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Approximation results for nonlinear integral operators
in modular spaces and applications

by Ilaria Mantellini and Gianluca Vinti (Perugia)

Abstract. We obtain modular convergence theorems in modular spaces for nets of
operators of the form (Twf)(s) =

�
H
Kw(s − hw(t), f(hw(t))) dµH (t), w > 0, s ∈ G,

where G and H are topological groups and {hw}w>0 is a family of homeomorphisms
hw : H → hw(H) ⊂ G. Such operators contain, in particular, a nonlinear version of
the generalized sampling operators, which have many applications in the theory of signal
processing.

1. Introduction. The starting point of this paper comes directly from
the applications in the theory of signal processing.

The famous Whittaker–Kotelnikov–Shannon (WKS) sampling theorem,
formulated in the last century, states that, given a function f ∈ L2(R)
which is band-limited in an interval [−πw, πw] for w > 0, it is possible to
reconstruct f on the whole real axis by means of an interpolation formula.
The interpolation used takes into account only the behaviour of the function
f in its sample values f(k/w) calculated at the nodes k/w, for k ∈ Z,
uniformly spaced on the whole real axis, and gives

(I) f(t) =
∞∑

k=−∞
f(k/w) sinc[π(wt− k)], t ∈ R.

This theorem can be formulated in the language of information trans-
mission theory (see [10]) in the following manner: let f be a signal of finite
energy on R and of bounded frequency spectrum contained in [−πw, πw],
which means that this signal does not contain frequencies higher than w/2
cycles per second. Moreover let the signal have a certain communication
channel. In order to recover this signal at the output of this communication
channel it is sufficient to transmit over this channel only the values f(k/w)
of the signal at the nodes k/w.
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Here 1/w is the so called Nyquist “interval” corresponding to the fre-
quency domain [−πw, πw], which is the theoretical minimum time inter-
val between the samples in order to reconstruct the signal completely (see
e.g. [20]).

The interpolation formula (I), which allows one to reconstruct the sig-
nal f, in practice has some disadvantages. Indeed, according to (I), in order
to reconstruct the signal completely, one should know the behaviour of f
in an infinite number of sample values, which one usually does not have at
one’s disposal. Moreover, if t represents the present time, then formula (I)
says that one should know the samples of the signal not only in the past of t,
but also in the future, i.e. for k/w > t. Still more, in the WKS-sampling
theorem, the signal should be band-limited, which implies that it is not
duration limited; and the latter is the class of signals which occurs in prac-
tice.

In order to overcome the above disadvantages, the idea of P. L. Butzer
and his school was to replace the sinc function in (I) by a function ϕ which is
continuous with compact support contained in an interval [T0, T1]. Obviously
in this manner, the behaviour of the function ϕ is such that it is sufficient
to know only a finite number of sample values and, if 0 < T0 < T1, then
the sample values can be taken only from the past, which means to make
a prediction of the signal; furthermore the signal need not be band-limited.
Of course one should not expect a formula like (I), but an approximation
result for f can be obtained.

Namely, in [16] a family of operators, called generalized sampling opera-
tors, is introduced, of the form

(Sϕwf)(t) =
∞∑

k=−∞
f(k/w)ϕ(wt − k), t ∈ R, k ∈ Z, w > 0,

and a theorem on pointwise and uniform convergence of Sϕwf toward f as
w →∞ is proved.

In [8] a nonlinear version of the generalized sampling operators is in-
troduced and a uniform convergence result is proved which extends the
Butzer–Stens result. Moreover the study of nonlinear approximation in sig-
nal processing is important since the approximation describes a nonlinear
system in which the computed signal, during its filtering, generates new
frequencies.

But it would be of some interest to formulate such approximation results
not only for uniformly continuous functions (and hence with respect to uni-
form convergence), but also for functions belonging to an Lp space, or more
generally to some function space. In [28] an approximation result is proved
by means of a family of nonlinear generalized sampling operators for func-
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tions belonging to Orlicz spaces; such spaces extend the classical Lp-spaces.
In fact, in [28] a general family of nonlinear integral operators is considered,
which contains the generalized sampling operators; in this way, a unified ap-
proach has been furnished to the study of convergence theorems for several
classes of nonlinear integral operators, well known in the literature. These
results extend previous results for linear integral operators given in [7].

In this paper, we study the problem of approximating a function f
belonging to a general modular space (in particular, an Orlicz space, a
Musielak–Orlicz space and many others) by means of a family of nonlin-
ear integral operators of the form

(II) (Twf)(s) = �
H

Kw(s− hw(t), f(hw(t))) dµH (t), w > 0,

for s ∈ G, where G andH are topological groups; here {hw}w>0 is a family of
homeomorphisms hw : H → hw(H) ⊂ G, f : G→ R is a function belonging
to X(G), the space of all Borel measurable real-valued functions defined on
G, and Kw : G × R → R, w > 0, is a net of kernels satisfying suitable
conditions.

