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Borel methods of summability and ergodic theorems

by Ryszard Jajte (Łódź)

Abstract. Passing from Cesàro means to Borel-type methods of summability we
prove some ergodic theorem for operators (acting in a Banach space) with spectrum con-
tained in C \ (1,∞).

1. Introduction. Let X be a Banach space. Denote by B(X) the alge-
bra of bounded linear operators acting in X. Take u ∈ B(X). If the Cesàro
averages

n−1
n−1∑

k=0

uk

converge, say, weakly then the spectrum of u is necessarily contained in
the unit disc {|z| ≤ 1}. Passing from the Cesàro means to the Borel-type
methods of summability [4], [5] one can extend the ergodic theorems to the
case of operators u with the spectrum σ(u) contained in the Mittag-Leffler
star for z 7→ (1 − z)−1, i.e. with σ(u) ⊂ C \ (1,∞). A discussion of such
possibilities is the main goal of the paper.

Let us begin with some notation and definitions. For α > 0 and a se-
quence x = (ξn) of numbers (or vectors), put

(1) Bα(t, x) = αe−t
∞∑

n=0

tnα

Γ (nα+ 1)
ξn, t > 0.

The function Bα(t, x) is called the Bα-transform of the sequence x = (ξn). If
limt→∞Bα(t, x) = ξ, then we say that (ξn) is summable to ξ by the method
Bα, and write ξn → ξ(Bα), or Bα-limn→∞ ξn = ξ. The family of methods
{Bα : α > 0} is consistent, i.e. for every α′, α′′ > 0, Bα′-lim ξn = ξ and
Bα′′-lim ξn = η implies ξ = η (cf. [5]). For our purposes it will be enough to
take α = 2−k, k = 0, 1, . . . , so in what follows we consider only the family
B = {B2−k : k = 0, 1, . . .}. By the consistency just mentioned the family B
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may be treated as a B-method of summability: a sequence x is B-summable
when it is B2−k -summable for some k ∈ N. Borel methods of summability
are right-translative, i.e. the Bα-summability of x = (ξ0, ξ1, . . .) implies the
Bα-summability of x− = (0, ξ0, ξ1, . . .). Notice that the Bα-method is not
left-translative, i.e. the Bα-summability of x does not imply, in general, the
Bα-summability of x+ = (ξ1, ξ2, . . .) (cf. [5]).

Before formulating the main results let us start with the following lemma.

2. Lemma. Fix α = 2−k and 0 < d < 1. Put

Dα,d = {z ∈ C : Re z ≤ 0} ∪ {z ∈ C : Re z1/α ≤ 1− d}.
Let ∆ be a bounded Borel subset of Dα,d. Here and elsewhere let ζ = (zn).
Then, for t > 0 and z ∈ ∆,

(2) |Bα(t, ζ)| ≤ Ce−dt/2,
for some constant C depending only on ∆.

Proof. A crucial point in the proof is a suitable representation of the
Mittag-Leffler function

Eα(w) =
∞∑

n=0

wn

Γ (nα+ 1)
, α > 0, for w = tαz.

We follow Włodarski [5]. Let us remark that, for a fixed α = 2−k, the
function

(3) f(t) = Eα(tαz) =
∞∑

n=0

tnα

Γ (nα+ 1)
zn

(as a function of t > 0) satisfies the differential equation

f ′(t) = g(t) + z2kf(t) with g(t) =
2k−1∑

ν=1

tν2−k−1

Γ (ν2−k)
zν .

This is easy to check. Consequently, we have

f(t) = exp(z2kt)
[
1 +

t�

0

exp(−z2ku)
2k−1∑

ν=1

uν2−k−1

Γ (ν2−k)
zν du

]
.

The substitution z2k = vt leads to the formula

(4)
∞∑

n=0

tn2−k

Γ (n2−k + 1)
zn

= exp(tz2k)
[
1 +

2k−1∑

ν=1

α(k)
ν (z)

�

[0,z2k t]

e−vvν2−k−1

Γ (ν2−k)
dv

]
,
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where

α(k)
ν (z) =

zν

[x2kν ]1/2k
= eiθ

(k)
ν (z).

