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Recurrent point set of the shift on Σ and strong chaos

by Lidong Wang (Dalian),
Gongfu Liao (Changchun) and Yu Yang (Siping)

Abstract. Let (Σ, %) be the one-sided symbolic space (with two symbols), and let
σ be the shift on Σ. We use A(·), R(·) to denote the set of almost periodic points and
the set of recurrent points respectively. In this paper, we prove that the one-sided shift is
strongly chaotic (in the sense of Schweizer–Smı́tal) and there is a strongly chaotic set J
satisfying J ⊂ R(σ)− A(σ).

1. Introduction. Throughout this paper,X will denote a compact met-
ric space with metric d; I is the closed interval [0, 1].

For a continuous map f : X → X, denote the sets of periodic points,
nonwandering points and ω-limit points of f by P (f), Ω(f) and ω(f) re-
spectively; fn will denote the n-fold iterate of f .

D ⊂ X is said to be a chaotic set of f if for any different points x, y ∈ D,

lim inf
n→∞

d(fn(x), fn(y)) = 0, lim sup
n→∞

d(fn(x), fn(y)) > 0.

f is said to be chaotic if it has a chaotic set which is uncountable.
The notion of strong chaos first occurred in [18] where it is characterised

by the distribution function of distances between trajectories of two points.
The concrete version is as follows.

Let x, y ∈ X. For any real t > 0, let

Fxy(t) = lim inf
n→∞

1
n

n∑

i=1

χ[0,t)(d(f i(x), f i(y))),

F ∗xy(t) = lim sup
n→∞

1
n

n∑

i=1

χ[0,t)(d(f i(x), f i(y))),

where χA is the characteristic function of the set A. Obviously, Fxy and
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F ∗xy are both nondecreasing functions; for t ≤ 0, define Fxy and F ∗xy as
probability distribution functions (see [18] for details, where Fxy and F ∗xy
are called, respectively, the lower and upper distribution function of x and y).

Call x, y ∈ X a pair of points displaying strong chaos if

1) F ∗xy = χ[0,∞), i.e., F ∗xy(t) = 1 for all t > 0,
2) Fxy(ε) = 0 for some ε > 0.

f is said to display strong chaos if there exists an uncountable set D ⊂ X
such that any two different points in D display strong chaos.

Clearly any map displaying strong chaos must be Li–Yorke chaotic.
For a continuous map f : I → I, Li and Yorke [10] has proved that if f

has a periodic point of period 3, then it is chaotic.
Later, many sharpened results came into being in succession (see [7]–[9],

[11], [13], [16], [17], [19]). One can find in [11] and [1] equivalent conditions
for f to be chaotic, and in [16] or [19] a chaotic map with topological entropy
zero, which has shown that positive topological entropy and chaos are not
equivalent. On the other hand, it is known that by restricting the uncount-
able chaotic set to R(f) or to P (f) or to Ω(f), the equivalence holds (see
[4], [20], [21]).

This leaves open two questions:

1) Is the existence of an uncountable strongly chaotic set of f in R(f)
or in A(f) equivalent to ent(f) > 0?

2) Is there a map f such that R(f) − A(f) contains an uncountable
strongly chaotic set?

For a continuous map f : I → I, Schweizer and Smı́tal [18] have proved:

(i) If f has zero topological entropy, then no pair of points can form a
strongly chaotic set. (This implies that strong chaos and Li–Yorke chaos are
not the same notion.)

(ii) If f has positive entropy, then there exists an uncountable strongly
chaotic set in which each member is an ω-limit point of f .

The aim of this paper is to learn whether there exists a map f such that
R(f)− A(f) contains an uncountable strongly chaotic set of f .

In fact, we will prove

Theorem. The one-sided shift is strongly chaotic and there is a strongly
chaotic set J satisfying J ⊂ R(σ)− A(σ).

2. Basic definitions and preparations. Let S = {0, 1}, Σ = {x =
x1x2 . . . | xi ∈ S, i = 1, 2, . . .} and define % : Σ ×Σ → R as follows: for any
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x, y ∈ Σ, if x = x1x2 . . . and y = y1y2 . . . , then

%(x, y) =
{

0 if x = y,
1/2k if x 6= y,

and k = min{n | xn 6= yn} − 1.

It is not difficult to check that % is a metric on Σ. The space (Σ, %) is
compact and called the one-sided symbolic space.

Define σ : Σ → Σ by σ(x) = x2x3 . . . for any x = x1x2 . . . ∈ Σ. Then σ
is continuous and called the shift on Σ. Call A a tuple (over S) if it is a finite
arrangement of elements in S. If A = a1a2 . . . an where ai ∈ S, 1 ≤ i ≤ n,
then the length of A is said to be n, denoted by |A| = n.