The main result of the paper is an approximation theorem for the above
family of operators when the function f belongs to a modular space (Theo-
rem 4). In these spaces it is possible to introduce a concept of convergence,
called “modular convergence”, which is more natural in this setting and
“weaker” than the usual norm convergence, i.e. the convergence induced
by the Luxemburg norm (the theory of modular spaces can be found in
[23, 21, 26]). Namely for the operators (II) we prove that

lim
w→∞

%G[c(Twf − f)] = 0

for some c > 0, where %G is the modular generating the modular space
L%(G).

The general setting of modular spaces has required the introduction of
some conditions which are satisfied when the modular, generating the mod-
ular space, has an integral representation; this happens, for example, in
Lp-spaces, in Orlicz spaces and in Musielak–Orlicz spaces.

The class of integral operators (II) is very general and covers, as partic-
ular cases, the classical convolution integral operators, Mellin convolution
operators and generalized sampling operators in their nonlinear form (see
Section 4). Hence our theory furnishes several applications to the above
mentioned classes of nonlinear integral operators. Moreover, the general set-
ting of locally compact topological groups in which we work permits us to
recover also the case of the multidimensional generalized sampling series of
f (see [12] for the linear case), which has, like the one-dimensional series,
many applications in the theory of signal processing.
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2. Notations and definitions. Let G and H be locally compact and
σ-compact Hausdorff topological groups and let µG and µH be their Haar
measures on the classes of Borel sets B(G) and B(H) respectively. We will
assume that G and H are abelian, but unimodularity is sufficient for our
theory. We remark that this condition is automatically satisfied for compact
groups (see [19, 17]). We will denote by U the neighbourhood base of the
neutral element θ ∈ G, and by local compactness, we can use a base with
measurable, symmetric, compact neighbourhoods of θ.

We denote by X(G) the vector space of all Borel measurable real-valued
functions defined on G and by Cc(G) the subspace of all continuous func-
tions with compact support. For G = (Rn,+) we denote by C

(k)
c (Rn) the

space of all real-valued functions with compact support and with continuous
derivatives of order k, for 1 ≤ k ≤ ∞.

Let now {hw}w>0 be a net of functions hw : H → G such that hw is a
homeomorphism between H and hw(H), for every w > 0.

Let Z = (Z,ΣZ , µZ) be an arbitrary measure space and let X(Z) be
the corresponding vector space of all ΣZ -measurable real-valued functions
on Z. A functional % : X(Z)→ [0,+∞] is said to be a modular on X(Z) if
the following conditions hold:

(i) %(f) = 0⇔ f = 0 µZ -a.e. in Z;
(ii) %(−f) = %(f) for every f ∈ X(Z);
(iii) %(αf + βg) ≤ %(f) + %(g) for every f, g ∈ X(Z) and α, β ∈ R+

0 with
α+ β = 1.

The functional % generates the modular space L% defined as follows:

L% ≡ L%(Z) = {f ∈ X(Z) : lim
λ→0

%(λf) = 0}.
It is well known that L% is a vector subspace of X(Z) and it is possible to
define on it the concept of modular convergence as follows: we say that a
sequence of functions fn ∈ L% is modular convergent (or %-convergent) to a
function f ∈ L% if there exists a λ > 0 such that

lim
n→∞

%(λ(fn − f)) = 0.

The modular convergence is weaker than the convergence induced by the
Luxemburg norm generated by the modular % (see [25, 23]). The latter is
equivalent to saying that the above limit relation is satisfied for any λ > 0.

The two convergences become equivalent in the space of finite elements
defined by

E% ≡ E%(Z) = {f ∈ X(Z) : %(λf) <∞ for every λ > 0}.
We will need the following definitions concerning modular functionals.

We remark that for modulars having an integral representation, the condi-
tions below are always satisfied.
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We say that a modular % is:

(a) monotone if %(f) ≤ %(g) whenever |f | ≤ |g| for every f, g ∈ X(Z);
(b) finite if the characteristic function χA of every measurable set A of

finite µZ -measure belongs to L%;
(c) strongly finite if each χA as above belongs to E%;
(d) absolutely finite if % is finite and if for every ε, λ0 > 0 there exists a

δ > 0 such that %(λ0χB) < ε for every B ∈ ΣZ with µZ(B) < δ;
(e) absolutely continuous if there is an α > 0 such that for every f ∈

X(Z) with %(f) <∞, the following two conditions hold:

(i) for every ε > 0 there exists a measurable subset A ⊂ Z with
µZ(A) <∞ such that %(αfχZ\A) < ε;

(ii) for every ε > 0 there exists a δ > 0 such that %(αfχB) < ε for all
measurable sets B ⊂ Z with µZ(B) < δ.

