
ANNALES
POLONICI MATHEMATICI

94.1 (2008)

On the Łojasiewicz exponent near the fibre
of polynomial mappings

by Ha Huy Vui and Nguyen Hong Duc (Hanoi)

Abstract. We give the formula expressing the Łojasiewicz exponent near the fibre
of polynomial mappings in two variables in terms of the Puiseux expansions at infinity of
the fibre.

1. Introduction. Let M,N,L be finite-dimensional real vector spaces
and let g : X → N and f : X → L be semialgebraic mappings, whereX ⊂M .

For a set S ⊂ X, put

L∞(g|S) := sup{ν ∈ R : ∃C,R > 0,∀x ∈ S (‖x‖ ≥ R⇒ ‖g(x)‖ ≥ C‖x‖ν)}.
For λ ∈ L, put
L∞,f→λ(g) := sup{L∞(g|f−1(U)) : U ⊂ L is a neighbourhood of λ}.

Motivated by results of [H], [C-K1], [C-K2], [P], [KOS], . . . on bifurcation
values at infinity of polynomial functions, the number L∞,f→λ(g), called the
Łojasiewicz exponent at infinity of g near the fibre f−1(λ), was introduced
and studied in [Sk] and [R-S]. The authors of [R-S] proved that:

(i) L∞,f→λ(g) ∈ Q ∪ {±∞}.
(ii) There is a semialgebraic stratification L = S1∪· · ·∪Sj such that the

function ν : L 3 λ 7→ L∞,f→λ(g) is constant on each stratum Si.

Our aim in this paper is to study L∞,f→λ(g) in the case when f and
g are polynomials in two real or complex variables. In this very restric-
tive setting we can give complete results about the Łojasiewicz exponent at
infinity near the fibre in the complex case. In brief, our results are the fol-
lowing. Let f(x, y) be a non-constant monic polynomial in x, i.e. f(x, y) =
xd + a1(y)xd−1 + · · ·+ ad(y), where ai ∈ C[y] and deg ai ≤ i. Then:
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(i) The set of λ ∈ C such that L∞,f→λ(g) = −∞ coincides with a cer-
tain set A(f, g) which is defined in terms of the Puiseux expansions
at infinity of g = 0.

(ii) If L∞,f→λ(g) 6= −∞ then

L∞,f→λ(g) = min{deg g(xi(y), y)}
in the complex case, and

L∞,f→λ(g) = min{deg g(xR
i (y), y)}

in the real case, where xi(y) runs over the set of Puiseux expansions
at infinity of the fibre f−1(λ), and xR

j (y) is the real approximation
of xj(y).

(iii) If f, g are complex polynomials in two variables, then the function

ν : C \A(f, g)→ Q ∪ {±∞}, λ 7→ L∞,f→λ(g),
is constant.

The paper is organized as follows. In Section 2 we describe the process
of sliding of [K-P] in the form which is most convenient for us. The main
results are stated and proved in Section 3.

2. Sliding. In this section we prove some lemmas about the process of
sliding in both complex and real cases.

If ϕ(τ) is a series of the form

ϕ(τ) = a0τ
α + terms of lower degree with a0 6= 0,

then the number α is denoted by degϕ.
Let f : C2 → C be a polynomial. For a series

x = ϕ(y) = c1y
n1/N + c2y

n2/N + · · · ,
where ci ∈ C, ni ∈ Z and c1 6= 0, n1 > n2 > · · · , we put

M(X,Y ) = f

(
X + ϕ

(
1
Y

)
,

1
Y

)
=
∑
i,j

cijX
iY j/N .

For each cij 6= 0, let us plot a dot at (i, j/N), called a Newton dot. The set
of Newton dots is called the Newton diagram. The boundary of its convex hull
is the Newton polygon of f relative to ϕ, to be denoted by P(f, ϕ) or P(M).

Assume that x = ϕ(y) is not a Puiseux root at infinity of f = 0. Then
the Y -axis contains at least one dot ofM . Let (0, hM ) be the lowest one. We
see that hM = −deg f(ϕ(y), y).

