Estimates of capacity of self-similar measures

by JÓZEF MYJAK (L’Aquila and Kraków) and TOMASZ SZAREK (Katowice and Rzeszów)

Abstract. We give lower and upper estimates of the capacity of self-similar measures generated by iterated function systems \((S_i, p_i) : i = 1, \ldots, N \) where \(S_i \) are bi-lipschitzian transformations.

1. Introduction. The idea of dimension of measures is fundamental in measure theory and it also occurs in diverse branches of mathematics. For example, it is a basic tool in the study of attractors of dynamical systems, in particular in the study of attractors (also called fractals) generated by iterated function systems, or more generally, fractals generated by Markov chains (see [1–6, 15, 16, 18, 23]). Various notions of dimension have been proposed: Hausdorff dimension, box dimension, entropy dimension, correlation dimension. These concepts were widely investigated and used. Closely related to Hausdorff dimension is capacity, introduced by Kolmogorov (see [14]). This capacity, however, does not distinguish between a set and its closure. Ledrappier [17] has made some modification to correct this insensitivity. While the other concepts mentioned here have been extensively studied, Ledrappier’s version of capacity does not seem to be sufficiently explored. In this paper we give lower and upper estimates of Ledrappier’s capacity of measures invariant with respect to iterated function systems of functions which are bi-lipschitzian.

The calculation of dimensions has been performed by several authors inspired by Hutchinson’s elegant treatment [13]. For an account of the technique involved, generalizations and improvements see [2–4, 12, 18, 20]. Our approach is also based on this idea.

2. Notations and preliminaries. Throughout this paper \((X, \vartheta)\) denotes a Polish space and this assumption will not be repeated in the state-
ment of theorems. By $B(x,r)$ we denote the closed ball in X with center at x and radius r. For $A \subset X$, $A \neq \emptyset$, we denote by $\text{diam} A$ the diameter of A and by 1_A the characteristic function of A. Moreover, for $A, B \subset X$, $A, B \neq \emptyset$, we define

$$\text{dist}(A, B) = \inf \{d(x, y) : x \in A, y \in B\}.$$

As usual, \mathbb{R} stands for the set of all reals and \mathbb{N} for the set of all positive integers. Moreover set $\mathbb{R}_+ = [0, \infty)$.

We denote by $\mathcal{B}(X)$ the σ-algebra of Borel subsets of X and by \mathcal{M} the family of all finite Borel measures on X. Moreover, \mathcal{M}_1 denotes the family of all $\mu \in \mathcal{M}$ such that $\mu(X) = 1$, and $\mathcal{M}_s = \{\mu_1 - \mu_2 : \mu_1, \mu_2 \in \mathcal{M}\}$ is the space of all finite signed measures.

Finally, $\mathcal{B}(X)$ stands for the space of all bounded Borel measurable functions $f : X \to \mathbb{R}$ and $C(X)$ for the subspace of $\mathcal{B}(X)$ of all bounded continuous functions. In both spaces the norm is given by the formula

$$\|f\|_0 = \sup_{x \in X} |f(x)|.$$

For $f \in \mathcal{B}(X)$ and $\nu \in \mathcal{M}_s$ we write

$$\langle f, \nu \rangle = \int_X f(x) \nu(dx).$$

We say that a sequence $(\mu_n)_{n \geq 1} \subset \mathcal{M}$ converges weakly to a measure $\mu \in \mathcal{M}$ if $\lim_{n \to \infty} \langle f, \mu_n \rangle = \langle f, \mu \rangle$ for every $f \in C(X)$.

We endow \mathcal{M}_s with the Fortet–Mourier norm (see [11]) given by

$$\|\nu\| = \sup\{\|\langle f, \nu \rangle\| : f \in F\},$$

where F is the set of all functions $f \in C(X)$ such that $\|f\|_0 \leq 1$ and $|f(x) - f(y)| \leq d(x, y)$ for $x, y \in X$. It is known that the convergence

$$\lim_{n \to \infty} \|\mu_n - \mu\| = 0 \quad \text{for } \mu_n, \mu \in \mathcal{M}_1$$

is equivalent to the weak convergence of the sequence $(\mu_n)_{n \geq 1}$ to μ (see [7]).

An operator $P : \mathcal{M} \to \mathcal{M}$ is called a Markov operator if

$$P(\lambda_1 \mu_1 + \lambda_2 \mu_2) = \lambda_1 P \mu_1 + \lambda_2 P \mu_2 \quad \text{for } \lambda_1, \lambda_2 \in \mathbb{R}_+ \text{ and } \mu_1, \mu_2 \in \mathcal{M}$$

and

$$P \mu(X) = \mu(X) \quad \text{for } \mu \in \mathcal{M}.$$

A measure μ is called stationary (or invariant) with respect to the operator P if $P \mu = \mu$. A Markov operator P is called asymptotically stable if there exists an invariant probability measure μ_* such that

$$\lim_{n \to \infty} \|P^n \mu - \mu_*\| = 0 \quad \text{for } \mu \in \mathcal{M}_1.$$

Clearly, the stationary measure is unique if P is asymptotically stable.
Let \(\mu \in \mathcal{M}_1 \). For given \(\varepsilon > 0 \) and \(C \subset X \) we denote by \(N_C(\varepsilon) \) the minimal number of \(\varepsilon \)-balls needed to cover the set \(C \). Further, for \(\varepsilon, \eta > 0 \) we define
\[
N(\varepsilon, \eta) = \inf \{ N_C(\varepsilon) : C \subset X \text{ and } \mu(C) > 1 - \eta \}.
\]
Then the quantities
\[
\text{Cap}_L(\mu) = \sup_{\eta > 0} \liminf_{\varepsilon \to 0} \frac{\log N(\varepsilon, \eta)}{-\log \varepsilon}
\]
and
\[
\text{Cap}_U(\mu) = \sup_{\eta > 0} \limsup_{\varepsilon \to 0} \frac{\log N(\varepsilon, \eta)}{-\log \varepsilon}
\]
are called the lower and upper capacity of \(\mu \), respectively.

The above definitions were introduced by Ledrappier (see [17, 22, 25]) and are closely related to Kolmogorov dimensions.

