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Borel methods of summability and ergodic theorems

by RyszArD JAJTE (L6dz)

Abstract. Passing from Cesaro means to Borel-type methods of summability we
prove some ergodic theorem for operators (acting in a Banach space) with spectrum con-
tained in C\ (1,00).

1. Introduction. Let X be a Banach space. Denote by B(X) the alge-
bra of bounded linear operators acting in X. Take v € B(X). If the Cesaro

averages
n—1
n-! g uk
k=0

converge, say, weakly then the spectrum of u is necessarily contained in
the unit disc {|z| < 1}. Passing from the Cesaro means to the Borel-type
methods of summability [4], [5] one can extend the ergodic theorems to the
case of operators u with the spectrum o(u) contained in the Mittag-Leffler
star for z — (1 — 2)71, i.e. with o(u) C C\ (1,00). A discussion of such
possibilities is the main goal of the paper.

Let us begin with some notation and definitions. For o > 0 and a se-
quence x = (&,) of numbers (or vectors), put

&0 tno

—t

(1) B, (t,z) = ae Z% T D) Eny  t>0.

The function B, (¢, x) is called the B,-transform of the sequence = = (&,). If
limy o Bo(t,x) = &, then we say that (§,,) is summable to & by the method
B, and write &, — £(Ba), or By-lim, o &, = &. The family of methods
{Bqs : a > 0} is consistent, i.e. for every o/, a” > 0, By-lim¢, = £ and
B,-lim¢&,, = n implies & = n (cf. [5]). For our purposes it will be enough to
take « = 27%, k =0,1,..., so in what follows we consider only the family
B ={By-x:k=0,1,...}. By the consistency just mentioned the family B
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may be treated as a B-method of summability: a sequence z is B-summable
when it is By-r-summable for some k& € N. Borel methods of summability
are right-translative, i.e. the B,-summability of z = (£, &1, ...) implies the
B,-summability of = = (0,&p,&1,...). Notice that the B,-method is not
left-translative, i.e. the B,-summability of x does not imply, in general, the
B, -summability of 2 = (&1, &a,...) (cf. [5]).

Before formulating the main results let us start with the following lemma.

2. LEMMA. Fiz a =27 and 0 <d < 1. Put
Dag={2z€C:Rez<0}U{z€C:Rezt/*<1—d}.

Let A be a bounded Borel subset of D, 4. Here and elsewhere let ( = (2™).
Then, fort >0 and z € A,

(2) [Ba(t, Q) < Cem /2,
for some constant C depending only on A.

Proof. A crucial point in the proof is a suitable representation of the
Mittag-Leffler function

C n
w
nEZOF(nOH-l)’ e , forw z

We follow Wiodarski [5]. Let us remark that, for a fixed a = 2% the
function

(63 — G tna n
(3) f(t) = Ea(t%2) —HZ%—F(WJFD z

(as a function of ¢ > 0) satisfies the differential equation
) o _ 2¥—1 w2 k-1
F0 =90+ ) with 9= 3, 7+

This is easy to check. Consequently, we have

t 281 ok g
_ 2k 2k u v
f(t) =exp(z= t) [1 + (S)exp(—z u) Vz:l T z du].
The substitution 22" = vt leads to the formula
e th_k
4 - n
) Z:% Tn2F+1)~

2k -1 e—v,UV27k—1
= exp( tz [14— Za(k) S (—dv],
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where
z¥ (k)
)= g =

The functions a* )( ) are determined by fixing the rational power w —
w/?" as taking its values in the angle {z = re? : r > 0, —7/2F"1 < 0 <
7/2k=1}. In particular, agl)(z) —1 for Rez < 0, and a(k)( 1) =1 for
1<v<28-1,k=12,...

For z = 1, the formula (4) gives

tn2 k

_ 1 —u, v27F -1
(5) Fn2’f-|—1 e{%—zpﬂ )[Ogt]e u du}

(cf. [5], p. 144).
Pth:{ze(C:Rez2k <1-—d}.
For Rez < 1,t > 1 and 8 > —1, we have the inequality

et==1) S uPe du‘ < Ozt max(e7t, e tI—Re2)y,
[0,2t]

(6)

We omit a rather standard proof.

Let z € ANQ, where A is a fixed bounded set. Then by (4) and (6), we
get (2).

Now assume that Re z < 0. Then, clearly,
(7) By(t,¢) = "7,

so |Bi(t, Q)] <e "
Consider the following transformation W:

®) W) = w_t_S (=1 +u)

defined for continuous functions f : (0,00) — R (cf. [5], p. 140). The
transformation W is regular in the sense that lim, . f(u) = [ implies
lim; oo W(f)(t) = 3. Moreover, we have

(9) W(Ba-+ (-, ))(t) = Bo-esn (t), >0,

Applying to both sides of (7) the kth iteration of the transformation W
defined in (8) and taking into account the positivity of W and (9) we easily
get

|By—x(t,()| < Ce™" for Re2<0. m

As an easy consequence of Lemma 2, we get the following result.
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3. THEOREM (Uniform ergodic theorem). Let u € B(X) with o(u) C
C\ (1,00). If 1 & o(u) then there exists a k € N such that

By—rx-1lim u™ =0 in the uniform operator topology.
n—oo

If 1eo(u) CcC\ (1,00) and 1 is a pole of u of order one, then
By—r-lim v =E{1}  uniformly,
where E{1} denotes the spectral projection of u at {1}.

