ANNALES POLONICI MATHEMATICI 94.1 (2008)

Interpolating sequences, Carleson measures and Wirtinger inequality

by Eric Amar (Bordeaux)

Abstract. Let S be a sequence of points in the unit ball \mathbb{B} of \mathbb{C}^n which is separated for the hyperbolic distance and contained in the zero set of a Nevanlinna function. We prove that the associated measure $\mu_S := \sum_{a \in S} (1 - |a|^2)^n \delta_a$ is bounded, by use of the Wirtinger inequality. Conversely, if X is an analytic subset of \mathbb{B} such that any δ -separated sequence S has its associated measure μ_S bounded by C/δ^n , then X is the zero set of a function in the Nevanlinna class of \mathbb{B} .

As an easy consequence, we prove that if S is a dual bounded sequence in $H^p(\mathbb{B})$, then μ_S is a Carleson measure, which gives a short proof in one variable of a theorem of L. Carleson and in several variables of a theorem of P. Thomas.

1. Introduction. Let \mathbb{B} be the unit ball of \mathbb{C}^n and σ the Lebesgue measure on $\partial \mathbb{B}$. As usual we define the Hardy spaces $H^p(\mathbb{B})$ as the closure in $L^p(\partial \mathbb{B})$ of the holomorphic polynomials, and $H^{\infty}(\mathbb{B})$ as the algebra of all bounded holomorphic functions in \mathbb{B} .

The Nevanlinna class, $\mathcal{N}(\mathbb{B})$, is the set of holomorphic functions f in \mathbb{B} such that

$$||f||_* := \sup_{r<1} \int_{\partial \mathbb{B}} \ln^+ |f(r\zeta)| d\sigma(\zeta) < \infty.$$

The hyperbolic distance between $a,b\in\mathbb{B}$ is

 $d_{\rm h}(a,b) := |\Phi_a(b)|$ for any automorphism Φ_a of \mathbb{B} exchanging 0 and a.

DEFINITION 1.1. Let S be a sequence of points in \mathbb{B} and $\delta > 0$. We shall say that S is δ -separated if $\delta \leq \inf_{a,b \in S, a \neq b} d_{\mathbf{h}}(a,b)$.

We shall need stronger notions.

DEFINITION 1.2. We say that the sequence $S \subset \mathbb{B}$ is dual bounded in $H^p(\mathbb{B})$ if there is a bounded sequence $\{\varrho_a\}_{a\in S} \subset H^p(\mathbb{B})$ such that

²⁰⁰⁰ Mathematics Subject Classification: 32A35, 42B30.

 $Key\ words\ and\ phrases$: Hardy space, Nevanlinna class, interpolating sequence, Carleson measure.

$$\forall a, b \in S, \quad \varrho_a(b) = \delta_{a,b} (1 - |a|^2)^{-n/p}.$$

This coincides with the *uniform minimality* introduced by N. Nikolskii ([5, p. 131]) to study Carleson's interpolation theorem.

DEFINITION 1.3. We say that a sequence $S \subset \mathbb{B}$ is $H^p(\mathbb{B})$ -interpolating for $1 \leq p < \infty$, $S \in IH^p(\mathbb{B})$ for short, if

$$\forall \lambda \in \ell^p, \exists f \in H^p(\mathbb{B}), \forall a \in S, \quad f(a) = \lambda_a (1 - |a|^2)^{-n/p}.$$

We say that $S \subset \mathbb{B}$ is $H^{\infty}(\mathbb{B})$ -interpolating, $S \in IH^{\infty}(\mathbb{B})$, if

$$\forall \lambda \in \ell^{\infty}, \exists f \in H^{\infty}(\mathbb{B}), \forall a \in S, \quad f(a) = \lambda_a.$$

Clearly if S is $H^p(\mathbb{B})$ -interpolating, then S is dual bounded in $H^p(\mathbb{B})$.