Remark 2.1. In the definitions of the lower and upper capacity we can replace the continuous variable \(\varepsilon \) by a decreasing sequence \((\varepsilon_n)_{n \geq 1}\) with \(\log \varepsilon_{n+1}/\log \varepsilon_n \to 1 \).

Assume now we are given a sequence of continuous transformations
\[S_i : X \to X \quad \text{for } i = 1, \ldots, N \]
and a probability vector
\[p_i : X \to [0, 1] \quad \text{for } i = 1, \ldots, N, \]
where the \(p_i \) are continuous functions satisfying
\[p_i(x) > 0 \quad \text{and} \quad \sum_{i=1}^{N} p_i(x) = 1 \quad \text{for } x \in X. \]
Such a system is denoted by \((S, p)_N\) and called an iterated function system (briefly IFS).

Having an IFS \((S, p)_N\) we define the corresponding Markov operator \(P : \mathcal{M} \to \mathcal{M} \) by
\[
(2.1) \quad P\mu(A) = \sum_{i=1}^{N} \int_{S_i^{-1}(A)} p_i(x) \mu(dx) \quad \text{for } A \in \mathcal{B}(X)
\]
and its dual operator \(U : \mathcal{B}(X) \to \mathcal{B}(X) \) by
\[
(2.2) \quad Uf(x) = \sum_{i=1}^{N} p_i(x) f(S_i(x)).
\]
We say that an IFS \((S,p)_N\) is asymptotically stable if the corresponding Markov operator \(P\) is asymptotically stable. A measure \(\mu_* \in \mathcal{M}\) is called invariant for the IFS \((S,p)_N\) if it is invariant with respect to the corresponding Markov operator \(P\).

We assume that \(S_i : X \rightarrow X\), \(i = 1, \ldots, N\), are bi-lipschitzean transformations, i.e. there exist constants \(l_i, L_i > 0\) such that
\[
(2.3) \quad l_i \varrho(x,y) \leq \varrho(S_i(x), S_i(y)) \leq L_i \varrho(x,y) \quad \text{for } x, y \in X.
\]
Throughout this paper \(l_1, \ldots, l_N\) and \(L_1, \ldots, L_N\) always stand for the constants satisfying (2.3). Moreover, we assume that
\[
(2.4) \quad \Gamma_0 = \sup_{x \in X} \prod_{i=1}^N L_i^{p_i(x)} < 1,
\]
\[
(2.5) \quad \alpha_0 = \min_{1 \leq i \leq N, x \in X} \inf_{x < y} p_i(x) > 0,
\]
\[
(2.6) \quad \sum_{i=1}^N |p_i(x) - p_i(y)| \leq \omega(\varrho(x,y)) \quad \text{for } x, y \in X,
\]
where \(\omega : \mathbb{R}_+ \rightarrow \mathbb{R}_+\) is a nondecreasing concave function satisfying the Dini condition
\[
(2.7) \quad \int_0^\eta \frac{\omega(t)}{t} dt < \infty \quad \text{for some } \eta > 0.
\]

The following constants will play a crucial role:
\[
(2.8) \quad \Delta_0 = \sup_{x \in X} \prod_{i=1}^N p_i(x)^{p_i(x)},
\]
\[
(2.9) \quad \delta_0 = \inf_{x \in X} \prod_{i=1}^N p_i(x)^{p_i(x)},
\]
\[
(2.10) \quad \gamma_0 = \inf_{x \in X} \prod_{i=1}^N p_i^{p_i(x)}.
\]
Obviously \(\Delta_0, \delta_0, \gamma_0 \in (0,1)\).

We say that a family of transformations \(S_1, \ldots, S_N\) satisfies the strong Moran condition (see [19]) if there exists a bounded closed subset \(F\) of \(X\) and a constant \(\sigma > 0\) such that
\[
(2.11) \quad \bigcup_{i=1}^N S_i(F) \subset F,
\]
\[
(2.12) \quad \text{dist}(S_i(F), S_j(F)) \geq \sigma \quad \text{for } i \neq j.
\]
PROPOSITION 2.1. If an IFS \((S,p)_N\) satisfies conditions (2.3)–(2.7), then it is asymptotically stable.

Proof. See [23].

Let \(\Omega = \{1, \ldots, N\}^\infty = \{(i_1, i_2, \ldots) : i_k \in \{1, \ldots, N\} \text{ for every } k \in \mathbb{N}\}\) and \(\Omega_* = \bigcup_{n=1}^\infty \Omega_n\), where \(\Omega_n = \{1, \ldots, N\}^n\). Observe that \(\Omega_*\) (resp. \(\Omega\)) is the space of all finite (resp. infinite) sequences of elements \(i_k \in \{1, \ldots, N\}\). For \(k \in \mathbb{N}\) we set \(\Omega_{\leq k} = \bigcup_{n=1}^k \Omega_n\) and \(\Omega_{\geq k} = \bigcup_{n=k}^\infty \Omega_n\). For \(i = (i_1, \ldots, i_n) \in \Omega_*\) let \(|i| = n\) denote the length of \(i\). If \(i \in \Omega\) we assume that \(|i| = \infty\). For \(i \in \Omega \cup \Omega_*\) and \(m \in \mathbb{N}\), \(m \leq |i|\), we set \(i|m = (i_1, \ldots, i_m)\).

We say that \(\mathbb{P}\) is a capacity of self-similar measures.

Proposition 2.2. For every \(i = (i_1, \ldots, i_n) \in \Omega_*\), we have

\[
\mathbb{P}_x(i) = p_{i_1}(x)\mathbb{P}_{S_{i_1}(x)}((i_2, \ldots, i_n)),
\]

\[
\mathbb{P}_x(i) = p_{i_n}(S_{i_{n-1}} \circ \cdots \circ S_i(x))\mathbb{P}_x((i_1, \ldots, i_{n-1})),
\]

\[
\sum_{i=1}^N \mathbb{P}_x((i, i)) = \mathbb{P}_x(i),
\]

\[
\mathbb{P}_x(i|k) \geq \mathbb{P}_x(i|m) \quad \text{if } k \leq m \leq n.
\]

Proof. Follows immediately from the definition of \(\mathbb{P}_x\).