For some of the above concepts we refer to [24, 5]. Note that in case
µZ(G) < ∞, if % is strongly finite and absolutely continuous then it is also
absolutely finite (see [4]).

Let now (G,B(G), µG) and (H,B(H), µH) be two locally compact and
σ-compact topological groups and let {µw}w>0 be a family of functions
µw : G× B(H)→ R+

0 such that µw(·, A) is measurable for every A ∈ B(H)
and µw(s, ·) is a measure on B(H).

We need to introduce a notion of regularity for the family {µw}w>0. We
will say that {µw}w>0 is regular if:

(a) putting µsw = µw(s, ·) for w > 0, s ∈ G we have 0 ≤ µsw � µH for
every s ∈ G,w > 0;

(b) supw>0 ‖µ(·)
w (H)‖∞ < ∞ and there exists a measurable set F ⊂ G

with µG(F ) = 0 and two positive constants r and w such that 0 < r <

µ
(s)
w (H) for every w > w and every s ∈ G \ F ;

(c) if we set ξw(s, t) = dµsw/dµH , then ξw is a globally measurable func-
tion and ‖ξw(·, t)‖1 ≤ ηw for every t ∈ H and some ηw ∈ R+.

Now, in the general setting of modular spaces, we need to introduce a
condition of compatibility between the family {µw}w>0 and the modulars
%G and %H .

Let %G, %H be modular functionals on X(G) and X(H) respectively. We
will say that a regular net {µw}w>0 is compatible with the couple (%G, %H) if
there are two constants D,M > 0 and a net {bw} of positive numbers with
bw → 0 as w →∞ such that

%G

( �
H

g(t) dµ(·)
w (t)

)
≤Mηw%H(Dg) + bw
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for any g ≥ 0, g ∈ X(H) and for sufficiently large w > 0, where ηw is the
net appearing in condition (c) of the definition of regularity of {µw}w>0.

Using a similar reasoning to Proposition 1 of [22], one can prove that if
%G and %H are convex modulars on an Orlicz space, then every regular net
{µw}w is compatible with the couple (%G, %H); later on, we will see that,
under suitable assumptions, it is possible to find other examples of regular
nets {µw}w>0 compatible with the couple (%G, %H).

Let now G be a locally compact and σ-compact topological group. Ac-
cording to Theorem 1 of [22], we have the following result which we will use
in the next section:

Theorem 1. Let % be a modular on X(G), absolutely continuous, mono-
tone and absolutely finite. Then Cc(G) = L%(G) where the bar represents the
modular closure.

3. Approximation theorems. Define, for every U ∈ U and w > 0,
the sets

Us,w = {t ∈ H : s− hw(t) ∈ U} = h−1
w (s+ U).

Moreover, let {Lw}w>0 be a family of measurable functions Lw : G → R+
0

with Lw(s − hw(·)) ∈ L1
µH (H) for s ∈ G and w > 0. We will say that

{Lw}w>0 ∈ L if the following conditions are satisfied:

(L1) the family Lw has compact support in the sense that for every
U ∈ U there is a w > 0 such that for every w > w, the supports of Lw are
contained in U ;

(L2) there is a constant N > 0 such that

�
H

Lw(s− hw(t)) dµH (t) ≤ N

for every s ∈ G and every w > 0;
(L3) there is a measurable set F ⊂ G with µG(F ) = 0 and two positive

constants r and w such that, for every w > w and every s ∈ G \ F,

�
H

Lw(s− hw(t)) dµH(t) > r.

We now consider the class Ψ of all continuous nondecreasing functions
ψ : R+

0 → R+
0 such that ψ(0) = 0, ψ(u) > 0 for u > 0 and ψ(u) → ∞ as

u→∞.
Let {Kw}w>0 be a family of measurable functions Kw : G×R→ R and

denote by K the class of all such families satisfying:

(K1) Kw(s − hw(·), u) ∈ L1
µH (H) for every u ∈ R and Kw(s, 0) = 0 for

every s ∈ G, w > 0;
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(K2) there is a function ψ ∈ Ψ such that Kw(s, ·) is (Lw, ψ)-Lipschitz,
i.e. there are measurable functions Lw : G → R+

0 with {Lw}w>0 ∈ L such
that

|Kw(s, u)−Kw(s, v)| ≤ Lw(s)ψ(|u− v|)
for every s ∈ G, u, v ∈ R and w > 0;

(K3) for every n ∈ IN and w ∈ R+, putting

rwn (s) := sup
1/n≤|u|≤n

∣∣∣∣
1
u

�
H

Kw(s− hw(t), u) dµH (t)− 1

∣∣∣∣,

we have limw→∞ rwn (s) = 0 a.e. s ∈ G (see [28]).