Proof. Suppose 1 ¢ o(u). Since o(u) is compact and o(u) C C\ [1, 00),
there exist 0 < d < 1 and k € N such that o(u) C Dy-r 4 = {Rez < 0}
U{Rez2" < 1—d}. Let R(-,u) be the resolvent of u and, for z = (u™),
¢= (zn)’ let

1
By-i(t,x) = 5— | By-r(t,)R(2,u) dz
2me x>

be a representation of the Borel transform B,-« (¢, x) as a Cauchy integral,
i.e. K is the (oriented) boundary of an open set V' D o(u); K consists of a
finite number of rectifiable Jordan curves (cf. [3], p. 568). By Lemma 2 we
easily get

| Bo—r (t,z)|| < Ce™ /2 ¢ >1.

Now, let 1 € o(u) C C\ (1,00). Then, putting
fi(u) = Bo-r(t,z), @ = (u"),
we can write
fi(u) = fi(w)E(o(u) \ {1}) + By« (t, 1)E{1},
with 1 = (1,1,...), where, for a spectral set A of u, E(A) denotes the

corresponding projection operator (cf. [3], p. 573). To conclude the proof it
is enough to pass with ¢ to infinity. m

Taking discrete Borel methods, i.e. considering the transforms B, (m, =)
only for m = 1,2,..., we can easily prove the following theorem.

4. THEOREM (Individual ergodic theorem). Let X =1L,(u), p > 1, and
let uwe B(X) with o(u) C C\ (1,00). If 1 & o(u) then there exists a k € N
such that

By w-lim w”f =0  p-almost everywhere, for every f € X.

If 1€o(u) CC\ (1,00) and 1 is a pole of u of order one then, for every
feX,
By-x-lim u"f =E{1}f  p-almost everywhere.
n—oo
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Proof. The proof can be obtained as an easy modification of the previous
argument. Namely, using the above estimates we get easily

00
> By (m, z) f5 < o0,
m=1

for every f € X. The rest is trivial. m

In the case 1 € o(u) C C\ (1,00) and when 1 is not a simple pole one
cannot expect the results as clear as the above theorems. The asymptotic
behaviour of u heavily depends on its spectral properties near the value 1.
The sequence (z™) with z close to 1 is rather slowly divergent and Borel
summability methods are efficient for rapidly divergent sequences (cf. [4]).
It is worth noting here that for a sequence (X,,) of independent identically
distributed random variables the limit B;-lim X,, = £X; (expectation of
X1) exists almost everywhere if and only if £(X?) < oo, so in the classical
context of the Strong Law of Large Numbers, the Borel methods are less
efficient than the Cesaro means (cf. [1], [2]).

Let X be again an arbitrary Banach space. For u € B(X), we say that
(u™) is strongly Bg-summable to P when B,-lim,, o, u™ = P& for every £ €
X. By the right-translativity of B,, we then also have B,-limu"~1¢ = P¢.
By the continuity of u, we get uP¢ = P¢. Consequently, Bo-limunt1¢ = P¢
(left-translativity of B, for sequences of the form (u"¢)), and also P? = P,
uP = Pu.

For z = (u™);g, let 2 = (u"th)02.

5. THEOREM (Mean ergodic theorem). Let u € B(X), where X is a
Banach space. Then the sequence x = (u™)>2, is strongly B,-summable to
a projection Q) if and only if the following conditions are satisfied:

(i) Supo<i<oo | Ba(t, )] < oo,

(i) Ba(t,xt —x) — 0 strongly as t — oo,

(iii) the family {Bu(t,x) : t > 0} is weakly sequentially compact.

Proof. Necessity. (i) is a consequence of the Banach—Steinhaus theorem.
(ii) follows from the translativity of B, for the sequence (u"§). (iii) is obvi-
ous.

Sufficiency. Put

Xo={¢eX u=¢, Xj={u&—-¢:£e€X} .
Obviously, By-limu"¢ =& = Q€ for £ € Xop. Put Y ={ué -¢: £ € X} If
n €Y then n = u& — x for some € X, and we have, for x = (u"),

tna

o0
N 'y = Bu(t,at — 0
0D ey V1= el ) =

strongly as t — oo, by (ii).
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It is enough to show that X = Xy 4+ Xy, because in this case the proof
can be completed by a standard approximation. Fix £ € X. By (iii), we find
a vector & such that

E = w_kligolo Ba (tka ZU)g,

for some t /" oo (here w-lim denotes the weak limit).
We have
ué = w- lim w(Bg(ty, r)E)

k—oo
= w- lim By (tg, 2 — )€ + w- lim B, (t, )€ =€,

k—oo k—oo
by (ii). We have just proved that ¢ € Xy, and we shall show that & — &
€ X;. By the Hahn-Banach theorem it is enough to check that, for every
¢ € X* which disappears on X, we have ¢(¢ — &) = 0. But if ¢ = 0 on
X7 then, in particular, ¢(uf) = ¢(&) for every & € X, so ¢(§) = p(u™f),
n=1,2,... Consequently,

O(Ba(tr2)6) = ac™ Y
n=0

tna n N
Tlna 3Ty "0 = 9(O)Ba(ti: 1)

Passing with k to infinity we get ¢(&) = ¢(&), ie. p(€ — &) =0. =
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