3. Auxiliary results. Throughout this section we assume that an IFS \((S,p)_N\) is given and \(\mathbb{P}_x\) is the corresponding probability measure on \(\Omega\) given by (2.13). Using a standard martingale argument we prove the following
Lemma 3.1. Assume that an IFS \((S, p)\) satisfies conditions (2.3)–(2.7). Let \(f_i : X \to \mathbb{R}_+\), \(i = 1, \ldots, N\), be bounded continuous functions such that
\[
\min_{1 \leq i \leq N} \inf_{x \in X} f_i(x) > 0.
\]
Then for every \(x \in X\) there exists a measurable set \(\Omega_x \subset \Omega\) with \(\mathbb{P}_x(\Omega_x) = 1\) such that, for all \((i_1, i_2, \ldots) \in \Omega_x\),
\[
\text{lim sup } \frac{1}{n} \log (f_{i_1}(x) f_{i_2}(S_{i_1}(x)) \ldots f_{i_n}(S_{i_{n-1}} \circ \ldots \circ S_{i_1}(x))) \leq \log \Delta,
\]
\[
\text{lim inf } \frac{1}{n} \log (f_{i_1}(x) f_{i_2}(S_{i_1}(x)) \ldots f_{i_n}(S_{i_{n-1}} \circ \ldots \circ S_{i_1}(x))) \geq \log \delta
\]
where
\[
\Delta = \sup_{x \in X} \prod_{i=1}^N f_i(x)^{p_i(x)},
\]
\[
\delta = \inf_{x \in X} \prod_{i=1}^N f_i(x)^{p_i(x)}.
\]

Proof. To prove (3.1), fix \(x \in X\) and for each \(n \in \mathbb{N}\) define \(X_n : \Omega \to \mathbb{R}\) by
\[
X_n(i) = \log (f_{i_n}(S_{i_{n-1}} \circ \ldots \circ S_{i_1}(x))).
\]
For \(i = (i_1, \ldots, i_n) \in \Omega_+\), we denote by \(\mathcal{A}(i)\) the \(\sigma\)-algebra generated by the cylinders \(\{A(j) : j \in \Omega_+, j \geq i\}\). Moreover, let \(E_x\) denote the expectation with respect to the probability measure \(\mathbb{P}_x\) on \(\Omega\).

Fix \(i = (i_1, i_2, \ldots) \in \Omega\). We have
\[
E_x(X_n | \mathcal{A}(i_1, \ldots, i_{n-1})) = \sum_{i=1}^N p_i(S_{i_{n-1}} \circ \ldots \circ S_{i_1}(x))X_n((i_1, \ldots, i_{n-1}, i)).
\]
By (3.3) we have
\[
\sum_{i=1}^N p_i(S_{i_{n-1}} \circ \ldots \circ S_{i_1}(x)) \log (f_i(S_{i_{n-1}} \circ \ldots \circ S_{i_1}(x))) \leq \log \Delta.
\]
Now let \(Y_n = X_n - E_x(X_n | \mathcal{A}(i_1, \ldots, i_{n-1}))\). Then
\[
|Y_n(i)| \leq 2 \sup_{i \in \Omega} |X_n(i)| \quad \mathbb{P}_x\text{-a.s.}
\]
Write
\[
M = 2 \sup_{i \in \Omega} |X_n(i)| < \infty.
\]
Define
\[
Z_n = \sum_{k=1}^n \frac{Y_k}{k} \quad \text{for } n \in \mathbb{N}.
\]
It is easy to see that \((Z_n)_{n \geq 1}\) is a martingale. Since \(Y_k\) and \(Y_l\) for \(k \neq l\) are mutually orthogonal, we have

\[
\mathbb{E}_x(Z_n^2) \leq M^2 \sum_{k=1}^{\infty} \frac{1}{k^2}.
\]

Hence \((Z_n)_{n \geq 1}\) is an \(L^2\)-bounded martingale, and so \((Z_n)_{n \geq 1}\) is convergent a.s. Then by Kronecker’s lemma (see [7])

\[
\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} Y_k = 0 \quad \mathbb{P}_x\text{-a.s.}
\]

Thus

\[
\limsup_{n \to \infty} \frac{1}{n} \sum_{k=1}^{\infty} X_k - \log \Delta \leq 0 \quad \mathbb{P}_x\text{-a.s.},
\]

whence (3.1) follows immediately.

Replacing \(f_i\) with \(1/f_i\) and using the same argument gives (3.2).

A finite set \(\mathcal{L} \subset \Omega_*\) is called fundamental for the IFS \((S,p)_N\) if

(3.5) \[\sum_{i \in \mathcal{L}} \mathbb{P}_x(i) = 1 \quad \text{for every } x \in X\]

and there are no \(i, j \in \mathcal{L}\) such that \(i < j\). Set

\[|\mathcal{L}| = \max\{|i| : i \in \mathcal{L}\}.
\]

Lemma 3.2. Let \(\mathcal{L} \subset \Omega_*\) be a fundamental set for the IFS \((S,p)_N\). If \(i = (i_1, \ldots, i_n) \in \mathcal{L}\) and \(n = |\mathcal{L}|\), then \((i_1, \ldots, i_{n-1}, i) \in \mathcal{L}\) for every \(i \in \{1, \ldots, N\}\).

Proof. First observe that \(A(i) \cap A(j) = \emptyset\) for every \(i, j \in \mathcal{L}, i \neq j\). Now, suppose for a contradiction that there is \(i = (i_1, \ldots, i_n) \in \mathcal{L}\) such that \((i_1, \ldots, i_{n-1}, i) \notin \mathcal{L}\) for some \(i \in \{1, \ldots, N\}\). It is easy to verify that \(A(i_1, \ldots, i_{n-1}, i) \cap A(j) = \emptyset\) for every \(j \in \mathcal{L}\). Since \(\mathbb{P}_x\) is a probability measure and \(\mathbb{P}_x(i) > 0\) for every \(i \in \Omega_*\), we have

\[
\sum_{i \in \mathcal{L}} \mathbb{P}_x(i) \leq 1 - \mathbb{P}_x((i_1, \ldots, i_{n-1}, i)) < 1,
\]

which contradicts (3.5).

Remark 3.1. Note that for every \(n \in \mathbb{N}\) there exists a fundamental set \(\mathcal{L}\) for \((S,p)_N\) such that \(\mathcal{L} \subset \Omega_{\leq n}\).