Remark 1. For {Kw}w>0 ∈ K, if we suppose that (K3) is satisfied with
limw→∞ rwn (s) = 0 uniformly with respect to s ∈ G, then assumption (L3)
is satisfied uniformly with respect to s ∈ G (see Lemma 1 of [8]).

Now let %H and ηH be two modulars on X(H). The following defini-
tion which relates %H and ηH and the function ψ will be of fundamental
importance (see [5]):

We say that the triple {%H , ψ, ηH} is properly directed if for every λ ∈
]0, 1[ there exists a Cλ ∈ ]0, 1[ satisfying

%H [Cλψ(|F (·)|)] ≤ ηH(λF (·)) for all F ∈ X(H).

Finally, for {Kw}w>0 ∈ K, we define the operators

(Twf)(s) = �
H

Kw(s− hw(t), f(hw(t))) dµH (t)

for every f ∈ X(G) for which (Twf)(s) is well defined for s ∈ G, w > 0 and
(Twf)(s) is measurable on G.

We will use the following corollary proved in [7]:

Corollary 1. For every nonempty open set A ⊂ G there is a w > 0
such that h−1

w (A) 6= ∅ for every w ≥ w.

Now we state the following modular approximation theorem for functions
belonging to Cc(G):

Theorem 2. Let {Kw}w>0 ∈ K and {Lw}w>0 ∈ L; let % be a monotone,
strongly finite and absolutely continuous modular on X(G). Then for every
f ∈ Cc(G) and λ > 0, we have

lim
w→∞

%[λ(Twf − f)] = 0.

Proof. Let f ∈ Cc(G) and let C = supp f . We put

Cw = {t ∈ H : hw(t) ∈ C} = h−1
w (C).
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By Corollary 1, Cw is a nonempty compact subset of H for sufficiently
large w, and if t 6∈ Cw, we have f(hw(t)) = 0 by (K1). Therefore

(Twf)(s) = �
Cw

Kw(s− hw(t), f(hw(t))) dµH(t), s ∈ G.

By (K1) and (K2), we have

|Kw(s− hw(t), f(hw(t)))| ≤ Lw(s− hw(t))ψ(|f(hw(t))|).
Now, by (L1), denoting by U a compact neighbourhood of θ ∈ G such that
suppLw ⊂ U for sufficiently large w > 0, we may deduce that suppKw(·, u)
⊂ U for sufficiently large w > 0 and every u ∈ R. Put now B = U + C.
If s 6∈ B, then for every t ∈ Cw, s − hw(t) 6∈ U, and Kw(s − hw(t), u) = 0
for sufficiently large w > 0; hence Twf vanishes outside the compact set B.
Thus %[λ(Twf −f)] = %[λ(Twf −f)χB]. By the (Lw, ψ)-Lipschitz condition,

|(Twf)(s)− f(s)| ≤ |(Twf)(s)|+ |f(s)|
=
∣∣∣ �
H

Kw(s− hw(t), f(hw(t))) dµH (t)
∣∣∣+ |f(s)|

≤ �
H

Lw(s− hw(t))ψ(|f(hw(t))|) dµH (t) + |f(s)|

≤ Nψ(‖f‖∞) + ‖f‖∞
for s ∈ G and w > 0. So

λ|Twf(s)− f(s)|χB ≤ λχB [Nψ(‖f‖∞) + ‖f‖∞]

for s ∈ G. Since the modular is strongly finite, we have χB ∈ E% and
therefore

%[λ(Twf − f)χB] ≤ %[λ(Nψ(‖f‖∞) + ‖f‖∞)χB ] <∞.
By Proposition 1 of [28] it is possible to prove Theorem 1 of [8] with
the almost everywhere convergence of rwn (s) (assumption (K3)) obtaining
((Twf)(s)− f(s))→ 0 as w→∞ a.e. s ∈ G. Hence, applying the Lebesgue
dominated convergence theorem for modular spaces (see [24]), we obtain

lim
w→∞

%[λ(Twf − f)] = 0.

Let now L∗ ⊂ L be the subclass of L whose elements {Lw}w>0 satisfy
the further condition that Lw ∈ L1

µG
(G) for every w > 0. We then put

γw :=
�
G Lw(z) dµG(z) for w > 0, so {γw}w>0 is a bounded net.

It is clear that if in particular we take µsw(A) =
�
A Lw(s−hw(t)) dµH(t),

A ∈ B(H), s ∈ G, w > 0, then the family {µw}w>0 is regular. Indeed,
condition (a) of regularity is obviously satisfied and (b) is a consequence of
(L2) and (L3). Finally assumption (c) is satisfied with ηw = γw, w > 0.