By the highest Newton edge HM of M we mean the edge of P(M) with
one extremity (0, hM ) and such that all Newton dots ofM lie on or above the
line containing HM . Let θM = tanϕ, where ϕ is the angle between HM and
theX-axis. Note that if (i, j/N) is a Newton dot ofM then θM i+j/N ≥ hM ,
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and (i, j/N) ∈ HM if and only if θM i+ j/N = hM . If x = ϕ(y) is a Puiseux
root at infinity of f = 0, we set hM = +∞ and θM = +∞.

We associate with HM the polynomial εM (x) := εM (x, 1), where

εM (X,Y ) =
∑

(i,j/N)∈HM

cijX
iY j/N .

Lemma 2.1. Let M̃(X,Y ) = M(X + cY θ, Y ). We have:
(a) If θ > θM , then hfM = hM and θfM = θM .
(b) If θ = θM and c is a non-zero root of εM (x), then hfM > hM and

θfM > θM .
(c) If θ = θM and εM (c) 6= 0, then hfM = hM and θfM = θM .

Proof. (a) Let (0, hM ) and (i0, j0/N) be the extremities of HM . It is clear
that the coefficient c̃0hM of X0Y hM in M̃ is

∑
i≥0 cijc

i, θi+j/N = hM . Since
θM i + j/N ≥ hM and by the hypothesis θ > θM , we see that c̃0hM = c0hM .
Therefore (0, hM ) is a Newton dot of M̃ .

Analogously, we can show that (i0, j0/N) is also a Newton dot of M̃ and
all Newton dots of M̃ lie on or above HM . Thus HM ≡ HfM . Hence hfM = hM
and θfM = θM .

(b) Let (0, β) be any Newton dot of M̃ on the Y -axis. Since θ = θM and
the coefficient of X0Y β in M̃ is

∑
θi+j/N=β cijc

i, it is clear that β ≥ hM and
therefore hfM ≥ hM .

Since εM (c) = 0, HfM does not contain the dot (0, hM ). Hence hfM > hM .
As in the proof of (a), (i0, j0/N) is a Newton dot of M̃ . Therefore

hM − θM i0 = j0/N ≥ hfM − θfM i0 > hM − θfM i0.
Thus θfM > θM .

(c) follows easily from the proof of (b).
If c is a non-zero root of εM (x), the series ϕ1(y) = ϕ(y) + cy−θM will be

called a sliding of ϕ(y) along f . A recursive sliding ϕ→ ϕ1 → · · · produces
a limit, ϕ∞, where ϕ∞(y) = ϕi(y) if f(ϕi(y), y) = 0. The series ϕ∞ is a
Puiseux root at infinity of f = 0 and will be called a final result of sliding ϕ
along f .

Lemma 2.2. Let f, g : C2 → C be two polynomials. For a series x = ϕ(y),
put

M(X,Y ) = f(X + ϕ(1/Y ), 1/Y ), N(X,Y ) = g(X + ϕ(1/Y ), 1/Y ).

We have:
(a) If θM > θN , then deg g(ϕ∞(y), y) = deg g(ϕ(y), y).
(b) If θM = θN , then deg g(ϕ∞(y), y) ≤ deg g(ϕ(y), y).

Here x = ϕ∞(y) is a final result of sliding ϕ along f .
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Proof. Assume that ϕ(y)→ ϕ1(y)→ · · · → ϕ∞(y) is a process of sliding
of ϕ along f , where ϕ0(y) = ϕ(y) and ϕi+1(y) = ϕi(y) + ciy

−θi . Put

M0 = M, Mi+1(X,Y ) = Mi(X + ciY
θi , Y ),

N0 = N, Ni+1(X,Y ) = Ni(X + ciY
θi , Y )

We get

M∞(X,Y ) = f(X+ϕ∞(1/Y ), 1/Y ), N∞(X,Y ) = g(X+ϕ∞(1/Y ), 1/Y ).

Since θi = θMi by the definition of sliding, Lemma 2.1(b) implies θi < θi+1.
(a) Since θM > θN , applying Lemma 2.1(a), we have hN1 = hN and

θN1 = θN . Therefore

θ1 > θ0 = θM > θN = θN1 .

Again by Lemma 2.1(a), we get

hN2 = hN1 and θN2 = θN1 .