Lemma 3.3. Assume that an IFS \((S,p)_N\) satisfies conditions (2.3)–(2.7). Let \(\mu_* \in \mathcal{M}_1\) be its unique invariant measure. Then for every fundamental
set \(\mathcal{L} \subset \Omega_* \) we have

\[
\mu_*(A) = \sum_{i \in \mathcal{L}} \int_X \mathbb{P}_x(i^{-1})1_A(S_{i-1}(x)) \mu_*(dx) \quad \text{for } A \in \mathcal{B}(X).
\]

Proof. We use induction on \(n \), where \(\mathcal{L} \subset \Omega_{\leq n} \).

Suppose first that \(\mathcal{L} \subset \Omega_1 \). Since \(p_i(x) > 0 \) for \(x \in X \) and \(i = 1, \ldots, N \), it follows immediately that \(\mathcal{L} = \{1, \ldots, N\} \) and (3.6) is obviously satisfied.

Now suppose that (3.6) holds for every \(\mathcal{L} \subset \Omega_{\leq n} \), and take \(\mathcal{L} \subset \Omega_{\leq n+1} \). Using the invariance of \(\mu_* \) and (2.2), for \(f \in \mathcal{B}(X) \) we have

\[
\int_X f(x)\mu_*(dx) = \int_X f(x) P\mu_*(dx) = \int_X U f(x) \mu_*(dx)
\]

\[
= \sum_{i=1}^N \int_X p_i(x)f(S_i(x)) \mu_*(dx).
\]

Set

\[
\mathcal{L}_{n+1} = \{i \in \mathcal{L} : |i| = n + 1\}, \quad \mathcal{L}_{n+1}^n = \{\{i\} : i \in \mathcal{L}_{n+1}\}.
\]

We assume that \(\mathcal{L}_{n+1} \neq \emptyset \) (otherwise there is nothing to prove). Let \(A \in \mathcal{B}(X) \). Using in succession Lemma 3.2, formula (2.14) and (3.7) we have

\[
\sum_{i \in \mathcal{L}_{n+1}} \int_X \mathbb{P}_x(i^{-1})1_A(S_{i-1}(x)) \mu_*(dx)
\]

\[
= \sum_{j \in \mathcal{L}_{n+1}^n} \sum_{i=1}^N \int_X \mathbb{P}_x((j, i)^{-1})1_A(S_{(j, i)-1}(x)) \mu_*(dx)
\]

\[
= \sum_{j \in \mathcal{L}_{n+1}^n} \sum_{i=1}^N \int_X p_i(x)\mathbb{P}_{S_i(x)}(j^{-1})1_A(S_{j-1}(S_i(x))) \mu_*(dx)
\]

\[
= \sum_{j \in \mathcal{L}_{n+1}^n} \int_X \mathbb{P}_x(j^{-1})1_A(S_{j-1}(x)) \mu_*(dx).
\]

Now setting \(\mathcal{L}^* = (\mathcal{L} \setminus \mathcal{L}_{n+1}) \cup \mathcal{L}_{n+1}^n \) and using (3.9) we obtain

\[
\sum_{i \in \mathcal{L}} \int_X \mathbb{P}_x(i^{-1})1_A(S_{i-1}(x)) \mu_*(dx)
\]

\[
= \sum_{i \in \mathcal{L}_{n+1}} \int_X \mathbb{P}_x(i^{-1})1_A(S_{i-1}(x)) \mu_*(dx)
\]

\[
+ \sum_{i \in \mathcal{L} \setminus \mathcal{L}_{n+1}} \int_X \mathbb{P}_x(i^{-1})1_A(S_{i-1}(x)) \mu_*(dx)
\]

\[
= \sum_{i \in \mathcal{L}^*} \int_X \mathbb{P}_x(i^{-1})1_A(S_{i-1}(x)) \mu_*(dx).
\]
Clearly \mathcal{L}^* is fundamental and $\mathcal{L}^* \subset \Omega_{\leq n}$. Now apply the induction hypothesis.

Let L_i, $i = 1, \ldots, N$, be Lipschitz constants of S_i and let I_0 be given by (2.4). For $i = (i_1, \ldots, i_k) \in \Omega_*$, we write

$$L_i = L_{i_1} \ldots L_{i_k}. \tag{3.11}$$

For $\Gamma > I_0$ and $n_0, n \in \mathbb{N}$, $n \geq n_0$ we define

$$Q^n_{n_0}(\Gamma) = \{i \in \Omega_{\geq n} : L_{i|k} \leq \Gamma^k \text{ for } n_0 \leq k \leq n\}. \tag{3.12}$$

Lemma 3.4. Let F be a bounded subset of X. Then for every $\Gamma \in (I_0, 1)$ and $n_0 \in \mathbb{N}$ there exists $\alpha > 0$ such that

$$P_x(i) \geq \alpha \Phi_y(i) \quad \text{for all } i \in Q^n_{n_0}(\Gamma) \cap \Omega_n, \quad n \geq n_0 \text{ and } x, y \in F.$$

Proof. Fix $\Gamma \in (I_0, 1)$ and let $d = \text{diam } F$. Let ω be as in (2.6), (2.7). Set

$$\omega_0 = \sum_{k=1}^{\infty} \omega(\Gamma^k d).$$

Clearly $\omega_0 < \infty$. Fix $n_0 \in \mathbb{N}$. Let $n \geq n_0$ and $x, y \in F$. For $i \in Q^n_{n_0}(\Gamma) \cap \Omega_n$ we have

$$P_y(i) = p_{i_1}(y)p_{i_2}(S_{i_1}(y)) \ldots p_{i_n}(S_{i_{n-1}} \ldots S_{i_1}(y))$$

$$= \frac{p_{i_1}(y) \ldots p_{i_{n_0}}(S_{i_{n_0-1}} \circ \ldots \circ S_{i_1}(y))}{p_{i_1}(x) \ldots p_{i_{n_0}}(S_{i_{n_0-1}} \circ \ldots \circ S_{i_1}(x))} \times p_{i_1}(x) \ldots p_{i_{n_0}}(S_{i_{n_0-1}} \circ \ldots \circ S_{i_1}(x))$$

$$\times \prod_{k=n_0+1}^{n} \left[\left(1 + \frac{p_{i_k}(S_{i_{k-1}} \circ \ldots \circ S_{i_1}(y)) - p_{i_k}(S_{i_{k-1}} \circ \ldots \circ S_{i_1}(x))}{p_{i_k}(S_{i_{k-1}} \circ \ldots \circ S_{i_1}(x))} \right) \times p_{i_k}(S_{i_{k-1}} \circ \ldots \circ S_{i_1}(x)) \right].$$