The functions α(k)
ν (z) are determined by fixing the rational power w 7→

w1/2k as taking its values in the angle {z = reiθ : r ≥ 0, −π/2k−1 < θ ≤
π/2k−1}. In particular, α(1)

1 (z) = −1 for Re z < 0, and α
(k)
ν (1) = 1 for

1 ≤ ν ≤ 2k − 1, k = 1, 2, . . .
For z = 1, the formula (4) gives

(5)
∞∑

n=0

tn2−k

Γ (n2−k + 1)
= et

[
1 +

2k−1∑

ν=1

1
Γ (ν2−k)

�

[0,t]

e−uuν2−k−1 du

]

(cf. [5], p. 144).

Put Q = {z ∈ C : Re z2k ≤ 1− d}.
For Re z < 1, t > 1 and β > −1, we have the inequality

(6)
∣∣∣et(z−1)

�

[0,zt]

uβe−u du
∣∣∣ ≤ C|zt|β+1 max(e−t, e−t(1−Re z)).

We omit a rather standard proof.
Let z ∈ ∆∩Q, where ∆ is a fixed bounded set. Then by (4) and (6), we

get (2).
Now assume that Re z ≤ 0. Then, clearly,

(7) B1(t, ζ) = e−t(1−z),

so |B1(t, ζ)| ≤ e−t.
Consider the following transformation W :

(8) W (f)(t) =
e−t

2
√
πt

∞�

0

exp
(
−u

2

4t
+ u

)
f(u) du,

defined for continuous functions f : (0,∞) → R (cf. [5], p. 140). The
transformation W is regular in the sense that limn→∞ f(u) = β implies
limt→∞W (f)(t) = β. Moreover, we have

(9) W (B2−k(·, x))(t) = B2−(k+1) (t), t > 0,

Applying to both sides of (7) the kth iteration of the transformation W
defined in (8) and taking into account the positivity of W and (9) we easily
get

|B2−k(t, ζ)| ≤ Ce−t for Re z ≤ 0.

As an easy consequence of Lemma 2, we get the following result.
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3. Theorem (Uniform ergodic theorem). Let u ∈ B(X) with σ(u) ⊂
C \ (1,∞). If 1 6∈ σ(u) then there exists a k ∈ N such that

B2−k - lim
n→∞

un = 0 in the uniform operator topology.

If 1 ∈ σ(u) ⊂ C \ (1,∞) and 1 is a pole of u of order one, then

B2−k - lim
n→∞

un = E{1} uniformly,

where E{1} denotes the spectral projection of u at {1}.
Proof. Suppose 1 6∈ σ(u). Since σ(u) is compact and σ(u) ⊂ C \ [1,∞),

there exist 0 < d < 1 and k ∈ N such that σ(u) ⊂ D2−k,d = {Re z ≤ 0}
∪ {Re z2k ≤ 1 − d}. Let R(·, u) be the resolvent of u and, for x = (un),
ζ = (zn), let

B2−k(t, x) =
1

2πi

�

K

B2−k(t, ζ)R(z, u) dz

be a representation of the Borel transform B2−k(t, x) as a Cauchy integral,
i.e. K is the (oriented) boundary of an open set V ⊃ σ(u); K consists of a
finite number of rectifiable Jordan curves (cf. [3], p. 568). By Lemma 2 we
easily get

‖B2−k(t, x)‖ ≤ Ce−dt/2, t > 1.

Now, let 1 ∈ σ(u) ⊂ C \ (1,∞). Then, putting

ft(u) = B2−k(t, x), x = (un),

we can write

ft(u) = ft(u)E(σ(u) \ {1}) +B2−k(t,1)E{1},
with 1 = (1, 1, . . .), where, for a spectral set A of u, E(A) denotes the
corresponding projection operator (cf. [3], p. 573). To conclude the proof it
is enough to pass with t to infinity.

Taking discrete Borel methods, i.e. considering the transforms Bα(m,x)
only for m = 1, 2, . . . , we can easily prove the following theorem.

4. Theorem (Individual ergodic theorem). Let X = Lp(µ), p ≥ 1, and
let u ∈ B(X) with σ(u) ⊂ C \ (1,∞). If 1 6∈ σ(u) then there exists a k ∈ N
such that

B2−k - lim
n→∞

unf = 0 µ-almost everywhere, for every f ∈ X.

