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Dirihlet problems without onvexity assumptionby Aleksandra Orpel (�ód¹)Abstrat. We deal with the existene of solutions of the Dirihlet problem for sub-linear and superlinear partial di�erential inlusions onsidered as generalizations of theEuler�Lagrange equation for a ertain integral funtional without onvexity assumption.We develop a duality theory and variational priniples for this problem. As a onsequeneof the duality theory we give a numerial version of the variational priniples whih enablesapproximation of the solution for our problem.1. Introdution. Let us state our notations and hypotheses.
Hypothesis (H). Let Ω be a bounded domain in R

n having a loallyLipshitz boundary. Assume that the funtions G : Ω × R → R and H :
Ω × R

n → R satisfy the Carathéodory ondition and H(y, ·) is Gateauxdi�erentiable and onvex for a.e. y ∈ Ω. Suppose additionally that thereexist onstants b1, b2, b3, b4 > 0, r > 1, q ≥ 3, q > n + 1 and funtions
k1, k2 ∈ L1(Ω, R), k3, k4 ∈ Lq−1(Ω, R) suh that

b1

r
|x|r + k1(y) ≤ G(y, x) ≤

b2

q
|x|q + k2(y),

b3

2
|z|2 + k3(y) ≤ H(y, z) ≤

b4

2
|z|2 + k4(y)for a.e. y ∈ Ω and all x ∈ R, z ∈ R

n.Let Hz(y, z) =
[

d
dz1

H(y, z), . . . , d
dzn

H(y, z)
] for z = [z1, . . . , zn] ∈ R

n andlet ∂xG(y, x) denote the subdi�erential of the funtion G(y, ·) for y ∈ Ω. Weshall onsider the Dirihlet problem for the partial di�erential inlusion(1.1) −div Hz(y,∇x(y)) ∈ ∂xG(y, x(y)) for a.e. y ∈ Ω,whih is a generalization of the membrane equation. We are looking for anonzero weak solution x ∈ W 1,2
0 (Ω, R) of this problem suh that Hz(·,∇x(·))has a distributional divergene that is an element of L2(Ω, R).2000 Mathematis Subjet Classi�ation: 35J20, 35J25.Key words and phrases: Dirihlet problem, duality, variational priniple, Euler�Lagrange equation. [193℄



194 A. OrpelThere have been numerous papers onerning similar problems. If weassume the di�erentiability of G with respet to the seond variable, in-lusion (1.1) beomes an ellipti partial di�erential equation in divergeneform disussed e.g. in [5℄, where G ∈ C(Ω × R), in [2℄, or in [4℄, wherethe right-hand side is independent of x and Ω is a bounded n-dimensionalpolyhedral domain. In [6℄ N. Grenon has proved the existene of a solution
x ∈ W 1,p

0 (Ω, R) ∩ L∞(Ω, R), p > 1, for the PDE(1.2) −div A(y, x, Dx) = H(y, x, Dx) in Ω,where Ω is an open set in R
n, n ≥ 1. This follows from the existene ofa solution of an assoiated symmetrized semilinear problem. The basi as-sumptions in [6℄ are the following:(a) A : Ω × R × R

n → R
n and H : Ω × R × R

n → R are Carathéodoryfuntions suh that for a.e. y ∈ Ω, all x ∈ R and ξ ∈ R
n,

|A(y, x, ξ)| ≤ β(|x|)|ξ|p−1 + b(y),(1.3)

|H(y, x, ξ)| ≤ γ(|x|){|ξ|p + d(y)},(1.4)where β, γ are positive and loally bounded, b is a positive element of
Lp′(Ω, R), p′ = p/(p − 1), and d ∈ L1(Ω, R);(b) for a.e. y ∈ Ω and all x ∈ R,
〈A(y, x, ξ) − A(y, x, ξ′), ξ − ξ′〉 > 0 for all ξ, ξ′ ∈ R

n suh that ξ 6= ξ′,and there exists α > 0 suh that for a.e. y ∈ Ω and all x ∈ R,
α|ξ|p ≤ 〈A(y, x, ξ), ξ〉 for all ξ ∈ R

n,() there are nondereasing ki, θi ∈ C(R+, R+), nonnegative fi ∈
Lq(Ω, R+), max{n/p, 1} < q ≤ ∞, i = 1, 2, with θi(0) > 0 suh that