Using the inequality $p_i(x) \geq \alpha_0$, conditions (2.6), (2.3) and definition (3.12) we obtain

$$P_y(i) \leq \frac{(1 - \alpha_0)^{n_0}}{\alpha_0^{n_0}} \times \prod_{k=n_0+1}^{n} \left(1 + \frac{\omega(\phi(S_{i_{k-1}} \circ \ldots \circ S_{i_1}(x), S_{i_{k-1}} \circ \ldots \circ S_{i_1}(y)))}{\alpha_0} \right) P_x(i)$$

$$\leq \left(\frac{1 - \alpha_0}{\alpha_0} \right)^{n_0} \prod_{k=n_0+1}^{n} \left(1 + \frac{\omega(\Gamma^{k-1} d)}{\alpha_0} \right) P_x(i).$$
From the strong Moran condition it follows immediately that

\[\Pr_y(i) \leq \left(\frac{1 - \alpha_0}{\alpha_0} \right)^{-n_0} \prod_{k=n_0+1}^{\infty} e^{\omega(P^{k-1}d)/\alpha_0} \Pr_x(i) = \left(\frac{1 - \alpha_0}{\alpha_0} \right)^{n_0} e^{\omega_0/\alpha_0} \Pr_x(i). \]

Setting \(\alpha = \alpha_0^n (1 - \alpha_0)^{-n_0} e^{-\omega_0/\alpha_0} \) we complete the proof. \(\blacksquare \)

From now on assume that the constants \(l_i \in (0, 1) \), \(i = 1, \ldots, N \), satisfy (2.3). Let \(\gamma_0 \) be given by (2.10). For \(\gamma \in (0, \gamma_0) \) and \(n \in \mathbb{N} \) define

\[J_n(\gamma) = \{ i \in \{1, \ldots, N\} : l_i \leq \gamma^n \} \cup \{ i \in \Omega_* : |i| > 1 \text{ and } l_i \leq \gamma^n < l_{|i||i|-1} \}, \]

where \(l_i \) is given by (3.11).

Lemma 3.5. For every \(\gamma \in (0, \gamma_0) \) and \(n \in \mathbb{N} \) the set \(J_n(\gamma) \) is fundamental for \((S,p)_N\).

Proof. Fix \(\gamma \in (0, \gamma_0) \) and \(n \in \mathbb{N} \). It is easy to verify that \(J_n(\gamma) \subset \Omega_{\leq m} \), where \(m \) is the least integer such that \((\max_{1 \leq i \leq N} l_i)^m \leq \gamma^n \). Consequently, \(J_n(\gamma) \) is finite. Moreover, from the definition of \(J_n(\gamma) \) it follows that if \(i \in J_n(\gamma) \), \(j \in \Omega_* \) and \(j > i \), then \(j \notin J_n(\gamma) \). This implies that

\[\Lambda(i) \cap \Lambda(j) = \emptyset \quad \text{for } i, j \in J_n(\gamma), \; i \neq j. \]

Finally, observe that for every \(i \in \Omega \) there is \(k \in \mathbb{N} \) such that \(i/k \in J_n(\gamma) \). Consequently,

\[\Omega = \bigcup_{i \in J_n(\gamma)} \Lambda(i). \]

By (3.13) and (3.14) for all \(x \in X \) we have

\[\sum_{i \in J_n(\gamma)} \Pr_x(i) = \Pr_x\left(\bigcup_{i \in J_n(\gamma)} \Lambda(i) \right) = \Pr_x(\Omega) = 1. \]

Lemma 3.6. Assume that a family \(S_1, \ldots, S_N \) satisfies the strong Moran condition and condition (2.3) with \(l_i \in (0,1) \). Then for every \(\gamma \in (0, \gamma_0) \), \(n \in \mathbb{N} \) and \(i, j \in J_n(\gamma), \; i \neq j \), we have

\[\text{dist}(S_{i-1}(F), S_{j-1}(F)) \geq \gamma^n \sigma, \]

where the set \(F \) and the constant \(\sigma \) satisfy (2.11), (2.12).

Proof. Fix \(\gamma \in (0, \gamma_0) \), \(n \in \mathbb{N} \) and \(i, j \in J_n(\gamma), \; i \neq j \). Suppose \(i = (i_1, \ldots, i_p) \) and \(j = (j_1, \ldots, j_q) \). Since \(J_n(\gamma) \) is fundamental, there exists an integer \(m \leq \min\{p, q\} \) such that \(i_m \neq j_m \), but \(i_k = j_k \) for \(k < m \). From the strong Moran condition it follows immediately that \(S_{i-1}(F) \subset S_{i_1} \circ \ldots \circ S_{i_m}(F), S_{j-1}(F) \subset S_{j_1} \circ \ldots \circ S_{j_m}(F) \) and \(\text{dist}(S_{i_m}(F), S_{j_m}(F)) \geq \sigma \). Consequently,

\[\text{dist}(S_{i-1}(F), S_{j-1}(F)) \geq \text{dist}(S_{i_1} \circ \ldots \circ S_{i_m}(F), S_{j_1} \circ \ldots \circ S_{j_m}(F)) \geq l_{i_1} \ldots l_{i_m-1} \sigma \geq \gamma^n \sigma. \]
Lemma 3.7. Assume that an IFS \((S, p_N)\) satisfies (2.3) with \(l_i \in (0, 1)\), \(i = 1, \ldots, N\). Let \(\gamma_0\) be given by (2.10). Then for every \(\gamma \in (0, \gamma_0)\) there is \(\beta > 0\) such that

\[
\sum_{i \in J^*_n(\gamma)} \mathbb{P}_x(i) \geq \beta \quad \text{for every } x \in X,
\]

where

\[
J^*_n(\gamma) = \{i \in J_n(\gamma) : i^{-1} \in J_n(\gamma)\}.
\]