If 1 ∈ σ(u) ⊂ C \ (1,∞) and 1 is a pole of u of order one then, for every
f ∈ X,

B2−k - lim
n→∞

unf = E{1}f µ-almost everywhere.
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Proof. The proof can be obtained as an easy modification of the previous
argument. Namely, using the above estimates we get easily

∞∑

m=1

‖B2−k(m,x)f‖pp <∞,

for every f ∈ X. The rest is trivial.

In the case 1 ∈ σ(u) ⊂ C \ (1,∞) and when 1 is not a simple pole one
cannot expect the results as clear as the above theorems. The asymptotic
behaviour of u heavily depends on its spectral properties near the value 1.
The sequence (zn) with z close to 1 is rather slowly divergent and Borel
summability methods are efficient for rapidly divergent sequences (cf. [4]).
It is worth noting here that for a sequence (Xn) of independent identically
distributed random variables the limit B1-limXn = EX1 (expectation of
X1) exists almost everywhere if and only if E(X2

1 ) < ∞, so in the classical
context of the Strong Law of Large Numbers, the Borel methods are less
efficient than the Cesàro means (cf. [1], [2]).

Let X be again an arbitrary Banach space. For u ∈ B(X), we say that
(un) is strongly Bα-summable to P when Bα-limn→∞ unξ = Pξ for every ξ ∈
X. By the right-translativity of Bα, we then also have Bα-limun−1ξ = Pξ.
By the continuity of u, we get uPξ = Pξ. Consequently, Bα-limun+1ξ = Pξ
(left-translativity of Bα for sequences of the form (unξ)), and also P 2 = P ,
uP = Pu.

For x = (un)∞n=0, let x+ = (un+1)∞n=0.

5. Theorem (Mean ergodic theorem). Let u ∈ B(X), where X is a
Banach space. Then the sequence x = (un)∞n=0 is strongly Bα-summable to
a projection Q if and only if the following conditions are satisfied :

(i) sup0<t<∞ ‖Bα(t, x)‖ <∞,
(ii) Bα(t, x+ − x)→ 0 strongly as t→∞,
(iii) the family {Bα(t, x) : t > 0} is weakly sequentially compact.

Proof. Necessity. (i) is a consequence of the Banach–Steinhaus theorem.
(ii) follows from the translativity of Bα for the sequence (unξ). (iii) is obvi-
ous.

Sufficiency. Put

X0 = {ξ ∈ X : uξ = ξ}, X1 = {uξ − ξ : ξ ∈ X}−.
Obviously, Bα-limunξ = ξ = Qξ for ξ ∈ X0. Put Y = {uξ − ξ : ξ ∈ X}. If
η ∈ Y then η = uξ − x for some ξ ∈ X, and we have, for x = (un),

αe−t
∞∑

n=0

tnα

Γ (nα+ 1)
unη = Bα(t, x+ − x)→ 0

strongly as t→∞, by (ii).
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It is enough to show that X = X0 + X1, because in this case the proof
can be completed by a standard approximation. Fix ξ ∈ X. By (iii), we find
a vector ξ such that

ξ = w- lim
k→∞

Bα(tk, x)ξ,

for some tk ↗∞ (here w-lim denotes the weak limit).
We have

uξ = w- lim
k→∞

u(Bα(tk, x)ξ)

= w- lim
k→∞

Bα(tk, x+ − x)ξ + w- lim
k→∞

Bα(tk, x)ξ = ξ,

by (ii). We have just proved that ξ ∈ X0, and we shall show that ξ − ξ
∈ X1. By the Hahn–Banach theorem it is enough to check that, for every
φ ∈ X∗ which disappears on X1, we have φ(ξ − ξ) = 0. But if φ = 0 on
X1 then, in particular, φ(uξ) = φ(ξ) for every ξ ∈ X, so φ(ξ) = φ(unξ),
n = 1, 2, . . . Consequently,

φ(Bα(tk, x)ξ) = αe−tk
∞∑

n=0

tnαk
Γ (nα+ 1)

φ(unξ) = φ(ξ)Bα(tk,1).

Passing with k to infinity we get φ(ξ) = φ(ξ), i.e. φ(ξ − ξ) = 0.
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