In one variable, L. Carleson [1] proved that if S is dual bounded in $H^{\infty}(\mathbb{D})$ then the measure $\mu_S := \sum_{a \in S} (1 - |a|^2) \delta_a$ is a Carleson measure, which was the main step in his characterization of interpolating sequences in the unit disc. Here we reprove this in a very simple way.

With the stronger hypothesis that S is $H^{\infty}(\mathbb{B})$ -interpolating, N. Varopoulos [10] proved that μ_S is a Carleson measure, and P. Thomas [8] improved it: if the sequence S is $H^p(\mathbb{B})$ -interpolating for a $p \geq 1$, then μ_S is a Carleson measure.

Our main result is the following

THEOREM 1.4. Let X be an analytic subvariety of pure codimension 1 in the unit ball $\mathbb{B} \subset \mathbb{C}^n$. The variety X is the zero set of a function in the Nevanlinna class of \mathbb{B} if and only if there is a constant C such that for any δ -separated sequence $S \subset X$,

$$\delta^n \sum_{a \in S} (1 - |a|^2)^n \le C.$$

Remark 1.5. In the unit disc \mathbb{D} of the complex plane, this is just the well known Blaschke characterization of the zero sets of functions in the Nevanlinna class.

As a corollary of the direct part of Theorem 1.4 we get (an improvement of) P. Thomas' theorem:

THEOREM 1.6. Let S be a sequence in the unit ball \mathbb{B} of \mathbb{C}^n which is dual bounded in $H^p(\mathbb{B})$ for some $p \geq 1$. Then $\mu_S := \sum_{a \in S} (1 - |a|^2)^n \delta_a$ is a Carleson measure.

Remark 1.7. This proof is simpler than those of L. Carleson [1], J. Garnett [3] and P. Thomas [8], but in fact they proved more: their theorems are also valid for harmonic interpolation.

I thank the referee for his pertinent questions and remarks.

2. Proof of the main result. We shall argue in the ball of \mathbb{C}^2 , the general case being more combinatorial but completely analogous.

We shall use the following lemma ([2, p. 40]):

LEMMA 2.1. Let \mathbb{B} be the unit ball in \mathbb{C}^2 and X an analytic subvariety of \mathbb{B} . Denote by $P_N(X)$ the projection of X on $N := \{z := (z_1, z_2) : z_2 = 0\}$, counting multiplicity, and $P_T(X)$ the projection of X on $T := \{z := (z_1, z_2) : z_1 = 0\}$, still counting multiplicity. Then

- (i) $Area(X) = Area(P_N(X)) + Area(P_T(X))$.
- (ii) Area $(X) \ge \pi$ (Wirtinger inequality).

Let $a \in \mathbb{B}$ and define

$$\Phi_a(z) := \frac{a - P_a z - s_a Q_a z}{1 - \overline{a} \cdot z},$$

with W. Rudin's notations ([6, Theorem 2.2.2]): P_a is the orthogonal projection of \mathbb{C}^n on the subspace [a] generated by a and $Q_a = I - P_a$ is the projection on the orthogonal complement of [a]. Precisely,

$$P_a z = \frac{\overline{a} \cdot z}{|a|^2} a$$
 for $a \neq 0$ and $s_a := \sqrt{1 - |a|^2}$.

Let

$$Q(a, \delta) := \Phi_a(B(0, \delta)),$$

the hyperbolic ball "centered" at a of radius δ .

Let X be an analytic subvariety of \mathbb{B} and $a \in X$. Denote by P_N the orthogonal projection on the complex normal at a to $\partial \mathbb{B}$, counting multiplicity, and by P_T the orthogonal projection on the complex tangent at a to $\partial \mathbb{B}$, still counting multiplicity.

Let
$$X_a := X \cap Q(a, \delta)$$
 and $Y_a := \Phi_a^{-1}(X_a) \subset B(0, \delta)$; we have

Lemma 2.2.