Denote by ηH a modular on X(H). Given E > 0 let

LE ≡ L(G,H, {hw}, {γw}, E)
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be the subset of LηG(G) whose elements f satisfy the following assumption
(see [7, 28]):

(+) lim sup
w→∞

γwηH [λ(f ◦ hw)] ≤ EηG[λf ]

for every λ > 0. Then we may establish the following:

Theorem 3. Let {Kw}w>0 ∈ K, {Lw}w>0 ∈ L∗, let %G be a monotone
modular and suppose that the triple {%H , ψ, ηH} is properly directed ; assume
moreover that the family µsw(A) =

�
A Lw(s − hw(t)) dµH (t), A ∈ B(H),

s ∈ G, is compatible with the couple (%G, %H). Then, given any two functions
f and g in the domain of all operators Tw for w > 0, such that f − g ∈ LE
for some E > 0, there is an absolute constant P > 0, depending on E > 0,
such that for any λ ∈ ]0, 1[ there exists a constant c > 0 satisfying

lim sup
w→∞

%G[c(Twf − Twg)] ≤ PηG[λ(f − g)].

Proof. Let λ > 0 be fixed with λ < 1. By the (Lw, ψ)-Lipschitz condition,

%G[c(Twf − Twg)]
= %G

[
c �
H

[Kw(· − hw(t), f(hw(t))) −Kw(· − hw(t), g(hw(t)))] dµH (t)
]

≤ %G
[
c �
H

|Kw(· − hw(t), f(hw(t)))−Kw(· − hw(t), g(hw(t)))| dµH (t)
]

≤ %G
[
c �
H

Lw(· − hw(t))ψ(|f(hw(t))− g(hw(t))|) dµH (t)
]
.

By regularity of {µsw} defined above with ηw = γw = ‖Lw‖L1(G), and by
compatibility with the couple (%G, %H), we have, for sufficiently large w > 0,

%G[c(Twf − Twg)] ≤Mγw%H [cDψ(|(f − g) ◦ hw|)] + bw.

Then, since {%H , ψ, ηH} is properly directed, for cD ≤ Cλ we obtain

%G[c(Twf − Twg)] ≤Mγw%H [Cλψ(|(f − g) ◦ hw|)] + bw

≤MγwηH [λ((f − g) ◦ hw)] + bw.

Since f − g ∈ LE, we have

lim sup
w→∞

%G[c(Twf − Twg)] ≤MEηG[λ(f − g)].

The assertion follows easily by putting P = ME.

Now we are ready to prove the main theorem of this section:

Theorem 4. Let {Kw}w>0 ∈ K, {Lw}w>0 ∈ L∗ and let %G, ηG be mono-
tone, absolutely and strongly finite and absolutely continuous modulars, and
%H be a modular such that {%H , ψ, ηH} is properly directed. Suppose that
the family µsw(A) =

�
A Lw(s − hw(t)) dµH(t), A ∈ B(H), s ∈ G, w > 0, is
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compatible with the couple (%G, %H). Then for every f ∈ L%+η(G) such that
f − Cc(G) ⊂ LE for some E > 0, there is a constant c > 0 such that

lim
w→∞

%G[c(Twf − f)] = 0.

Proof. Let f be as in the statement. By the density theorem, there is a
λ > 0 (we may take λ < 1) and a sequence {fn} ⊂ Cc(G) such that

(%G + ηG)[λ(fn − f)]→ 0, n→∞.
Fix ε > 0 and an integer ñ such that for every n ≥ ñ,

(%G + ηG)[λ(fn − f)] < ε.(1)

Choose a constant c > 0 such that c ≤ min{Cλ/(3D), λ/3}. Then

%G[c(Twf − f)]

≤ %G[3c(Twf − Twfñ)] + %G[3c(Twfñ − fñ)] + %G[3c(fñ − f)].

Now, applying Theorem 3 to the first summand, we obtain

lim sup
w→∞

%G[3c(Twf − Twfñ)] ≤ PηG[λ(f − fñ)],

where, without loss of generality, we can suppose P > 1. Since by Theorem 2
we have limw→∞ %G[3c(Twfñ − fñ)] = 0, applying (1), we obtain

lim sup
w→∞

%G[c(Twf − f)] ≤ P (%G + ηG)(λ(f − fñ)) ≤ Pε;

hence the assertion follows from the arbitrariness of ε > 0.

4. Applications. For the sake of simplicity, in this section we consider
the particular case of Musielak–Orlicz spaces, where we take H ⊂ G (H is
a subgroup of G) and µH is the Haar measure of the subgroup H.