Proof. Without any loss of generality we can assume that

\[l_1 \leq l_i \leq l_N \quad \text{for } i = 1, \ldots, N.\]

Observe that if \(i = (i_1, \ldots, i_k) \in J_n(\gamma)\) and \(i_k = N\) then \(i^{-1} \in J_n(\gamma)\). Moreover, for every \(i = (i_1, \ldots, i_k) \in J_n(\gamma)\) there exists a unique element

\[
\tau(i) = (i_1, \ldots, i_{k-1}, N, \ldots, N)
\]

which belongs to \(J_n(\gamma)\). In this way formula (3.17) defines a one-to-one map from \(J_n(\gamma)\) into \(J_n(\gamma)\). Note also that

\[
(\tau(i))^{-1} \in J_n(\gamma) \quad \text{for every } i \in J_n(\gamma).
\]

Fix \(i = (i_1, \ldots, i_k) \in J_n(\gamma)\) and let \(m_0\) be such that \(l^{m_0}_N \leq l_1\). Since \(l_i \leq \gamma^n\) and \(l_1 \leq l_i\) for \(i = 1, \ldots, N\), we have

\[
|\tau(i)| \leq |i| - 1 + m_0,
\]

which means that in (3.17) the number \(N\) appears at most \(m_0\) times. Now it is easy to see that for every \(i \in J_n(\gamma)\),

\[
\text{card}\{j \in J_n(\gamma) : \tau(j) = \tau(i)\} \leq N^{m_0}
\]

(card stands for cardinality). By (3.17), (2.15) and (2.17) for every \(x \in X\) we have

\[
\mathbb{P}_x(\tau(i)) = \mathbb{P}_x(i_1, \ldots, i_{k-1}, N, \ldots, N) \\
\geq \mathbb{P}_x(i_1, \ldots, i_{k-1})\alpha_0^{m_0} \geq \mathbb{P}_x(i)\alpha_0^{m_0},
\]

where \(\alpha_0\) is given by (2.5). By Lemma 3.5 and (3.5), (3.20) and (3.19) we have

\[
1 = \sum_{i \in J_n(\gamma)} \mathbb{P}_x(i) \leq \alpha_0^{-m_0} \sum_{i \in J_n(\gamma)} \mathbb{P}_x(\tau(i)) \leq N^{m_0}\alpha_0^{-m_0} \sum_{i \in J^*_n(\gamma)} \mathbb{P}_x(i).
\]

Setting \(\beta = (\alpha_0/N)^{m_0}\) completes the proof. ■
4. Upper estimate of capacity

Theorem 4.1. Assume that an IFS $(S, p)_N$ satisfies (2.3)–(2.7) and let $\mu_* \in M_1$ be the corresponding invariant measure. Then
\begin{equation}
\overline{\text{Cap}}_L(\mu_*) \leq \frac{\log \delta_0}{\log \Gamma_0},
\end{equation}
where Γ_0 and δ_0 are given by (2.4) and (2.9), respectively.

Proof. Fix $\eta > 0$. Let μ_* be the unique invariant probability measure for the IFS $(S, p)_N$ and let K be a compact subset of X such that $\mu_*(K) \geq 1 - \eta/4$. Set $d = \text{diam } K$. Fix $x_0 \in K$. By Lemma 3.1 (with L_i and $p_i(x)$ in place of $f_i(x)$ and Γ_0 and δ_0 in place of Δ and δ, respectively) there exists a measurable set $\Omega_0 \subset \Omega$ with $\mathbb{P}_{x_0}(\Omega_0) = 1$ such that, for all $i \in \Omega_0$,
\begin{align}
\limsup_{n \to \infty} \frac{1}{n} \log(L_{i|n}) & \leq \log \Gamma_0, \\
\liminf_{n \to \infty} \frac{1}{n} \log(\mathbb{P}_{x_0}(i|n)) & \geq \log \delta_0,
\end{align}
where $L_{i|n} = L_{i_1} \ldots L_{i_n}$. By Lemma 3 of [8] the measure \mathbb{P}_x, $x \in X$, is absolutely continuous with respect to \mathbb{P}_{x_0}. Thus $\mathbb{P}_x(\Omega_0) = 1$ for $x \in X$.

Choose $\Gamma \in (\Gamma_0, 1)$, $\delta \in (0, \delta_0)$ and define the sequence $(\Omega_0(n))_{n \geq 1}$ of measurable subsets of Ω_0 by
\begin{equation}
\Omega_0(n) = \{i \in \Omega_0 : \mathbb{P}_{x_0}(i|k) \geq \delta^k \text{ and } L_{i|k} \leq \Gamma^k \text{ for } k \geq n\}.
\end{equation}
Obviously $\Omega_0(n) \subset \Omega_0(n+1)$ for $n \in \mathbb{N}$. Moreover, from (4.2), (4.3) and the choice of Γ and δ it follows that $\Omega_0 = \bigcup_{n=1}^{\infty} \Omega_0(n)$. Consequently,
\begin{equation}
\lim_{n \to \infty} \mathbb{P}_x(\Omega_0(n)) = 1 \quad \text{for } x \in X.
\end{equation}
By Lemma 4.1 of [24] the function $x \mapsto \mathbb{P}_x(\Omega_0(n))$ is Borel measurable for each $n \in \mathbb{N}$. By (4.4) the sequence $(\mathbb{P}_x(\Omega_0(n)))_{n \geq 1}$ is a.s. convergent and so convergent with respect to the measure μ_*. Hence there exists $n_0 \in \mathbb{N}$ such that
\begin{equation}
\mu_*(\{x \in K : \mathbb{P}_x(\Omega_0(n)) > 1 - \eta/2\}) \geq 1 - \eta/2 \quad \text{for } n \geq n_0.
\end{equation}
By the invariance of μ_*, for all $n \in \mathbb{N}$ and $A \in \mathcal{B}(X)$ we have
\begin{equation}
\mu_*(A) = P^n \mu_*(A) = \sum_{i \in \Omega_0} \int A(S_i(x)) \mu_*(dx).
\end{equation}
Now, for $n \in \mathbb{N}$ define
\begin{equation}
D_n = \bigcup_{i \in \Omega_0^n(n)} B(S_i(x_0), \varepsilon_n),
\end{equation}
where $\Omega_0^n(n) = \{i|n : i \in \Omega_0(n)\}$ and $\varepsilon_n = \Gamma^n \text{ diam } K$.