H(y, x, ξ) ≤

{
α{k1(x)|ξ|p + θ1(x)f1(y)} for all x ≥ 0,
α{−k2(−x)|ξ|p − θ2(−x)f2(y)} for all x ≤ 0,for y ∈ Ω and ξ ∈ R

n.Let us note that for A(y, x, ξ) = Hz(y, ξ) and H(y, x, ξ) = Gx(y, x),(1.2) gives (1.1). In spite of this fat, we annot use the results of [6℄. Inthe general ase desribed by hypothesis (H), G satis�es the Carathéodoryondition only, so that Gx(y, ·) is not neessarily ontinuous. We also do notassume any additional estimate on Gx (see (1.3), (1.4) and ()).There are a lot of results onerning the ase when H has the speial form
H(y, z) = 1

2 |z|
2 for y ∈ Ω and z ∈ R

n (see e.g., [7℄, [8℄, [14℄). In [17℄ and [13℄the existene of a lassial solution of (1.1) is disussed under the followingassumptions: Gx(·, ·) ∈ C(Ω × R, R), Gx satis�es an additional estimate on
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Ω ×R and the following relation between G and Gx holds: there exist µ > 0and r ≥ 0 suh that for |x| ≥ r,(1.5) 0 < µG(y, x) ≤ xGx(y, x).A ondition similar to (1.5) is also used in [3℄. Numerous papers onernsimilar problems for G being a polynomial with respet to x (see [15℄, [19℄).In many papers the right-hand side of the equation is ontinuous ([3℄, [10℄,[18℄) or onvex with respet to x (see [16℄). Here we point out that weakerassumptions made on G (R ∋ x 7→ G(y, x) is not neessarily onvex andontinuous) are still su�ient to onlude the existene of a solution for (1.1).To this end (1.1) is onsidered as the generalized Euler�Lagrange equationfor the funtional J given by(1.6) J(x) =

\
Ω

{H(y,∇x(y))− G(y, x(y))} dy.

We see that under hypothesis (H), J is not, in general, bounded on
W 1,q

0 (Ω, R), so that we must look for ritial points of (1.6) of �minmax�type or �nd subsets X and Xd, on whih the ation funtional J or itsdual JD is bounded. We shall apply another approah and hoose speialsets over whih we will alulate the minimum of J and JD. The main dif-�ulty in this approah is to show that X 6= ∅. Of ourse, we have at ourdisposal the Morse theory and its generalizations, saddle points theorems,mountain pass theorems (see e.g. [10℄, [11℄, [13℄, [17℄, [15℄), but none of thesemethods exhausts all ritial points of J . Moreover our assumptions arenot strong enough to use, for example, the Mountain Pass Theorem: G isa Carathéodory funtion so it is not su�iently smooth, we assume neitheronvexity of G nor additional relations onerning Gx and G (see (1.5)), inonsequene, J is not C1 on a su�iently large subset of W 1,q
0 (Ω, R) and itdoes not satisfy, in general, the (PS)-ondition. We shall develop a dualitytheory that permits us to omit, in our proof of the existene of ritial points,the deformation lemmas, the Ekeland variational priniple or PS type on-ditions. Our approah also enables a numerial haraterization of solutionsof our problem.For A > 0 and p1 ∈ Lq−1(Ω, Rn) let

X := {x ∈ W 1,q−1
0 (Ω, R); div Hz(·,∇x(·)) ∈ Lq′(Ω, R)and ‖Hz(·,∇x(·))− p1‖Lq−1(Ω,Rn) ≤ A}with q′ = q/(q − 1).

Remark 1. By the assumption n < q − 1 and the Sobolev embeddingtheorem, we have W 1,q−1
0 (Ω, R) ⊂ Lq(Ω, R).



196 A. OrpelConsider sets X0 ⊂ X with the following property: for eah x ∈ X0,there exists x̃ ∈ X0 suh that
(1.7)

\
Ω

{〈x(y),−div(Hz(y,∇x̃(y)))〉 − G∗(y,−div(Hz(y,∇x̃(y))))} dy

=
\
Ω

G(y, x(y)) dy.What is laking is the fat that nonempty sets X0 exist. In Setion 5we shall onsider (1.1) for H(y, z) = 1
2k(y)|z|2 for y ∈ Ω, z ∈ R

n and
k ∈ C1(Ω, R), and formulate a sequene of assumptions onerning G whihyield a nonempty set X0. We will show that, in this ase, it is su�ient toassume the onvexity of G and the boundedness of Gx in the Lq−1 norm ona ball only. Sine J is C1 on the ball only and we have the loal estimateon Gx, the existene result for (1.1) annot be derived from the MountainPass Theorem. We also give an example of G satisfying all these assumptions.Throughout the paper we shall assume hypothesis (H) and
Hypothesis (H1). There exists a nonempty set X0 satisfying (1.7).For any suh X0, we de�ne X to be the union of X0 and the set of allsolutions of problem (1.1) whih belong to X.
Remark 2. For all x ∈ X,