Applying Lemma 2.1(a) infinitely many times we finally obtain hN∞ = hN ,
which means that deg g(ϕ∞(y), y) = deg g(ϕ(y), y).

(b) Suppose that θM = θN . Assume that k is a natural number such that
εNi(ci) = 0 and θMi = θNi for i = 0, 1, . . . , k − 1, but either εNk(ck) 6= 0
or θMk

6= θNk . Since εNi(ci) = 0 and θMi = θNi for i = 0, 1, . . . , k − 1,
Lemma 2.1(b) gives hNi+1 ≥ hNi for i = 0, 1, . . . , k. Therefore hNk ≥ hN .

Claim. hNk+1
≥ hN and θNk+1

< θMk+1
.

To see this, we have to consider several cases.
If θMk

> θNk then by Lemma 2.1(a),

hNk+1
= hNk ≥ hN and θNk+1

= θNk < θMk
< θMk+1

.

If θMk
= θNk , then εNk(ck) must be non-zero and Lemma 2.1(c) yields

hNk+1
= hNk and θNk+1

= θNk . As before, we see that hNk+1
≥ hN and

θNk+1
< θMk+1

.
If θMk

< θNk , then as in the proof of Lemma 2.1(b), if (i0, j0/N) is the
other extremity of HNk−1

, it is also the other extremity of HNk . Therefore

hNk+1
= θMk

i0 + j0/N > θNk−1
i0 + j0/N = hNk−1

≥ hN ,
θNk+1

= θMk
< θMk+1

.

Now, using the claim and by the same argument as in the proof of (a),
we get

hN ≤ hNk+1
= hN∞ .

Hence deg g(ϕ∞(y), y) ≤ deg g(ϕ(y), y).

Let us consider a series x = λ(y) of the form

x = λ(y) = a1y
α1 + a2y

α2 + · · · ,
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where α1 > α2. If a1, . . . , as−1 ∈ R and as 6∈ R, we put

λR(y) := a1y
α1 + · · ·+ as−1y

αs−1 + cyαs ,

where c is a generic real number. We call λR(y) the real approximation of
λ(y).

Lemma 2.3. Let f, g : R2 → R be polynomials. For a series x = ϕ(y),
put

M(X,Y ) = f(X + ϕ(1/Y ), 1/Y ), N(X,Y ) = g(X + ϕ(1/Y ), 1/Y ).

Let x = ϕ∞(y) be a final result of sliding ϕ along f and ϕR
∞(y) be the real

approximation of ϕ∞(y). We have:
(a) If θM > θN , then deg g(ϕR

∞(y), y) = deg g(ϕ(y), y).
(b) If θM = θN , then deg g(ϕR

∞(y), y) ≤ deg g(ϕ(y), y).

In particular with g = f , we have deg f(ϕR
∞(y), y) ≤ deg f(ϕ(y), y).

Proof. (a) If ϕ∞(y) = ϕ(y) then ϕR
∞(y) = ϕ(y) and then automatically

deg g(ϕ(y), y) = deg g(ϕR
∞(y), y). Otherwise, we write

ϕ∞(y)− ϕ(y) = b0y
β0 + · · ·+ bs−1y

βs−1 + bsy
βs + · · · ,

where β0 = −θM > β1 > · · · , b0, b1, . . . , bs−1 ∈ R and bs 6∈ R for some s ≥ 0.
We write ϕ(y) as a sum ϕ(y) = ψ(y) + γ(y) with

ψ(y) =
∑
α>βs

aαy
α, γ(y) =

∑
α≤βs

aαy
α.

Clearly

ϕ∞(y) = ψ(y) + (b0yβ0 + · · ·+ bs−1y
βs−1 + bsy

βs + · · · ) + γ(y).

Therefore
ϕR
∞(y) = ψ(y) + b0y

β0 + · · ·+ bs−1y
βs−1 + cyβs

= ϕ(y) + b0y
β0 + · · ·+ bs−1y

βs−1 + cyβs − γ(y)
= ϕ(y) + a0y

α0 + a1y
α1 + · · · ,

where β0 = α0 > α1 > · · · . By putting

M0 = M, Mi+1(X,Y ) = Mi(X + aiY
−αi , Y ),

N0 = N, Ni+1(X,Y ) = Ni(X + aiY
−αi , Y ),

we get

M∞(X,Y ) = f(X+ϕR
∞(1/Y ), 1/Y ), N∞(X,Y ) = g(X+ϕR

∞(1/Y ), 1/Y ).