- (i) Area $(P_N(X_a))$ is comparable to $(1-|a|^2)^2$ Area $(P_N(Y_a))$.
- (ii) Area $(P_T(X_a))$ is comparable to $(1-|a|^2)$ Area $(P_T(Y_a))$.
- (iii) $\operatorname{Area}(Y_a) = \operatorname{Area}(P_N(Y_a)) + \operatorname{Area}(P_T(Y_a)) \ge \delta^2 \pi$.

Proof. By rotation we can suppose that $a=(a_1,0)$. Let $X_1:=P_N(X_a)$, $X_2:=P_T(X_a)$, and similarly $Y_1:=P_N(Y_a)$, $Y_2:=P_T(Y_a)$. Because $a=(a_1,0)$, we have $\Phi_a(z)=(Z_1(z),Z_2(z))$ with

(2.1)
$$Z_1(z) = \frac{a_1 - z_1}{1 - \overline{a}_1 z_1}, \quad Z_2(z) = \frac{z_2 \sqrt{1 - |a_1|^2}}{1 - \overline{a}_1 z_1}.$$

Hence $X_1 = Z_1(Y_1)$ and Z_1 is an automorphism of the unit disc. Its jacobian is equivalent to $(1-|a|^2)^2$ on the disc $D(0,\delta)$. The change of variables formula gives

Area
$$(X_1) \simeq (1 - |a|^2)^2 P_N(Y_a)$$
.

For X_2 we have

$$Z_2 \in X_2 \iff \exists (z_1, z_2) \in Y_a, \ Z_2(z) = \frac{z_2 \sqrt{1 - |a_1|^2}}{1 - \overline{a}_1 z_1};$$

we also have

$$Z_2 \in \Phi_a(Y_2) \ (\subset \{Z_1 = a_1\}) \ \Leftrightarrow \ \exists (z_1, z_2) \in Y_a, \ Z_2(z) = z_2 \sqrt{1 - |a_1|^2}.$$

Hence $Z_2 \in X_2 \Leftrightarrow Z_2(1-a_1z_1) \in \Phi_a(Y_2)$, for all $(z_1, z_2) \in Y_a$. Because $z_1 \in D(0, \delta)$, we get

$$\frac{\operatorname{Area}(\Phi_a(Y_2))}{(1+\delta)^2} \le \operatorname{Area}(X_2) \le \frac{\operatorname{Area}(\Phi_a(Y_2))}{(1-\delta)^2}.$$

On Y_2 we have $\Phi_a(z) = z_2 \sqrt{1 - |a|^2}$ because $z_1 = 0$, and its jacobian is $1 - |a|^2$, so we get

Area
$$(X_2) \simeq (1 - |a|^2) P_T(Y_a)$$
.

This gives (i) and (ii) of the lemma. Item (iii) is just the Wirtinger inequality applied to $Y_a \subset B(0, \delta)$.

2.1. Proof of the direct part of Theorem 1.4. Let X be the zero set of a function u in the Nevanlinna class containing S; S separated implies the existence of $\delta > 0$ such that the hyperbolic balls $\{Q(a, \delta) : a \in S\}$ are disjoint. Then the sets $X_a := Q(a, \delta) \cap X$, $a \in S$, are still disjoint.

Let $\Theta := \partial \overline{\partial} \ln |u|$, the current of integration on X. By [7], with $\varrho := |z|^2 - 1$ we get

$$A_T := \int_X (-\varrho)\Theta < \infty$$
 (Blaschke condition),

$$A_N:=\int\limits_X \Theta\wedge\partial\varrho\wedge\overline{\partial}\varrho<\infty \qquad \text{(Malliavin condition)}.$$