∂xG(y, x(y)) 6= ∅ and G(y, x(y)) = G∗∗(y, x(y))a.e. on Ω.Proof. This follows from the de�nition of X, the properties of subdi�er-ential and the Fenhel formula.Let
(1.8) Xd := {p ∈ Lq−1(Ω, Rn); there exists x ∈ X suh that

p(y) = Hz(y,∇x(y)) for a.e. y ∈ Ω}.Sine q − 1 > 2 and Ω is bounded, Xd ⊂ L2(Ω, Rn).
Remark 3. For every x ∈ X, there exists p ∈ Xd satisfying

−div p(y) ∈ ∂xG(y, x(y)) for a.e. y ∈ Ω.Proof. Fix x ∈ X. Then there exists x̃ ∈ X suh that (1.7) holds. Taking
p(y) = Hz(y,∇x̃(y)) for a.e. y ∈ Ω we see that p ∈ Xd,\

Ω

{〈x(y),−div(p(y))〉 − G∗(y,−div p(y))} dy =
\
Ω

G(y, x(y)) dy,and, in onsequene, the required relation is satis�ed.
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Remark 4. The de�nitions of X and Xd imply that there exists M > 0suh that for all p ∈ Xd,

‖p‖Lq−1(Ω,Rn) ≤ M.2. Duality. The aim of this setion is to develop a duality whih de-sribes the onnetions between the ritial values of J and the in�mum ofthe dual funtional JD : Xd → R de�ned as follows:(2.1) JD(p) =
\
Ω

{−H∗(y, p(y)) + G∗(y,−div p(y))} dy,where H∗(y, ·) and G∗(y, ·) (y ∈ Ω) denote the Fenhel onjugate of H(y, ·)and G(y, ·), respetively.To this end we need the perturbation Jx : Lq(Ω, R) → R of J given by
Jx(g) =

\
Ω

{−H(y,∇x(y)) + G(y, g(y) + x(y))} dy.It is lear that Jx(0) = −J(x) for all x ∈ X.For every x ∈ X de�ne a onjugate J#
x : Xd → R of Jx by

(2.2) J#
x (p)

= sup
g∈Lq(Ω,R)

\
Ω

{〈g(y), div p(y)〉 − G(y, g(y)+x(y)) + H(y,∇x(y))} dy

=
\
Ω

{G∗(y, div p(y)) + H(y,∇x(y)) − 〈x(y), div p(y)〉} dy.Now we show that for all p ∈ Xd,(2.3) sup
x∈X

(−J#
x (−p)) = −JD(p).Indeed, �x p ∈ Xd. From (1.8) we obtain the existene of x ∈ X satisfying

p(·) = Hz(·,∇x(·)) a.e. on Ω and, in onsequene,(2.4) \
Ω

{〈∇x(y), p(y)〉 − H(y,∇x(y))} dy =
\
Ω

H∗(y, p(y)) dy,so that
(2.5)

\
Ω

{〈∇x(y), p(y)〉 − H(y,∇x(y))} dy

≤ sup
x∈X

\
Ω

{〈∇x(y), p(y)〉 − H(y,∇x(y))} dy

≤ sup
v∈L2(Ω,Rn)

\
Ω

{〈v(y), p(y)〉 − H(y, v(y))} dy

=
\
Ω

H∗(y, p(y)) dy =
\
Ω

{〈∇x(y), p(y)〉 − H(y,∇x(y))} dy.



198 A. OrpelThis implies
sup
x∈X

(−J#
x (−p)) = sup

x∈X

\
Ω

{〈∇x(y), p(y)〉−H(y,∇x(y))−G∗(y,−div p(y))} dy

=
\
Ω

{H∗(y, p(y)) − G∗(y,−div p(y))} dy = −JD(p),as laimed.We also need another relation:(2.6) sup
p∈Xd

(−J#
x (−p)) = −J(x)for eah x ∈ X. To prove this, �x x ∈ X and use Remark 3 to �nd p ∈ Xdsuh that for a.e. y ∈ Ω,