Let B = b1b2 . . . bm be another tuple. Set AB = a1a2 . . . anb1b2 . . . bm;
then AB is also a tuple.

Let x ∈ Σ with x = x1x2 . . .. It is called a repeating sequence with
recurring period of length m if xi+m = xi for any i ∈ {1, 2, . . .}. We then
write x = (ẋ1ẋ2 . . . ẋm).

Let x ∈ X. Then y ∈ X is said to be an ω-limit point of x if the sequence
f(x), f2(x), . . . has a subsequence converging to y. The set of ω-limit points
of x is denoted by ω(x, f). Each point in

⋃
x∈X ω(x, f) is called an ω-limit

point of f . The set of ω-limit points of f is denoted by ω(f).
x ∈ X is called almost periodic for f if for any ε > 0, one can find k > 0

such that for any integer q ≥ 0, there is an integer r with q ≤ r < k + q
satisfying d(f r(x), x) < ε. Denote by A(f) the set of almost periodic points
of f .

x ∈ X is called a recurrent point for f if the sequence f(x), f 2(x), . . . has
a subsequence converging to x. The set of recurrent points for f is denoted
by R(f).

Y ⊂ X is called a minimal set of f if for any x ∈ Y , ω(x, f) = Y .

Lemma 2.1. For any x ∈ X and any N > 0, the following are equivalent.

1) x ∈ A(f).
2) x ∈ A(fN ).
3) x ∈ ω(x, f) and ω(x, f) is a minimal set of f .

For a proof see [5] and [6].

Lemma 2.2. Σ has an uncountable subset E such that for any different
points x = x1x2 . . . , y = y1y2 . . . in E, xn = yn for infinitely many n and
xm 6= ym for infinitely many m.

Proof. For any x = x1x2 . . . , y = y1y2 . . . ∈ Σ, write x ∼ y if either
xn = yn holds only for finitely many n, or xm 6= ym holds only for finitely
many m. We easily check that ∼ is an equivalence relation on Σ. Let x ∈ Σ.
It is easy to see that the set {y ∈ Σ | y ∼ x} is countable and so the quotient
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set Σ/∼ is uncountable. Taking a representative in each equivalence class
of Σ/∼, we get an uncountable set E which satisfies the requirement.

Lemma 2.3. Let (Σ, %) be the one-sided symbolic space, and let σ be the
shift on Σ. Then:

(i) For all s ∈ Σ and m > 0, σm(s) = s if and only if s = (ṡ0ṡ1 . . . ṡm−1)
(i.e. s is a repeating sequence with recurring period of length m).

(ii) There are exactly 2n elements s in Σ such that σn(s) = s.

For a proof see [3].

3. Proof of the Theorem. First we construct the set J as in the
conclusion of the Theorem.

Let A = a1a2 . . . an be a tuple (over S = {0, 1}). Define the inverse of A
to be A = a1 . . . an, where

ai =
{

0 if ai = 1,
1 if ai = 0,

for i = 1, . . . , n.

Clearly, |A| = |A| and A = A.
Take an arbitrary tuple A1. Let A2 be an arrangement of A1 and A1, say

A2 = A1A1 (or A1A1). Define inductively the tuples A2, A3, . . . such that
An is an arrangement of all the tuples of the finite set

Jn = {J1 . . . Jn−1 | Ji ∈ {Ai, Ai}, 1 ≤ i ≤ n− 1}.
For each n = 1, 2, . . . , put mn = |A1A2 . . . An|. Then mn − mn−1 =

2n−1mn−1 for all n > 1, as can be easily derived from the definition.
Choose an uncountable subset E in Σ such that for any different points

x = x1x2 . . . , y = y1y2 . . . , both xn = yn holds for infinitely many n and
xm 6= ym holds for infinitely many m. By Lemma 2.2, such a subset exists.
Define ϕ : E → E by ϕ(x) = J1J2 . . . = 〈Ji〉, i = 1, 2, . . . for all x =
x1x2 . . . ∈ E, where

Ji =
{
Ai if xi = 1,
Ai if xi = 0,

for i = 1, 2, . . .

Let D = ϕ(E); then D ⊂ E. Since E is uncountable and ϕ is injective, D is
uncountable.

By Lemma 2.3, for any n ∈ N, the elements of Σ satisfying σn(s) = s are
the repeating sequences with recurring period of length n; there are exactly
2n such elements.

Let p1 be an arrangement of the recurring periods of the two repeating
sequences of length 2 such that σ2(s) = s, e.g. p1 = 01.

Let p2 be an arrangement of the recurring periods of the 22 repeating
sequences of length 2 such that σ2(s) = s, e.g. p2 = 00 01 10 11.
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pn is an arrangement of the recurring periods of the 2n repeating se-
quences of length n such that σn(s) = s, e.g. pn = 000 . . . 0 . . . 11 . . . 1.