Since, by the hypothesis, θM > θN and θM = −β0 (= −α0 < −α1 < · · · ),
the same argument as in the proof of Lemma 2.2(a) gives hN∞ = hN . Hence
deg g(ϕR

∞(y), y) = deg g(ϕ(y), y).
(b) Now assume that θM = θN . Let k be a natural number such that

εNi(ai) = 0 and θMi = θNi for i = 0, 1, . . . , k − 1, but either εNk(ak) 6= 0 or
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θMk
6= θNk . It is clear that k ≤ s. Since θM = θN , by the same argument as

in the proof of Lemma 2.2(b) we get deg g(ϕR
∞(y), y) ≤ deg g(ϕ(y), y).

3. Main results. Let f, g : K2 → K, with K = C or R, be polynomial
functions and let λ ∈ K. Put

L̃∞,f→λ(g) = inf
Φ

deg g ◦ Φ
degΦ

,

where Φ runs over the set of meromorphic function at infinity such that

degΦ > 0, deg(f − λ) ◦ Φ < 0.

If f is monic in x, then Φ can be written in the form x = ϕ(y) with degϕ ≤ 1
and

deg g ◦ Φ
degΦ

= deg g(ϕ(y), y).

According to [Sk, Theorem 2.1], we know that

L̃∞,f→λ(g) = L∞,f→λ(g).
Theorem 3.1. Let f and g be polynomials in two complex variables

(x, y). Assume that f is monic in x. Let x = xi(y), i = 1, . . . , d, (respec-
tively , x = x̃j(y), j = 1, . . . , s) be the Puiseux expansions at infinity of
f(x, y)− λ = 0 (respectively , of g(x, y) = 0). Let

A(f, g) := {λj ∈ C : λj = lim
y→∞

f(x̃j(y), y), j = 1, . . . , s}.

Then:

(a) L∞,f→λ(g) = −∞ if and only if λ ∈ A(f, g).
(b) If L∞,f→λ(g) 6= −∞ then

L∞,f→λ(g) = min{deg g(xi(y), y) : i = 1, . . . , d}.
Proof. (a) Put

l = min
i

deg g(xi(y), y).

It is obvious that λ ∈ A(f, g) if l = −∞. Let l > −∞. Since L∞,f→λ(g)
= −∞, there is a curve x = γ(y) meromorphic at infinity such that

deg(f(γ(y), y)− λ) < 0 and deg g(γ(y), y) < l.

Put

M(X,Y ) = f(X + γ(1/Y ), 1/Y )− λ, N(X,Y ) = g(X + γ(1/Y ), 1/Y ).

First, we see that θM < θN . Indeed, assume that this is not the case. Take a
final result γ∞(y) of sliding γ(y) along f − λ. This series will be a Puiseux
root at infinity of f − λ: f(γ∞(y), y)− λ = 0. Then Lemma 2.2 yields

deg g(γ∞(y), y) ≤ deg g(γ(y), y) < l,
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a contradiction. Now applying Lemma 2.2(a) with θM < θN we get

deg(f(γ̃∞(y), y)− λ) ≤ deg(f(γ(y), y)− λ) < 0,

where γ̃∞(y) is a final result of sliding γ(y) along g. Hence λ ∈ A(f, g).
(b) Let x = ϕ(y) be a meromorphic curve at infinity which satisfies

deg(f(ϕ(y), y)− λ) < 0. Put

M(X,Y ) = f(X + ϕ(1/Y ))− λ, N(X,Y ) = g(X + ϕ(1/Y )).

Since L∞,f→λ(g) 6= −∞, we can show as before that θM ≥ θN . Therefore
Lemma 2.2 yields deg g(ϕ∞(y)(y), y) ≤ deg g(ϕ(y), y), where ϕ∞(y) is a final
result of sliding ϕ(y) along f − λ. Thus

L∞,f→λ(g) = inf
ϕ

deg g(ϕ(y), y) ≥ min
i

deg g(xi(y), y).