Observe that
\[(4.7) \quad \rho(S_i(x), S_i(x_0)) \leq \varepsilon_n \quad \text{for } i \in \Omega_n^0(n) \text{ and } x \in K. \]
Using (4.5)–(4.7) and the inclusion \(\Omega_0(n) \subset A(\Omega_0^0(n)) \), for every \(n \geq n_0 \) we have
\[
\mu_* (D_n) = \sum_{i \in \Omega_n} \int_{X} P_x(i)1_{D_n}(S_i(x)) \mu_*(dx) \\
\quad \geq \sum_{i \in \Omega_0^0(n)} \int_{X} P_x(i)1_{D_n}(S_i(x)) \mu_*(dx) \\
\quad \geq \int_{K} \sum_{i \in \Omega_0^0(n)} P_x(i) \mu_*(dx) = \int_{K} P_x(\Omega_0^0(n)) \mu_*(dx) \\
\quad \geq \int_{K} P_x(\Omega_0(n)) \mu_*(dx) \geq (1 - \eta/2)(1 - \eta/2) > 1 - \eta.
\]
From this inequality and the definition of \(D_n \) it follows that \(N(\varepsilon_n, \eta) \leq N_0 \), where \(N_0 = \text{card } \Omega_0^0(n) \) and \(N(\varepsilon_n, \eta) \) comes from the definition of capacity. Since \(P_{x_0}(i) \geq \delta^n \) for \(i \in \Omega_0^0(n) \) and \(\sum_{i \in \Omega_0^0(n)} P_{x_0}(i) \leq 1 \), we have \(N_0 \delta^n \leq 1 \). Consequently, \(N(\varepsilon_n, \eta) \leq \delta^{-n} \). By Remark 2.1 we now have
\[
\limsup_{\varepsilon \to 0} \frac{\log N(\varepsilon, \eta)}{-\log \varepsilon} = \limsup_{n \to \infty} \frac{\log N(\varepsilon_n, \eta)}{-\log \varepsilon_n} \\
\quad \leq \limsup_{n \to \infty} \frac{\log \delta^{-n}}{-\log(n \text{ diam } K)} = \frac{\log \delta}{\log \Gamma}.
\]
Letting \(\delta \to \delta_0 \) and \(\Gamma \to \Gamma_0 \) we conclude that
\[
\limsup_{\varepsilon \to 0} \frac{\log N(\varepsilon, \eta)}{-\log \varepsilon} \leq \frac{\log \delta_0}{\log \Gamma_0}.
\]
Since \(\eta > 0 \) was arbitrary, the proof is complete. \(\blacksquare \)

5. Lower estimate of capacity

Theorem 5.1. Assume that an IFS \((S_i)_{n} \) satisfies (2.3)–(2.7) and \(\mu_* \in M_1 \) is the corresponding unique invariant measure. Moreover, assume that the functions \(S_1, \ldots, S_N \) satisfy the strong Moran condition. Then
\[(5.1) \quad \text{Cap}_L(\mu_*) \geq \frac{\log \Delta_0}{\log \gamma_0}, \]
where \(\Delta_0 \) and \(\gamma_0 \) are given by (2.8) and (2.9), respectively.

Proof. Consider first the case \(l_i < 1 \), \(i = 1, \ldots, N \), where the \(l_i \) satisfy (2.3). Let \(F \) be a closed set satisfying (2.11) and (2.12). Since \(F \) is invariant for \(S_1, \ldots, S_N \), we have \(\text{supp } \mu_* \subseteq F \). Choose \(x_0 \in F \). By Lemma 3.1
(with p_i and Δ_0 or L_i and I_0 in place of f_i and Δ, and l_i and γ in place of f_i and γ_0, respectively) we have

\[(5.2)\quad \limsup_{n \to \infty} \frac{1}{n} \log(\mathbb{P}_{x_0}(i|n)) \leq \log \Delta_0 \quad \mathbb{P}_{x_0}\text{-a.s.,}\]

\[(5.3)\quad \limsup_{n \to \infty} \frac{1}{n} \log(L_i|n) \leq \log I_0 \quad \mathbb{P}_{x_0}\text{-a.s.,}\]

\[(5.4)\quad \liminf_{n \to \infty} \frac{1}{n} \log(l_i|n) \geq \log \gamma_0 \quad \mathbb{P}_{x_0}\text{-a.s.}\]

Fix $\gamma \in (0, \gamma_0)$, $\Gamma \in (I_0, 1)$ and $\Delta \in (\Delta_0, 1)$. Let $n_0 \in \mathbb{N}$ and let α be as in Lemma 3.4. By (5.2)-(5.4) there exists $n_1 \geq n_0$ such that

\[(5.5)\quad \mathbb{P}_{x_0}(\{i \in \Omega : \mathbb{P}_{x_0}(i|n) \leq \Delta^n \text{ for } n \geq n_1\}) \geq 1 - \beta/6,\]

\[(5.6)\quad \mathbb{P}_{x_0}(\{i \in \Omega : L_i|n \leq \Gamma^n \text{ for } n \geq n_1\}) \geq 1 - \beta/6,\]

\[(5.7)\quad \mathbb{P}_{x_0}(\{i \in \Omega : l_i|n \geq \gamma^n \text{ for } n \geq n_1\}) \geq 1 - \beta/6,\]

where β is as in Lemma 3.7. Now choose $n_* \in \mathbb{N}$ such that

\[(5.8)\quad \min\{|i| : i \in J_n(\gamma)\} \geq n_1 \quad \text{for } n \geq n_*.

For $n \geq n_*$ define

\[J_n^0(\gamma) = \{i \in J_n(\gamma) : \mathbb{P}_{x_0}(i^{-1}|k) \leq \Delta^k, L^{-1}_{i-1}|k \leq \Gamma^k
\]

\[\text{and } l_{i-1}|k \geq \gamma^k \text{ for } k \in \mathbb{N}, n_1 \leq k \leq |i|\}.

By (5.5)-(5.8) and Lemma 3.7 we have

\[(5.9)\quad \sum_{i \in J_n^0(\gamma)} \mathbb{P}_{x_0}(i^{-1}) \geq \beta/2 \quad \text{for } n \geq n_1.