−div p(y) ∈ ∂xG(y, x(y)),and further(2.7) \
Ω

{〈x(y),−div p(y)〉 − G∗(y,−div p(y))} dy =
\
Ω

G(y, x(y)) dy.By arguments similar to those in the proof of (2.5), we obtain
(2.8) sup

p∈Xd

\
Ω

{〈x(y),−div p(y)〉 − G∗(y,−div p(y))} dy

=
\
Ω

G∗∗(y, x(y)) dy =
\
Ω

G(y, x(y)) dy,where the last equality is due to Remark 2. By (2.8) and (2.2),
sup

p∈Xd

(−J#
x (−p))

= sup
p∈Xd

\
Ω

{〈x(y),−div p(y)〉 − G∗(y,−div p(y)) − H(y,∇x(y))}

=
\
Ω

{−H(y,∇x(y)) + G(y, x(y))} dy = −J(x).Now we have the following duality priniple:Theorem 2.1.
inf
x∈X

J(x) = inf
p∈Xd

JD(p).Proof. From (2.6) and (2.3),
sup
x∈X

(−J(x)) = sup
x∈X

sup
p∈Xd

(−J#
x (−p)) = sup

p∈Xd

sup
x∈X

(−J#
x (−p)) = sup

p∈Xd

(−JD(p)),whih yields the assertion.



Dirihlet problems without onvexity assumption 1993. Variational priniples. Now we use the duality from the previ-ous setion to establish relations between the existene of minimizers of
JD and J . We also give a variational priniple for minimizing sequenesof both funtionals. This result enables numerial haraterization of mini-mizing sequenes of JD and approximation of its in�mum. To this end weneed a kind of perturbation of JD. For eah p ∈ Xd de�ne the funtional
JDp

: L2(Ω, Rn) → R as
JDp

(h) =
\
Ω

{H∗(y, p(y) + h(y)) − G∗(y,−div p(y))} dy.

Theorem 3.1. Assume that p ∈ Xd is a minimizer of JD, i.e., JD(p) =
infp∈Xd JD(p). Then there exists x ∈ X whih is a minimizer of J ,(3.1) J(x) = inf

x∈X
J(x),and suh that ∇x ∈ ∂JDp

(0). Moreover
J#

x (−p) + JDp
(0) = 0,(3.2)

J#
x (−p) − J(x) = 0.(3.3)Proof. By (1.8) for some x ∈ X,\

Ω

{〈∇x(y), p(y)〉 − H(y,∇x(y))} dy =
\
Ω

H∗(y, p(y)) dy.

Adding TΩ{−G∗(y,−div p(y))} dy to both sides we obtain (3.2).After some alulation, we see that
J∗

Dp
(∇x) = J#

x (−p)(where J∗
Dp

denotes the Fenhel onjugate of JDp
). Thus, by (3.2) and theproperties of the subdi�erential, we have the inlusion ∇x ∈ ∂JDp

(0).We now show that x is a minimizer of J : X → R. By Theorem 2.1, toprove (3.1), it is su�ient to show that JD(p) ≥ J(x), and this follows fromthe equalities JDp
(0) = −JD(p), (3.2) and (2.8):

(3.4) JD(p) = J#
x (−p) ≥ inf

p∈Xd
(J#

x (−p))

= − sup
p∈Xd

\
Ω

{〈x(y),−div p(y)〉 − G∗(y,−div p(y)) − H(y,∇x(y))} dy

= −
\
Ω

{G(y, x(y)) − H(y,∇x(y))} dy = J(x).Finally, (3.3) is a simple onsequene of (3.2) and the fat that JDp
(0) =

−JD(p) = −J(x).



200 A. OrpelCorollary 3.2. If p ∈ Xd satis�es JD(p) = infp∈Xd JD(p) then thereexists x ∈ X whih is a solution of the Dirihlet problem for (1.1):(3.5) −div[Hz(y,∇x(y))] ∈ ∂xG(y, x(y))for a.e. y ∈ Ω.Proof. By Theorem 3.1 there exists x ∈ X for whih (3.2) and (3.3) hold.Hene \
Ω

{H∗(y, p(y)) + H(y,∇x(y)) − 〈∇x(y), p(y)〉} dy = 0and \
Ω

{G∗(y,−div p(y)) + G(y, x(y)) − 〈x(y),−div p(y)〉} dy = 0.Using the properties of the Fenhel onjugate, we obtain, for a.e. y ∈ Ω,
H∗(y, p(y)) + H(y,∇x(y))− 〈∇x(y), p(y)〉 = 0,