Since the opposite inequality is always satisfied, the assertion follows.

Theorem 3.2. With the notations of Theorem 3.1, the function ϑ(λ) =
L∞,f→λ(g) is constant on C \A(f, g).

Proof. Suppose 0, λ 6∈ A(f, g). We only need to prove that ϑ(0) ≥ ϑ(λ).
By Theorem 3.1 with 0 ∈ C \ A(f, g), there is a Puiseux root at infinity
x = ϕ(y) of f such that ϑ(0) = deg g(ϕ(y), y). Put

Mλ(X,Y ) = f(X + ϕ(1/Y ), 1/Y )− λ, N(X,Y ) = g(X + ϕ(1/Y ), 1/Y ).

We shall show that θMλ
≥ θN . By contradiction suppose that θMλ

< θN . Let
ϕ̃∞(y) be a final result of sliding ϕ(y) along g. By Lemma 2.2(a),

deg f(ϕ̃∞(y), y) = deg f(ϕ(y), y) < 0,

which is impossible, because 0 is not in A(f, g).
Now, since θMλ

≥ θN , Lemma 2.2 shows that deg g(ϕ∞(y), y) ≤ ν(0),
where ϕ∞(y) is a final result of sliding ϕ(y) along f−λ. Thus ϑ(0) ≥ ϑ(λ).

We denote by

JΦ := {(u, v) ∈ C2 : ∃{zn} ⊂ C2, zn →∞, Φ(zn)→ (u, v)}
the Jelonek set of Φ = (f, g) : C2 → C2. The following proposition is also a
consequence of [C-K2, Theorem 1].

Proposition 3.1. Let Φ = (f, g) : C2 → C2 be a polynomial mapping
with f, g monic in x. Let (u, v) ∈ C2. Then:

(a) (u, v) ∈ JΦ if and only if either there exists a Puiseux expansion at
infinity x = x(y) of f(x, y) = u such that deg(g(x(y), y)− v) < 0, or
there exists a Puiseux expansion at infinity x = x̃(y) of g(x, y) = v
such that deg(f(x̃(y), y)− u) < 0.

(b) (u, v) ∈ JΦ if and only if either L∞,f→u(g − v) or L∞,g→v(f − u)
is −∞.
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Proof. (a) Let us proceed as in [Sk]. Suppose that (u, v) ∈ JΦ. For every
δ > 0 there is z0 ∈ C2 such that

‖z0‖ > 1/δ and ‖(f(z0)− u, g(z0)− v)‖ < δ.

Let B = {z ∈ C2 : ‖z‖ < 1}. The mapping H : B 3 z 7→ z/(1 − ‖z‖2) ∈ C2

is a rational homeomorphism. Hence, the set

X := {(z, δ) ∈ B × (0,+∞) : ‖H(z)‖ > 1/δ and
‖(f(H(z))− u, g(H(z))− v)‖ < δ}

is semialgebraic and there is a sequence of points (ωk, δk) ∈ X convergent
to a point (ω0, 0) such that ω0 ∈ ∂B. Therefore by the curve selection
lemma, there exists a curve Ψ̃ = (ϕ̃, ψ) : (R,+∞) → X, meromorphic at
infinity, such that limt→∞ Ψ̃ = (ω0, 0). By putting ϕ = H ◦ ϕ̃, we obtain the
curve Ψ = (ϕ,ψ) meromorphic at infinity such that degϕ ≥ −degψ > 0,
deg(f − u) ◦ ϕ < 0 and deg(g − v) ◦ ϕ < 0. We can take ϕ in the form
x = ϕ(y), so deg(f(ϕ(y), y)− u) < 0 and deg(g(ϕ(y), y)− v) < 0. Put

M(X,Y ) = f(X+ϕ(1/Y ), 1/Y )−u, N(X,Y ) = g(X+ϕ(1/Y ), 1/Y )−v.

