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Foliations by surfaces of a peculiar class

by Adam Bartoszek (Łódź) and
Paweł Walczak (Łódź and Warszawa)

Abstract. We classify surfaces in 3-dimensional space forms which have all the local
conformal invariants constant and show that compact 3-manifolds of nonzero constant
sectional curvature admit no foliations by such surfaces.

Introduction. It is well known that there exist several obstructions
to the existence (on given Riemannian manifolds) of foliations with all the
leaves satisfying some geometric properties. For example, by purely topo-
logical reasons, there exist no codimension-one totally geodesic foliations of
round spheres and, by rather dynamical arguments, no such foliations exist
on compact manifolds of negative sectional curvature (in any dimension).
Also, there exist no codimension-one totally umbilical foliations of compact
manifolds of negative Ricci curvature; in fact, all the foliations of such mani-
folds are, in a sense, far from being umbilical [LW]. Umbilicity is a conformal
invariant: if p is an umbilical point of a hypersurfaceN of a Riemannian man-
ifold (M, g), and g̃ = e2ψg is a Riemannian metric conformally equivalent to
g, then p is umbilical for N on (M, g̃). This is why Rémi Langevin and the
second author were searching for other conformally invariant properties pro-
viding obstructions to existence of foliations enjoying these properties and
have shown [LW] that compact 3-dimensional hyperbolic manifolds admit no
foliations by Dupin cyclides which can be characterized by vanishing of both
conformal principal curvatures (cf. Section 1 below). Here, we go one step
further: after describing (following [CSW], [Fi] and [Br]) in Section 1 local
conformal invariants of surfaces and classifying in Section 2 surfaces with
all the conformal invariants constant, we prove in Section 3 our main result
which says that compact hyperbolic 3-manifolds admit no CCI-foliations,
that is, foliations by surfaces with constant conformal invariants.
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1. Local conformal invariants. Let S be an oriented surface in R3.
Assume that S is umbilic free, that is, the principal curvatures k1(x) and
k2(x) of S are different at each point x of S. Let X1 and X2 be unit
vector fields tangent to the curvature lines corresponding to, respectively,
k1 and k2. Throughout the paper, we assume that k1 > k2. Put µ =
(k1 − k2)/2. For more than 100 years, it has been known ([Tr], see
also [CSW]) that the vector fields ξi = Xi/µ and the coefficients θi
(i = 1, 2) in

[ξ1, ξ2] = −1
2

(θ2ξ1 + θ1ξ2)

are invariant under an arbitrary (orientation preserving) conformal trans-
formation of R3. (In fact, they are invariant under an arbitrary conformal
change of the Riemannian metric on the ambient space.) Elementary calcu-
lation involving the Codazzi equations shows that

θ1 =
1
µ2
·X1(k1) and θ2 =

1
µ2
·X2(k2).

The quantities θi (i = 1, 2) are called the conformal principal curvatures
of S.

Another conformally invariant scalar quantity Ψ can be derived from the
derivation of Bryant’s (see [Br]) conformal Gauss map β:

1
2

(〈ξ1(ξ1(β)), ξ1(ξ1(β))〉 − 〈ξ2(ξ2(β)), ξ2(ξ2(β))〉

− 〈ξ1(ξ1(β)), ξ2(β)〉2 + 〈ξ2(ξ2(β)), ξ1(β)〉)

= Ψ − 1
2

(θ2
1 − θ2

2 + ξ1(θ1) + ξ2(θ2)).

Note that both sides of the above equality are equal to
1
µ3

(∆H + 2µ2H),

where H is the mean curvature of S, and ∆ is the Laplace operator on
S equipped with the Riemannian metric induced from the ambient space.
Moreover, this quantity appears in the Euler–Lagrange equation for the Will-
more functional �

S

µ2 d area.

The vector fields ξ1, ξ2 (or the dual 1-forms ω1, ω2) together with the
quantities θ1, θ2 and Ψ generate all the local conformal invariants for surfaces
and determine a surface up to conformal transformations of R3 ([Fi], see
again [CSW]).
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Define 5× 5 matrices A1 and A2 by

A1 =


θ1/2 −(1 + Ψ)/2 b/2 θ1/2 0

1 0 0 −1 (1 + Ψ)/2
0 0 0 0 −b/2
0 1 0 0 −θ1/2
0 −1 0 0 −θ1/2

 ,(1)

A2 =


−θ2/2 −c/2 −(1− Ψ)/2 θ2/2 0

0 0 0 0 c/2
1 0 0 1 (1− Ψ)/2
0 0 −1 0 −θ2/2
0 0 −1 0 θ2/2

 ,(2)

where b = −θ1θ2 + ξ2(θ1) and c = θ1θ2 + ξ1(θ2).
Given, on a simply connected domain U ⊂ R2, linearly independent 1-

forms ω1 and ω2 and smooth functions θ1, θ2 and Ψ for which the matrix
valued 1-form

(3) ω = A1ω1 +A2ω2

satisfies the structural equation

(4) dω +
1
2

[ω, ω] = 0,

there exists an immersion ι : U → R3 for which S = ι(U) realizes these
forms and functions as local conformal invariants.