Let $a \in X$. Lemma 2.2 gives

Area
$$(P_N(X_a)) = (1 - |a|^2)^2 \text{Area}(P_N(Y_a)),$$

Area $(P_T(X_a)) = (1 - |a|^2) \text{Area}(P_T(Y_a)).$

Hence

$$(1 - |a|^2)\operatorname{Area}(P_T(X_a)) = (1 - |a|^2)^2\operatorname{Area}(P_T(Y_a)),$$

SO

$$(1 - |a|^2)^2 [\operatorname{Area}(P_T(Y_a)) + \operatorname{Area}(P_N(Y_a))]$$

= $(1 - |a|^2) \operatorname{Area}(P_T(X_a)) + \operatorname{Area}(P_N(X_a)).$

By Lemma 2.1(iii),

(2.2)
$$\delta^{2}(1-|a|^{2})^{2}\pi \leq (1-|a|^{2})^{2}\operatorname{Area}(Y_{a})$$
$$= (1-|a|^{2})\operatorname{Area}(P_{T}(X_{a})) + \operatorname{Area}(P_{N}(X_{a})).$$

We have

$$\int_{X_a} (-\varrho)\Theta \ge (1 - |a|^2) \int_{X_a} \Theta \ge (1 - |a|^2) \operatorname{Area}(P_T(X_a)),$$

because on X_a , $-\varrho \simeq 1 - |a|^2$ and $Area(X_a) \ge Area(P_T(X_a))$.

Now we want to estimate $Area(P_N(X_a))$. We have

(2.3)
$$\operatorname{Area}(P_N(X_a)) = \int_{X_a} \Theta \wedge \partial \varrho(a) \wedge \overline{\partial} \varrho(a)$$

with $\partial \varrho(z) = \overline{z}_1 dz_1 + \overline{z}_2 dz_2$ and $\partial \varrho(a) = \overline{a}_1 dz_1 + \overline{a}_2 dz_2$, because $\partial \varrho(z) \wedge \overline{\partial} \varrho(z)$ is the area element on the complex normal to the ball at z. The Taylor formula, with $\varrho(z) := |z|^2 - 1$, gives $\partial \varrho(a) = \partial \varrho(z) + (a - z) \cdot dz$, so

$$\partial \varrho(a) \wedge \overline{\partial} \varrho(a) = \partial \varrho(z) \wedge \overline{\partial} \varrho(z) + |a_1 - z_1|^2 dz_1 \wedge d\overline{z}_1 + |a_2 - z_2|^2 dz_2 \wedge d\overline{z}_2 + (a_1 - z_1)(\overline{a}_2 - \overline{z}_2) dz_2 \wedge d\overline{z}_1 + (a_2 - z_2)(\overline{a}_1 - \overline{z}_1) dz_1 \wedge d\overline{z}_2.$$

But for $z \in Q(a, \delta)$ we have

$$|(a_i - z_i)(\overline{a}_k - \overline{z}_k)| \lesssim \delta^2 (1 - |z|^2) = \delta^2 (-\varrho(z)), \quad i, j = 1, 2;$$

this can be easily seen for $a = (a_1, 0)$, by (2.1), hence is always true by rotation.

Putting this in (2.3) we get

$$\operatorname{Area}(P_N(X_a)) \leq \int_{X_a} \Theta \wedge \partial \varrho(z) \wedge \overline{\partial} \varrho(z) + \delta^2 \int_{X_a} (-\varrho(z)) \Theta(z).$$

By (2.2) we then have

$$\delta^2 (1 - |a|^2)^2 \pi \le (1 + \delta^2) \int_{X_a} (-\varrho) \Theta + \int_{X_a} \Theta \wedge \partial \varrho \wedge \overline{\partial} \varrho.$$

Summing over $a \in S$ and using the Blaschke and Malliavin conditions, we get

$$\pi \delta^2 \sum_{a \in S} (1 - |a|^2)^2 \le (1 + \delta^2) \sum_{a \in S} \int_{X \cap Q(a, \delta)} (-\varrho) \Theta + \sum_{a \in S} \int_{X \cap Q(a, \delta)} \Theta \wedge \partial \varrho \wedge \overline{\partial} \varrho$$
$$\le (1 + \delta^2) A_T + A_N < \infty.$$