Since $i^{-1} \in Q_{n_1}^n(\gamma)$ for $i \in J_n^0(\gamma)$, Lemma 3.4 yields

\[(5.10)\quad \alpha^{-1}\mathbb{P}_{x_0}(i^{-1}) \geq \mathbb{P}_{x}(i^{-1}) \geq \alpha\mathbb{P}_{x_0}(i^{-1}) \quad \text{for } i \in J_n^0(\gamma) \text{ and } x \in F.

From (5.9) and (5.10) it follows that

\[(5.11)\quad \sum_{i \in J_n^0(\gamma)} \mathbb{P}_{x}(i^{-1}) \geq \alpha\beta/2,

\[(5.12)\quad \mathbb{P}_{x}(i^{-1}) \leq \alpha^{-1}\Delta^{|i|},

for all $n \geq n_*, x \in F$ and $i \in J_n^0(\gamma)$. Since for $i \in J_n^0(\gamma)$ we have $l_i \leq \gamma^n$ and $l_{i-1}|k \geq \gamma^k$ for $n_1 \leq k \leq |i|$, it follows that $|i| \geq n$. Hence

\[(5.13)\quad \mathbb{P}_{x}(i^{-1}) \leq \alpha^{-1}\Delta^n \quad \text{for } i \in J_n^0(\gamma).

For $n \geq n_*$ define

\[(5.14)\quad D_n = \bigcup_{i \in J_n^0(\gamma)} S_{i^{-1}}(F).\]
Since by Lemma 3.5 the set $J_n(\gamma)$ is fundamental, Lemma 3.3 and (5.11) show that
\begin{equation}
\mu_*(D_n) = \sum_{i \in J_n(\gamma)} \int X \mathbb{P}_x(i^{-1})1_{D_n}(S_{i^{-1}}(x)) \mu_*(dx)
\end{equation}
\begin{equation}
\geq \int F \sum_{i \in J_0^0(\gamma)} \mathbb{P}_x(i^{-1})1_{D_n}(S_{i^{-1}}(x)) \mu_*(dx)
\end{equation}
\begin{equation}
= \int F \sum_{i \in J_0^0(\gamma)} \mathbb{P}_x(i^{-1}) \mu_*(dx) \geq \alpha \beta / 2
\end{equation}
for $n \geq n_*$.

By Lemmas 3.3, 3.5 and 3.6, the inclusion $\text{supp} \mu_* \subset F$ and inequality (5.13), for every $j \in J_0^0(\gamma)$ and $n \geq n_*$, we have
\begin{equation}
\mu_*(S_{j^{-1}}(F)) = \sum_{i \in J_n(\gamma)} \int X \mathbb{P}_x(i^{-1})1_{S_{j^{-1}}(F)}(S_{i^{-1}}(x)) \mu_*(dx)
\end{equation}
\begin{equation}
= \sum_{i \in J_n^0(\gamma)} \int F \mathbb{P}_x(i^{-1})1_{S_{j^{-1}}(F)}(S_{i^{-1}}(x)) \mu_*(dx)
\end{equation}
\begin{equation}
= \int F \mu_*(dx) \leq \Delta^n / \alpha,
\end{equation}
since $S_{i^{-1}}(F) \cap S_{j^{-1}}(F) = \emptyset$ for $i \neq j$, $i, j \in J_0^0(\gamma)$. Define $\varepsilon_n = \gamma^n \sigma / 2$ for $n \geq n_*$, where $\sigma > 0$ is given by (2.12). By (3.15) every ball B with radius ε_n meets at most one set $S_{i^{-1}}(F)$ for $i \in J_0^0(\gamma)$. The inclusion $\text{supp} \mu_* \subset \bigcup_{i \in J_n(\gamma)} S_{i^{-1}}(F)$ then implies that to cover a set of μ_*-measure greater than or equal to $1 - \eta$ (with $\eta \leq \alpha \beta / 2$) we need at least $\alpha(1 - \eta)\Delta^{-n}$ balls with radius ε_n. Thus $N(\varepsilon_n, \eta) \geq \alpha(1 - \eta)\Delta^{-n}$ for $n \geq n_*$. Consequently,
\begin{equation}
\liminf_{\varepsilon \to 0} \frac{\log N(\varepsilon, \eta)}{-\log \varepsilon} \geq \liminf_{n \to \infty} \frac{\log(\alpha(1 - \eta)\Delta^{-n})}{-\log \varepsilon} = \frac{\log \Delta}{\log \gamma}.
\end{equation}
Thus
\begin{equation}
\text{Cap}_L(\mu_*) \geq \frac{\log \Delta}{\log \gamma}
\end{equation}
and letting $\Delta \to \Delta_0$ and $\gamma \to \gamma_0$ we conclude that
\begin{equation}
\text{Cap}_L(\mu_*) \geq \frac{\log \Delta_0}{\log \gamma_0}.
\end{equation}

Suppose now that some of the l_i’s are equal to 1. Choose $\bar{l}_i < l_i$, $i = 1, \ldots, N$. Since
\begin{equation}
\sup_{x \in X} \prod_{i=1}^N \bar{l}_i^{p_i(x)} \to \sup_{x \in X} \prod_{i=1}^N l_i^{p_i(x)}
\end{equation}
as $\bar{l}_i \to l_i$ for $i \in \{1, \ldots, N\}$, the statement of Theorem 5.1 follows.
Acknowledgements. Tomasz Szarek was supported by Foundation for Polish Science and the State Committee for Scientific Research (Poland), Grant No. 2 P03A 010 16.

References

Dipartamento di Matematica Pura ed Applicata
Università di L’Aquila
via Vetoio
67100 L’Aquila, Italy
E-mail: myjak@univag.it

Institute of Mathematics
Polish Academy of Sciences
Bankowa 14
40-007 Katowice, Poland
E-mail: szarek@ux2.math.us.edu.pl

WMS AGH
Al. Mickiewicza 30
30-059 Kraków, Poland

Department of Mathematics
Technical University of Rzeszów
W. Pola 6
35-959 Rzeszów, Poland

Reçu par la Rédaction le 15.11.2000
Révisé le 19.3.2001 et 5.7.2001 (1224)