2. Integrability. Let us assume that θ1 and θ2 are constant, ω1 =
f1dx1 and ω2 = f2dx2, where (x1, x2) are the Cartesian coordinates on the
plane R2. Then the quantities b = −θ1θ2 and c = θ1θ2 in (1) and (2) are also
constant, and therefore the only nonconstant entries of the matrices A1 and
A2 are those involving Ψ . The structural equation (4) can be written in the
form

(5) −f1
∂A1

∂x2
− ∂f1

∂x2
A1 + f2

∂A2

∂x1
+
∂f2

∂x1
A2 + f1f2[A1, A2] = 0

and reduces in the case of constant conformal principal curvatures to the
system of four partial differential equations

−f1
∂Ψ

∂x2
+
∂f1

∂x2
(1 + Ψ)− θ1θ2

∂f2

∂x1
− 1

2
f1f2(θ2

1θ2 + 3θ2 + θ2Ψ) = 0,

θ1θ2
∂f1

∂x2
− f2

∂Ψ

∂x1
− ∂f2

∂x1
(1− Ψ)− 1

2
f1f2(θ1θ2

2 + 3θ1 − θ1Ψ) = 0,
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∂f1

∂x2
= −1

2
f1f2θ2 and

∂f2

∂x1
=

1
2
f1f2θ1.

These four equations arise from the matrix equation (5) by considering re-
spectively entries (1, 2), (1, 3), (2, 1) and (3, 1). These equations imply the
following ones:

∂Ψ

∂x1
+ 2f1θ1 − f1θ1Ψ + f1θ1θ

2
2 = 0,

∂Ψ

∂x2
+ 2f2θ2 + f2θ2Ψ + f1θ

2
1θ2 = 0,

which—after differentiating and comparing the derivatives ∂2Ψ/∂x1∂x2 and
∂2Ψ/∂x2∂x1—yield the identity

θ1θ2

(
1 +

1
2
θ2
2 +

1
2
θ2
2

)
= 0.

This shows the following.

Proposition 1. Any surface S ⊂ R3 with constant conformal principal
curvatures has at least one of these curvatures equal to zero.

Compact surfaces with both conformal principal curvatures equal to zero
are well known: they are so called Dupin cyclides, that is, conformal im-
ages of tori of revolution. Other surfaces with vanishing conformal principal
curvatures arise as conformal images of a cylinder or cone (of revolution).

Assume now that θ1 = 0 while θ2 = c is an arbitrary nonzero constant.
Then ∂f2/∂x1 ≡ 0 and f2 is a function of x2 only. Since ∂(log f1)/∂x2

= −1
2cf2,

(6) f1(x1, x2) = C1(x1) · e−
1
2
c
	x2
0 f2(t) dt,

where C1 : R→ R is an arbitrary smooth function.
Again in our case, ∂Ψ/∂x1 = 0 and Ψ depends on x2 only. Since ∂Ψ/∂x2

= −f2θ2(2 + Ψ),

(7) Ψ(x1, x2) = C2 · e−c
	x2
0 f2(t) dt − 2,

where C2 ∈ R.
The situation is almost symmetric when θ2 = 0 while θ1 = c 6= 0.
Therefore, we have the following.

Proposition 2. For an arbitrary constant c, the family of all immersed
surfaces S = ι(R2) in R3 with constant conformal principal curvatures 0
and c is nonempty and parametrized by triples (f2, C1, C2), where f2, C1 are
smooth real functions of one real variable and C2 is a real number ; f1 and
C1 are either everywhere positive or everywhere negative. The corresponding
surface has conformally invariant 1-forms ωi = fidxi with f1 given by (6),
and the scalar conformal invariant Ψ given by (7).
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Assume now that, in addition to θ1 = 0 and θ2 = c 6= 0, also Ψ is
constant. Then, by formula (7), Ψ = −2. Surfaces characterized by such
conformal invariants are conformal images of loxodromic cylinders given, in
Cartesian coordinates (x1, x2, x3, ) in R3, by the following equations:

x1 = ecs/4 cos s, x2 = ecs/4 sin s, x3 = t,

where s, t ∈ R.

3. CCI-foliations. As mentioned in the introduction, a codimension-
one foliation F of a manifold M of constant sectional curvature is called
a CCI-foliation whenever all its leaves have constant principal conformal
curvatures θ1, θ2 and constant invariant Ψ .

Let us recall (see [CC, Vol. I, pp. 115–118]) that the limit set limL of a
leaf L of a foliation F on a compact manifoldM is defined as the intersection
of the closures inM of the sets L\K, whereK ranges over all compact subsets
of L. If L is noncompact, limL is nonempty, compact and saturated. Recall
also that a Reeb component of a foliation F on a 3-dimensional manifold M
is the product R = S1×D2,D2 being a closed 2-disc, such that the boundary
∂R = T 2 is a leaf while the interior R0 of R is foliated by planes R2 in such
a way that limL = ∂R for any leaf L ⊂ R0. By Novikov’s theorem ([No], see
also [CC, Vol. II, Chapter 9]), any 2-dimensional foliation of the sphere S3

contains a Reeb component. A foliation without Reeb components is said to
be Reebless.