Hence

$$\sum_{a \in S} (1 - |a|^2)^2 \le \frac{(1 + \delta^2) A_T + A_N}{\pi \delta^2} = \frac{C}{\delta^2}.$$

2.2. Proof of the converse part of Theorem 1.4. We still give the proof in two variables to simplify notation.

Let X be an analytic variety of pure codimension 1 in the ball \mathbb{B} of \mathbb{C}^2 and let σ_X be the area measure [4] on X.

Let r < 1. Denote by $\Sigma(r)$ the singular set of $X_r := X \cap B(0, r)$; it has a finite number n(r) of points (we are in \mathbb{C}^2), and each singularity has a finite number of branches, b(r) at most.

At a singular point of X, all the branches are regularly situated [9], hence there is a number m=m(r) such that outside $R:=\bigcup_{s\in \Sigma(r)}B(s,\delta^{1/m})$ one can find a δ -separated sequence S covering $X_r\backslash R$ and such that $X\cap Q(a,\delta)$ is a manifold for each $a\in S$.

The σ_X -area of $R \cap X_r$ then goes to 0 as $\delta \to 0$, r being fixed; by hypothesis we have

$$\delta^2 \sum_{a \in S} (1 - |a|^2)^2 \le C,$$

so there is a $\delta_0 = \delta_0(r) > 0$ such that

$$(2.4) \forall \delta < \delta_0, \quad \sigma_X(X_r \cap R) \le C.$$

Moreover, for r > 0 fixed, there is a $\delta_1 = \delta_1(r) > 0$ so small that the pseudo-ball $Q(a, \delta)$ for $\delta < \delta_1$ contains only the sheet of X passing through a, which is a manifold, and $X \cap Q(a, \delta)$ is as near as we wish to $T_a(X) \cap Q(a, \delta)$, where $T_a(X)$ is the tangent space to X at a. Using this and the geometry of the pseudo-balls, we get

$$\forall \delta < \delta_1, \quad \sigma_X(X_r \cap Q(a, \delta)) \le 2\delta^2(1 - |a|^2).$$

On the other hand,

$$\int_{X_r \setminus R} \varrho \, d\sigma_X \le \sum_{a \in S} (1 - |a|^2) \sigma_X(X_r \cap Q(a, \delta)),$$

hence

$$\forall \delta < \delta_1, \quad \int_{X_r \setminus R} \varrho \, d\sigma_X \le 2\delta^2 \sum_{a \in S} (1 - |a|^2)^2 \le 2C.$$

Now using (2.4) we get

$$\forall \delta < \min(\delta_0, \delta_1), \quad \int\limits_{X_r} \varrho \, d\sigma_X = \int\limits_{X_r \setminus R} \varrho \, d\sigma_X + \int\limits_{X_r \cap R} \varrho \, d\sigma_X \le 2C + C = 3C.$$

This is true for any r < 1, so finally

$$\int\limits_X \varrho \, d\sigma_X \le 3C$$

and X satisfies the Blaschke condition, hence by the Henkin or Skoda theorem, X is the zero set of a function in the Nevanlinna class of \mathbb{B} .

3. Proof of Theorem 1.6

LEMMA 3.1. If S is a dual bounded sequence in $H^p(\mathbb{B})$ then $\phi(S)$ is dual bounded in $H^p(\mathbb{B})$ for any automorphism ϕ of \mathbb{B} , with a constant independent of ϕ .