Let Φ be the class of all functions ϕ : G × R+
0 → R+

0 which satisfy the
conditions:

1) ϕ(·, u) is measurable on G for every u ∈ R+
0 ;

2) for every s ∈ G, ϕ(s, ·) is continuous and nondecreasing on R+
0 with

ϕ(s, 0) = 0 and ϕ(s, u) > 0 for u > 0;
3) ϕ is τ -bounded, i.e. there are a constant C ≥ 1 and a globally mea-

surable function F : G×G→ R+
0 such that for every t, s ∈ G and u ≥ 0,

ϕ(s, u) ≤ ϕ(t, Cu) + F (t, s).

If moreover ϕ(s, ·) is also convex on u ∈ R+
0 , for every s ∈ G, then we

will write ϕ ∈ Φ̃.
Let {µsw}w>0 be the family defined by µsw(A) =

�
A Lw(s−hw(t)) dµH(t),

A ∈ B(H), {Lw} ∈ L, s ∈ G and w > 0, which, as seen before, is regular.
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We put

%G(f) = �
G

ϕ(s, |f(s)|) dµG(s), %H(g) = �
H

ϕ(t, |g(t)|) dµH (t)

for f ∈ L%(G) and g ∈ L%(H) where L%(G) and L%(H) are the corresponding
Musielak–Orlicz spaces, also denoted by Lϕ(G) and Lϕ(H) respectively (see
[23, 21, 26]). Finally we put

δw = �
G

�
H

F (t, s)Lw(s− hw(t)) dµH(t) dµG(s).

In [22] it is proved that if δw → 0 as w → ∞, then the family {µsw}w>0 is
compatible with the couple (%G, %H), and this happens if ϕ is a τ -bounded
function in the strong sense, which means that ‖F (·, s)‖L1(R) → 0 as s→ 0,
where F is the function from condition 3).

Now let %H and ηH be two modulars on X(H) defined by

%H(f) = �
H

ϕ(t, |f(t)|) dµH (t), ηH(f) = �
H

ξ(t, |f(t)|) dµH (t),

for ϕ ∈ Φ̃, ξ ∈ Φ. In this case we see that the triple {%H , ψ, ηH}, where
ψ ∈ Ψ , is properly directed if for every λ ∈ ]0, 1[ there exists a Cλ ∈ ]0, 1[
satisfying

ϕ(t, Cλψ(u)) ≤ ξ(t, λu)

for every t ∈ H, u ∈ R+
0 (see [6, 28] in the case of Orlicz spaces). Moreover it

is clear that the modular generating a Musielak–Orlicz space is monotone,
absolutely continuous, absolutely finite and strongly finite if ϕ is locally
integrable, i.e.

�
A ϕ(s, u) dµG(s) <∞ for every u > 0 and every measurable

subset A of G with µG(A) < ∞ (see [24]). Moreover, in the case of Orlicz
spaces, the above properties of the modular are always satisfied.

Now we consider some interesting examples of operators Tw.

I) Convolution integral operators. Let G = H = (RN ,+) and µG =
µH = dt, the Lebesgue measure. Let

%G(f) = %H(f) = �
RN

ϕ(t, |f(t)|) dt, ηG(f) = ηH(f) = �
RN

ξ(t, |f(t)|) dt

with ϕ ∈ Φ̃, ξ ∈ Φ and let Lϕ(RN ), Lξ(RN ) be the Musielak–Orlicz spaces
generated by the modulars % and η. Put hw(t) = t for every w > 0. Then
we obtain

(Twf)(s) = �
RN

Kw(s− t, f(t)) dt, s ∈ RN .

In this case it is clear that LE = Lξ(RN ) with E = supw γw <∞. Moreover,
it is easy to see that in the linear case, i.e. when Kw(s, u) = Kw(s)u, the
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assumptions (Li) and (Ki), i = 1, 2, 3, become the classical ones for approx-
imate identities with compact support (see [7, 28]). So our theory includes,
as particular cases, the classical convergence theorems in Musielak–Orlicz
spaces, in Orlicz spaces and in Lp-spaces with p ≥ 1 (see [15, 23]) for linear
integral operators of convolution type.