Theorem 1. Any CCI-foliation is Reebless.

Proof. Suppose that R is a Reeb component of a CCI-foliation F . Its
interior R0 contains no Dupin cyclides. Indeed, a Dupin cyclide L has the
so-called spherical two-piece property (STPP): any sphere Σ separates L into
at most two components. On the other hand, any small sphere Σ centered at
a point x0 ∈ ∂R separates any leaf L ⊂ R0 into infinitely many components.
Moreover, R0 cannot contain other CCI-leaves. Indeed, the limit set limL
of a cylinder over a logarithmic spiral consists of a single line, and the limit
set of its conformal image coincides with either a single line or a single circle
and cannot fill all the boundary ∂R.

Corollary 1. A compact 3-dimensional manifold M of constant cur-
vature 1 admits no CCI-foliations.

Proof. If F were a CCI-foliation of M , then F would lift to a CCI-
foliation F̃ of the universal cover M̃ = S3 which—by Novikov’s theorem—
would contain a Reeb component. A contradiction.

Now, let us turn to compact hyperbolic 3-manifolds of curvature −1.
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Assume that M is such a manifold equipped with a 2-dimensional CCI-
foliation F . Lift F to M̃ = H3, the universal cover of M . Denote by F̃ the
lift of F . Clearly, F̃ is a CCI-foliation of M̃ by surfaces which are connected
components of intersections S∩B, S being a complete CCI-surface in R3 and
B being the unit 3-ball representing M̃ . Our classification of CCI-surfaces
shows that a priori a leaf L̃ of F̃ can be (topologically) (1) a torus, (2) a torus
with a disc (or a point) removed, (3) a cylinder, or (4) a disc.

We are going to show that all of them are discs. By Theorem 1, tori cannot
occur: any toral leaf would bound a solid torus containing a Reeb compo-
nent. Cases (2) and (3) can be treated simultaneously: a torus without a
disc becomes a cylinder after intersecting with a smaller ball B′ contained
in B. Without loss of generality, we may assume that the sphere Σ′ = ∂B′

intersects our cylindrical leaf L̃ transversely and bounds (together with L̃) a
solid cylinder C whose boundary consists of L̃ and two discs D1 and D2 con-
tained in Σ′. By arguments of the proof of Theorem 6.3.1 in [LW], not all the
leaves in C are Dupin, therefore some of them coincide with the connected
components of S ∩ B, S being a loxodromic cylinder. However, any such
component intersects the boundary ∂C transversely at some points of L̃, a
contradiction. Consequently, all the leaves of F̃ are topological open discs.

The boundaries of those discs are contained in the sphere Σ(∞), the ideal
boundary of M̃ . Denote by F̃(∞) the union in Σ(∞) of all those boundaries.

Our manifold M is of the form M = M̃/Γ for a discrete group Γ of
isometries of the hyperbolic 3-space. The group Γ acts on Σ(∞), and since
M is compact, this action is minimal, that is, the orbits Γ (ζ) of all points
ζ ∈ Σ(∞) are dense. Since F̃ is the lift of a foliation of M , the set F̃(∞)
itself and its complement F̃(∞)c in Σ(∞) are Γ -invariant, therefore dense
if nonempty. The same observation applies to the open set F̃(∞)t of all
points of F̃(∞) where the CCI-surface containing a leaf intersects Σ(∞)
transversely.

If F̃ contains a piece of a loxodromic cylinder, the set F̃(∞)t is nonempty.
So is its complement (F̃(∞)t)c: otherwise, F̃ would determine a regular 1-
dimensional foliation of the sphere Σ(∞). Therefore, (F̃(∞)t)c is dense, and
consequently intersects its own complement F̃(∞)t, a contradiction.

If F̃ contains no pieces of loxodromic cylinders, it becomes a Dupin foli-
ation and we arrive at a contradiction as in [LW].

The argument above proves the following.

Theorem 2. A compact 3-dimensional manifold M of constant curva-
ture −1 admits no CCI-foliations.



Foliations by surfaces of a peculiar class 95

4. A final remark. So far, the authors have no examples of surfaces
with constant conformal principal curvatures θ1, θ2 and nonconstant Bryant
invariant Ψ . Examples of such surfaces would be of interest. Foliations with
all leaves of constant conformal principal curvatures could be called CCC-
foliations. Existence of such foliations on the 3-dimensional sphere and com-
pact hyperbolic 3-manifolds seems to be of some interest.

If one could prove that, as in the case of CCI-foliations, there are no CCC-
foliations either, the following question would appear: How much further
would one need to weaken the geometrical conditions in order to obtain
examples of foliations with all leaves satisfying the new conditions?
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