Proof. Let $\phi \in Aut(\mathbb{B})$, $\alpha := \phi(0)$, $p \in [1, \infty[$, and set

$$T_{\phi}f(z) := \frac{(1 - |\alpha|^2)^{n/p}}{(1 - \overline{\alpha} \cdot z)^{2n/p}} f(\phi^{-1}(z)).$$

Then T_{ϕ} is a surjective isometry on $H^p(\mathbb{B})$ (as proved in [6, p. 155]). Because S is dual bounded, there is a dual sequence $\{\varrho_a\}_{a\in S}$ such that (Definition 1.2)

$$\exists C > 0, \forall a \in S, \quad \|\varrho_a\|_p \le C,$$

$$\forall a, b \in S, \quad \varrho_a(b) = \delta_{a,b} (1 - |a|^2)^{-n/p}.$$

To have a dual sequence for $\phi(S)$, just set

$$\widetilde{\varrho}_{\phi(a)} := T_{\phi} \varrho_a.$$

By isometry we already have $\|\widetilde{\varrho}_{\phi(a)}\|_p = \|\varrho_a\|_p \leq C$; now let us compute

$$\widetilde{\varrho}_{\phi(a)}(\phi(b)) = T_{\phi}\varrho_{a} = \frac{(1 - |\alpha|^{2})^{n/p}}{(1 - \overline{\alpha} \cdot \phi(b))^{2n/p}} \,\varrho_{a}(\phi^{-1}(\phi(b)))$$

$$= \frac{(1 - |\alpha|^{2})^{n/p}}{(1 - \overline{\alpha} \cdot \phi(b))^{2n/p}} \,\varrho_{a}(b).$$

But $\varrho_a(b) = \delta_{a,b} (1 - |a|^2)^{-n/p}$, hence

$$\widetilde{\varrho}_{\phi(a)}(\phi(b)) = \delta_{ab} \frac{(1-|\alpha|^2)^{n/p}}{(1-\overline{\alpha}\cdot\phi(b))^{2n/p}} (1-|a|^2)^{-n/p}.$$

If $a \neq b$, then $\widetilde{\varrho}_{\phi(a)}(\phi(b)) = 0$, which is the right value, so it remains to compute for b = a:

(3.1)
$$\widetilde{\varrho}_{\phi(a)}(\phi(a)) = \frac{(1 - |\alpha|^2)^{n/p}}{(1 - \overline{\alpha} \cdot \phi(a))^{2n/p}} (1 - |a|^2)^{-n/p}.$$

A simple computation gives ([6, Theorem 2.2.2])

(3.2)
$$1 - |\phi(a)|^2 = \frac{(1 - |\alpha|^2)(1 - |a|^2)}{|1 - \overline{\alpha} \cdot a|^2},$$

hence, putting this in (3.1), we get

$$\widetilde{\varrho}_{\phi(a)}(\phi(a) = (1 - |\phi(a)|^2)^{-n/p},$$

and this is again the right value, proving the lemma. \blacksquare

LEMMA 3.2. If S is dual bounded in $H^p(\mathbb{B})$, then

$$\exists C > 0, \forall \phi \in \operatorname{Aut}(\mathbb{B}), \quad \sum_{a \in S} (1 - |\phi(a)|^2)^n < C.$$

Proof. Let $\phi \in \operatorname{Aut}(\mathbb{B})$. We have just seen that $\phi(S)$ is still a dual bounded sequence with the same constant. An $H^p(\mathbb{B})$ dual bounded sequence

S' is always contained in the zero set of a nonzero $H^p(\mathbb{B})$ function, namely choose any $a \in S'$ and set $f(z) := (z_1 - a_1)\varrho_a(z) \in H^p(\mathbb{B}) \subset \mathcal{N}(\mathbb{B})$.

Hence S' is contained in a zero set of a Nevanlinna function. Because the separating constant is also controlled by the dual constant, using Theorem 1.4 we get

$$\sum_{a \in S} (1 - |\phi(a)|^2)^n < C,$$

and C being independent of $\phi \in \operatorname{Aut}(\mathbb{B})$, we get the assertion of the lemma.