Then hM > 0 and hN > 0.
If θM ≥ θN , let x = x(y) be a final result of sliding ϕ along f − u. By

Lemma 2.2, deg(g(x(y), y)− v) < 0.
If θM < θN then Lemma 2.2(a) yields deg(f(x̃(y), y) − u) < 0, where

x = x̃(y) is a final result of sliding ϕ along g − v.
(b) follows easily from (a) and Theorem 3.1.

Theorem 3.3. Let f, g : R2 → R be real polynomials monic in x. Let
λ ∈ R. Let x = xi(y), i = 1, . . . , d, be the Puiseux expansions at infinity of
f(x, y)− λ = 0 and xR

i (y) be the real approximation of xi(y). Put

VR(f) := {xi(y) : deg(f(xR
i (y), y)− λ) < 0}.

Let x = x̃j(y), j = 1, . . . , s, be the real Puiseux expansions at infinity of
g(x, y) = 0. Put

AR(f, g) := {λ ∈ R : lim
y→∞

f(x̃j(y), y), j = 1, . . . , s}.

(If g(x, y) = 0 has no real Puiseux root at infinity , we put AR(f, g) = ∅.)
Then:

(a) If L∞,fC→λ(gC) 6= −∞ then

L∞,f→λ(g) = min{deg g(xR(y), y) : x(y) ∈ VR(f)}.

(b) L∞,f→λ(g) = −∞ if and only if λ ∈ AR(f, g).
(c) L∞,f→λ(g) = +∞ if and only if λ 6∈ Jf .



Łojasiewicz exponent 51

Proof. (a) Let x = ϕ(y) be a meromorphic real curve at infinity with
deg(f(ϕ(y), y)− λ) < 0. Put

M(X,Y ) = f(X + ϕ(1/Y ), 1/Y )− λ

and
N(X,Y ) = g(X + ϕ(1/Y ), 1/Y ).

First, we show that θM > θN . In fact, otherwise let ϕ̃∞ be a final result
of sliding ϕ along g. By Lemma 2.2, deg(f(ϕ̃(y), y) − λ) < 0 and therefore
L∞,fC→λ(gC) = −∞, which is impossible.

Since θM > θN , Lemma 2.3 yields

deg g(ϕR
∞(y), y) ≤ deg g(ϕ(y), y),

deg(f(ϕR
∞(y), y)− λ) ≤ deg(f(ϕ(y), y)− λ) < 0,

where ϕ∞(y) is a final result of sliding ϕ(y) along f − λ. Thus

L∞,f→λ(g) ≥ min{deg g(xR(y), y) : x(y) ∈ VR(f)}.

The opposite inequality always holds.
(b) Assume that L∞,f→λ(g) = −∞. Clearly, if

k := min{deg g(xR(y), y) : x(y) ∈ VR(f)} = −∞

or

l := min{deg g(x̃R(y), y) : g(x̃(y), y) = 0, deg(f(x̃R(y), y)− λ) < 0} = −∞

then λ ∈ AR(f, g). Assume that k and l are finite. Since L∞,f→λ(g) = −∞,
there exists a real curve x = ϕ(y) such that

deg(f(ϕ(y), y)− λ) < 0 and deg g(ϕ(y), y) < min{k, l}.

Put

M(X,Y ) = f(X + ϕ(1/Y ), 1/Y )− λ, N(X,Y ) = g(X + ϕ(1/Y ), 1/Y ).

If θM > θN , then Lemma 2.3 yields deg(f(ϕR
∞(y), y)− λ) < 0 and

deg g(ϕR
∞(y), y) = deg g(ϕ(y), y),

where x = ϕ∞(y) is a final result of sliding ϕ along f − λ. This contradicts
the fact that deg g(ϕ(y), y) < k.

If θM ≤ θN , then by Lemma 2.3, if x = ϕ̃∞(y) is a final result of sliding ϕ
along g then deg(f(ϕ̃R

∞(y), y)−λ) < 0 and deg g(ϕ̃R
∞(y), y) ≤ deg g(ϕ(y), y),

which is impossible, since deg g(ϕ(y), y) < l.

(c) Straightforward.

Remark 3.1. Parts (b) and (c) of Theorem 3.3 are known by [R-S,
Remark 2.4] and [Sp, Theorem 3.5].
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