Let a = p1p2 . . . pn . . . = 0100011011000 . . . 001 . . . = a1a2 . . . It is easy
to see that ω(a, σ) = Σ. In fact, for any x = x1x2 . . . ∈ Σ, let Tn be a
periodic point of σ with period n and with recurring period (x1, . . . , xn).
Then Tn → x (n→∞). By the construction of a, for any ε > 0, there exists
Ni(ε) such that

|σNi(a)− x| <
∞∑

n=Ni

1
2n

< ε.

So, σNi(a) → x (i → ∞). This shows x ∈ ω(a, σ), i.e. Σ ⊂ ω(a, σ). On the
other hand, ω(a, σ) ⊂ Σ, hence Σ = ω(a, σ). Let

J = {J1a1J2a1a2 . . . Jn−1a1a2 . . . an−1Jn . . . | 〈Ji〉 ∈ D}.

Since D is uncountable, J is uncountable, and for any x, y ∈ J , by Lemma
2.2 we have x 6= y.

Secondly, we prove J ⊆ R(σ)− A(σ).
Since ω(a, σ) = Σ, for any x ∈ Σ, there exists an infinite sequence

{pi} of positive integers such that σpi(a) → x (i → ∞). For any C ∈ J ,
C = C1a1C2a1a2 . . . , put

qi = pi +mpi +
(pi − 1)(pi − 2)

2
.

Then σqi(C)→ x (i→∞).
Thus we have proved that ω(C, σ) = Σ and C ∈ R(σ). Since ω(C, σ) = Σ

and Σ is not a minimal set of f , we know that ω(C, σ) is not a minimal set
of f . By Lemma 2.1, C 6∈ A(σ). Summing up, we obtain

J ⊂ R(σ)− A(σ).

Finally, we will prove that σ|J displays strong chaos.
Let b = B1a1B2a1a2 . . . and c = C1a1C2a1a2 . . . be different points in J ,

where Bi, Ci ∈ {Ai, Ai}, i = 1, 2, . . . By Lemma 2.2 and the construction of
J , there are sequences of positive integers pi →∞ and qi →∞ such that

Bpi = Cpi , Bqi = Cqi for all i.

Put, for simplicity,

δbc(j) = %(σj(b), σj(c)), j = 1, 2, . . .

First, it is easily seen that for given pi ≥ 3, the first mpi−1 symbols of σj(b)
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and σj(c) coincide for

mpi−1 +
(pi − 2)(pi − 3)

2
≤ j ≤

(
mpi +

pi(pi − 1)
2

)

−
(
mpi−1 +

(pi − 2)(pi − 3)
2

)
,

so

δbc(j) ≤
1

2mpi−1
.

Thus δbc(j) < t for given t > 0, provided pi is large enough. Furthermore
χ[0,t)(δbc(j)) = 1. Let

Npi = mpi +
(pi − 1)pi

2
−
(
mpi−1 +

(pi − 2)(pi − 3)
2

)
,

Kpi = mpi−1 +
(pi − 2)(pi − 3)

2
.

Thus, we have

1
Npi

Npi∑

j=1

χ[0,t)(δcb(j)) ≥
1
Npi

Npi∑

j=Kpi

χ[0,t)(δcb(j))

and

Npi −Kpi

Npi
= 1−

mpi−1 +
(pi − 2)(pi − 3)

2(
mpi +

(pi − 1)pi
2

)
−
(
mpi−1 +

(pi − 2)(pi − 3)
2

)

= 1−
mpi−1 +

(pi − 2)(pi − 3)
2

2pi−1mpi−1 +
(pi − 1)pi − (pi − 2)(pi − 3)

2
→ 1 (pi →∞).

Hence

(1) F ∗bc(t) = 1.

Secondly, it is easy to see that for given qi large enough, the first mqi−1

symbols of σj(b) and σj(c) are all distinct for

mqi−1 +
(qi − 1)(qi − 2)

2
≤ j ≤ mqi −mqi−1 +

(qi − 1(qi − 2)
2

,

so
δbc(j) = 1.
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Take any t ∈ (0, 1]; then χ[0,t)(δbc(j)) = 0. Furthermore let

Tqi =
(
mqi +

(qi − 1)(qi − 2)
2

)
−
(
mqi−1 +

(qi − 1)(qi − 2)
2

)
.

Then
Tqi∑

j=1

χ[0,t)(δbc(j)) ≤
1

mqi −mqi−1

mqi−1∑

j=1

χ[0,t)(δbc(j))

≤ mqi−1

2qi−1mqi−1
→ 0 (qi →∞).

This shows

(2) Fbc(t) = 0.

(1) and (2) prove that b and c are a pair of points displaying strong chaos.
By the arbitrariness of b and c, σ|J displays strong chaos.

The proof of the Theorem is complete.
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