II) Mellin convolution operators. Analogous applications can be deduced
for Mellin convolution operators of the form

(Twf)(s) ≡ (Mf)(s) =
∞

�
0

Kw(st−1, f(t))t−1 dt, s > 0,

where {Kw}w>0 is a suitable kernel. Here we take G = H = (R+, ·),
µG = µH =

�
t−1 dt, hw(t) = t for every w > 0, %G(f) = %H(f) =� ∞

0 ϕ(t, |f(t)|)t−1 dt, ηG(f) = ηH(f) =
� ∞
0 ξ(t, |f(t)|)t−1 dt with ϕ ∈ Φ̃,

ξ ∈ Φ, and Lϕ(R+), Lξ(R+) are Musielak–Orlicz spaces. Also in this case
we have LE ≡ Lξ(R+) for the same E as before. The above operators are
connected with the theory of moment type operators (see [1, 2]), as well as
with the theory of the Mellin transform (see [13, 14, 3, 9]). Moreover in
the case of G = H = (Rn+, •), where Rn+ = (]0,∞[)n and “•” is defined
by s • t = (s1t1, . . . , sntn) ∈ Rn+, for s = (s1, . . . , sn), t = (t1, . . . , tn) ∈ Rn+
the previous theory also includes the multidimensional version of nonlinear
Mellin convolution operators (see [28]). In fact, G is a locally compact, topo-
logical, abelian group with neutral element θ = 1 = (1, . . . , 1), the inverse
of t is given by t−1 = (t−1

1 , . . . , t−1
n ) and if we put 〈t〉 =

∏n
k=1 tk, the Haar

measure µG is given by

µG = µH = � dt〈t〉 ,
dt being the Lebesgue measure.

III) Generalized sampling operators. Let G = (R,+), H = (Z,+) with
µG the Lebesgue measure on R, µH the counting measure on Z and take
hw : Z→ R of the form hw(k) = k/w, k ∈ Z, w > 0. In this case we obtain
the nonlinear version of the generalized sampling operators of the form:

(Twf)(s) =
∞∑

k=−∞
K(ws− k, f(k/w)), s ∈ R, w > 0.

Moreover,

%G(f) = �
R
ϕ(s, |f(s)|) ds, %H(g) =

∞∑

k=−∞
ϕ(k, |g(k)|),

ηG(f) = �
R
ξ(s, |f(s)|) ds, ηH(g) =

∞∑

k=−∞
ξ(k, |g(k)|),
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with ϕ ∈ Φ̃ and ξ ∈ Φ, are the modulars generating respectively the
Musielak–Orlicz spaces Lϕ(R), Lϕ(Z) and Lξ(R), Lξ(Z). Let Lw(s) = L(ws)
for s ∈ R, w > 0, where L ∈ L1(R) has compact support.

It is proved (see [22]) that if ‖F (·, s)‖l1(Z) is uniformly bounded with re-
spect to s ∈ R, then δw → 0 as w → ∞ and hence the family µsw(H) =�
H Lw(s− hw(t)) dµH (t), s ∈ R, w > 0, is compatible with the couple

(%G, %H) defined above.
From now on we suppose that ϕ and ξ are locally integrable and that

‖F (·, s)‖l1(Z) is uniformly bounded with respect to s ∈ R. In this case, for
Kw(s, ·) = K(ws, ·), w > 0, s ∈ R, assumption (K3) becomes

(α) rwn (s) := sup
1/n≤|u|≤n

∣∣∣∣
1
u

∞∑

k=−∞
K(ws− k, u)− 1

∣∣∣∣→ 0 as w →∞

a.e. s ∈ R, while (L2) becomes

(β)
∞∑

k=−∞
L(ws− k) ≤ N

for some constant N > 0 and for every s ∈ R, w > 0; in a similar manner we
rephrase (L3). Moreover assumption (L1) is always satisfied since Lw(z) =
L(wz) and L has compact support in R, and

�
R
Lw(z) dz = �

R
L(wz) dz =

‖L‖L1(R)

w
= γw.

Now in the particular case of Kw linear, i.e. Kw(s, u) = Kw(s)u, we have
Lw(s) ≡ |Kw(s)| (for the linear case see [11, 27]). If in this case we suppose
that:

(i)
∑

k∈ZK(s− k) = 1 for every s ∈ R,
(ii) sups∈R

∑
k∈Z L(s− k) <∞,

then (α) and (β) are satisfied. Assumptions (i) and (ii) are very common in
the theory of sampling series.

The condition (+) of the class LE now becomes

lim sup
w→∞

1
w

∞∑

k=−∞
ξ(k, λ|f(k/w)|) ≤ S

∞
�
−∞

ξ(s, λ|f(s)|) ds

for every λ > 0 and for some constant S > 0. As mentioned in [7, 28],
the density result (Theorem 1) can be restated in a stronger form with
C∞c (R) instead of Cc(R) (see [17]). So we may formulate, as application of
Theorem 4, the following corollary:
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Corollary 2. Let ϕ ∈ Φ̃, ξ ∈ Φ and f ∈ Lϕ+ξ(R). Suppose that
{%H , ψ, ηH} is properly directed. Moreover let f : R→ R be such that

lim sup
w→∞

1
w

∞∑

k=−∞
ξ(k, λ|g(k/w)|) ≤ S

∞
�
−∞

ξ(s, λ|g(s)|) ds

for every g ∈ f − C∞c (R), λ > 0 and for some constant S > 0. Then there
exists a constant c > 0 such that

lim
w→∞

∞
�
−∞

ϕ
(
s, c
∣∣∣
∞∑

k=−∞
K(ws− k, f(k/w))− f(s)

∣∣∣
)
ds = 0.

