its Applications, Papers of the Institute of Mathematics of the National Academy of Sciences of Ukraine 31, Kiev, 2000, 477-481.

Faculty of Applied Mathematics
Academy of Mining and Metallurgy
Al. Mickiewicza 30
30-059, Kraków, Poland
E-mail: wronicz@uci.agh.edu.pl

Reçu par la Rédaction le 14.7.2000
Révisé le 28.5.2001

[^0]: 2000 Mathematics Subject Classification: 41A15, 41A63, 41A05, 41A25.
 Key words and phrases: box splines, Chebyshevian splines, interpolation, approximation.