Lemma 3.3. If

$$\exists C > 0, \forall \phi \in \operatorname{Aut}(\mathbb{B}), \quad \sum_{a \in S} (1 - |\phi(a)|^2)^n < C,$$

then $\mu_S := \sum_{a \in S} (1 - |a|^2)^n \delta_a$ is a Carleson measure.

To prove this, we use a lemma by Garnett ([3, p. 239]) which generalizes straightforwardly to the ball of \mathbb{C}^n :

LEMMA 3.4 (J. Garnett). A positive measure μ in the unit ball of \mathbb{C}^n is Carleson if and only if

$$\sup_{z \in \mathbb{B}} \int_{\mathbb{B}} P(z, \zeta) \, d\mu(\zeta) = M < \infty,$$

where $P(z,\zeta)=(1-|z|^2)^n/|1-\overline{z}\cdot\zeta|^{2n}$ is the Poisson–Szegö kernel of the ball.

Proof of Lemma 3.3. Let ϕ_{α} be an automorphism of \mathbb{B} which exchanges α and 0:

$$\phi_{\alpha}(\zeta) := \frac{\alpha - P_{\alpha}\zeta - s_{\alpha}Q_{\alpha}\zeta}{1 - \overline{\alpha} \cdot \zeta}.$$

Then $\sum_{a \in S} (1 - |\phi_{\alpha}(a)|^2)^n \le C$. By (3.2),

$$1 - |\phi_{\alpha}(a)|^2 = \frac{(1 - |\alpha|^2)(1 - |a|^2)}{|1 - \overline{\alpha} \cdot a|^2},$$

hence,

(3.3)
$$\sum_{a \in S} (1 - |\phi_{\alpha}(a)|^2)^n = \sum_{a \in S} \left(\frac{(1 - |\alpha|^2)(1 - |a|^2)}{|1 - \overline{\alpha} \cdot a|^2} \right)^n \le C.$$

Let $d\mu := \sum_{a \in S} (1 - |a|^2)^n \delta_a$ be the measure associated to S. Then the inequality (3.3) says

$$\int_{\mathbb{B}} P(\alpha, \zeta) \, d\mu(\zeta) \le C,$$

hence the measure μ is Carleson by Garnett's lemma.

Now combining Lemma 3.1 with Lemma 3.3 we get the assertion of Theorem 1.6. \blacksquare

References

- [1] L. Carleson, An interpolation problem for bounded analytic functions, Amer. J. Math. 80 (1958), 921–930.
- [2] H. Federer, Geometric Measure Theory, Grundlehren Math. Wiss. 153, Springer, 1969.
- [3] J. Garnett, Bounded Analytic Functions, Academic Press, 1981.
- [4] P. Lelong and L. Gruman, Entire Functions of Several Complex Variables, Grundlehren Math. Wiss. 282, Springer, 1986.
- [5] N. K. Nikolskii, Treatise on the Shift Operator, Grundlehren Math. Wiss. 273, Springer, 1986.
- W. Rudin, Function Theory in the Unit Ball of Cⁿ, Grundlehren Math. Wiss. 241, Springer, 1980.
- [7] H. Skoda, Valeurs au bord pour les solutions de l'opérateur d", et caractérisation des zéros des fonctions de la classe de Nevanlinna, Bull. Soc. Math. France 104 (1976), 225–299.
- [8] P. J. Thomas, Hardy space interpolation in the unit ball, Indag. Math. 90 (1987), 325–351.
- [9] J.-C. Tougeron, Idéaux de fonctions différentiables, Ergeb. Math. Grenzgeb. 71, Springer, 1972.
- [10] N. Varopoulos, Sur un problème d'interpolation, C. R. Acad. Sci. Paris 274 (1972), 1539–1542.

UFR Mathématique et Informatique Université de Bordeaux I 351, Cours de la Libération 33405 Talence, France

E-mail: Eric.Amar@math.u-bordeaux1.fr

Received 3.1.2008 and in final form 4.3.2008 (1847)