As an example, we consider a function ξ : R× R+
0 → R+

0 of the form

ξ(s, u) = ξ̃(s)γ(u)

where ξ̃ : R→ R+
0 satisfies the following conditions:

1) ξ̃ is measurable;
2) there exists a > 0 such that ξ̃(s) ≥ a for every s ∈ R;
3) the sequence εk = ξ̃(k), k ∈ Z, is bounded.

We also suppose that γ is a continuous nondecreasing function such that
γ(0) = 0 and γ(u) > 0 for every u > 0. In this case, for any function f, we
have

1
w

∞∑

k=−∞
ξ(k, λ|f(k/w)|) =

1
w

∞∑

k=−∞
ξ̃(k/w)γ(λ|f(k/w)|) ξ̃(k)

ξ̃(k/w)
(•)

≤ Γ

w

∞∑

k=−∞
ξ(k/w, λ|f(k/w)|)

where Γ = ‖ξ̃(k)‖l∞/a is a positive constant. The last term of inequality (•)
represents the Riemann sum of ξ(s, λ|f(s)|).

Thus, if f : R → R and g ∈ f − C∞c (R) are such that the function
ξ(s, λ|g(s)|) is Riemann integrable and of bounded variation on R, then
g ∈ LE (see [18]). Thus we have:

Corollary 3. Let the function ξ : R×R+
0 → R+

0 of the form ξ(s, u) =
ξ̃(s)γ(u) satisfy the above conditions and let {%H , ψ, ηH} be properly directed.
If f : R → R is such that f ∈ Lϕ+ξ(R) and , for some g ∈ f − C∞c (R),
ξ(s, λ|g(s)|) is a Riemann integrable function of bounded variation on R for
every λ > 0, then there exists a constant c > 0 such that

lim
w→∞

∞
�
−∞

ϕ
(
s, c
∣∣∣
∞∑

k=−∞
K(ws− k, f(k/w))− f(s)

∣∣∣
)
ds = 0.
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In the particular case of Orlicz spaces, it is possible to give sufficient
conditions on the function f : R→ R in order that ξ(λ|f(s)|) is a Riemann
integrable function of bounded variation on R, for every λ > 0; namely it
suffices to assume that f is an absolutely Riemann integrable function on R
with bounded variation on R and that ξ : R+

0 → R+
0 is locally Lipschitz on

R+
0 (see Corollary 2 of [28]).

Remarks 2. (a) The previous theory also contains the case of the mul-
tivariate sampling series of a function f : RN → R, in its nonlinear form.
Indeed, it suffices to take G = (RN ,+), H = (ZN ,+) with the Lebesgue
measure and the counting measure respectively. Then the above generalized
sampling operators take the form

(Twf)(s) =
∑

k∈ZN
K(ws− k, f(k/w))

for s ∈ RN , w ∈ RN+ , K : RN × R→ R and f : RN → R.
In the linear case, the multivariate generalized sampling series have been

studied in [12, 7]. Here w is a vector, i.e. w = (w1, . . . , wN ) ∈ RN+ , and
we define w1 ≤ w2 if and only if wi1 ≤ wi2 for i = 1, . . . , N. Moreover
if w = (w1, . . . , wN ), s = (s1, . . . , sN ), k = (k1, . . . , kN ), we set ws =
(w1s1, . . . , wNsN ), k/w = (k1/w1, . . . , kN/wN ), and w → ∞ means that
wi →∞ for each i = 1, . . . , N.

Moreover we have

�
RN

Lw(z) dz = �
RN

L(wz) dz =
1

∏N
k=1wk

�
RN

L(z) dz =
‖L‖L1(RN )∏N

k=1wk
= γw

and assumption (+) of the class LE becomes

lim sup
w→∞

1
∏N
k=1wk

∑

k∈ZN
ξ(k, λ|f(k/w|) ≤ S �

RN
ξ(s, λ|f(s)|) ds

for every λ > 0 and some constant S > 0.
(b) In the previous theory we may replace the real parameter w > 0 by

an abstract parameter w varying in an arbitrary filtering partially ordered
set W.

(c) In the case of ϕ(u) = up, p ≥ 1, Corollaries 2 and 3 give strong
convergence results in Lp(R) for the nonlinear sampling series of f.
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