G∗(y,−div p(y)) + G(y, x(y)) − 〈x(y),−div p(y)〉 = 0so that
p(y) = Hz(y,∇x(y)) and − div p(y) ∈ ∂xG(y, x(y))for a.e. y ∈ Ω. This implies (3.5).Now we prove a numerial version of the above variational priniple.We give a result on minimizing sequenes that is analogous to the previoustheorem.Theorem 3.3. Let {pn}n∈N ⊂ Xd be a minimizing sequene for JD :

Xd → R suh that(3.6) c := inf
n∈N

JD(pn) > −∞.Then for any n ∈ N there exists xn ∈ X satisfying(3.7) ∇xn ∈ ∂JDpn
(0), inf

n∈N

J(xn) = inf
x∈X

J(x).Moreover for all n ∈ N,(3.8) JDpn
(0) + J#

xn
(−pn) = 0,and for eah ε > 0, there exists n0 ∈ N suh that for all n > n0,

J#
xn

(−pn) − J(xn) ≤ ε,(3.9)

|JD(pn) − J(xn)| ≤ ε.(3.10)Proof. As in the proof of Theorem 3.1, for any n ∈ N there exists
xn ∈ X satisfying (3.8) and ∇xn ∈ ∂JDpn

(0). By Theorem 2.1, to provethat {xn}n∈N ⊂ X is a minimizing sequene of J on X, it su�es to show



Dirihlet problems without onvexity assumption 201that(3.11) inf
n∈N

J(xn) = c,beause from (3.11) and Theorem 2.1 it follows that
inf
n∈N

J(xn) = c = inf
n∈N

JD(pn) = inf
p∈Xd

JD(p) = inf
x∈X

J(x).It is lear that by Theorem 2.1 and (3.6), for all n ∈ N,(3.12) J(xn) ≥ c.Fix ε > 0. From (3.6) there exists n0 ∈ N suh that ε > JD(pn) − c for all
n > n0. Therefore, the equalities JDpn

(0) = −JD(pn), (3.8) and (2.6) implythat for all n > n0,
c + ε > JD(pn) = J#

xn
(−pn) ≥ inf

p∈Xd
(J#

xn
(−p)) = J(xn).Thus, by (3.12), c = infn∈N J(xn).Conditions (3.9) and (3.10) are satis�ed beause of the last assertion andthe fat that J#

xn(−pn) ≤ c + ε for all n > n0.As a onsequene of the previous theorem we obtainCorollary 3.4. Suppose that {pn}n∈N ⊂ Xd is a minimizing sequenefor JD on Xd and infn∈N JD(pn) = c > −∞. Then there exists a minimizingsequene {xn}n∈N ⊂ X for J with(3.13) Hz(y,∇xn(y)) = pn(y)for a.e. y ∈ Ω and every n ∈ N. Moreover(3.14) lim
n→∞

\
Ω

{G∗(y,−div pn(y))+G(y, xn(y))+〈div pn(y), xn(y)〉} dy = 0.

4. The existene of solutions for the Dirihlet problem. Thissetion is devoted to the existene of a solution of (1.1) whih is a minimizerof J . First we all a relevant lemma from [12℄:Lemma 4.1. Let Ω ⊂ R
n and let F : Ω → R be a onvex and lowersemiontinuous funtion suh that for eah u ∈ Ω the following inequalitieshold :

−b ≤ F (u) ≤ a
1

q
|u|q + c,for some onstants a > 0, b, c ≥ 0, q > 1. Then for all v ∈ ∂F (u),

|v| ≤ (q′aq′/q(|u| + b + c) + 1)q−1,where q′ = q/(q − 1).



202 A. OrpelTheorem 4.2. There exists x0 ∈ X suh that
−div(Hz(y,∇x0(y)) ∈ ∂xG(y, x0(y))for a.e. y ∈ Ω. Moreover x0 is a minimizer of J on X:

J(x0) = inf
x∈X

J(x).Proof. By hypothesis (H) for every p ∈ Xd we obtain
JD(p) =

\
Ω

[−H∗(y, p(y)) + G∗(y,−div p(y))] dy(4.1)

≥
b1−q′

2

q′
‖div p‖q′

Lq′ (Ω,R)
−

1

2b3
‖p‖2

L2(Ω,Rn) +
\
Ω

(k3(y)−k2(y)) dy

≥
b1−q′

2

q′
‖div p‖q′

Lq′ (Ω,R)
−

1

2b3
βM2 +

\
Ω

(k3(y) − k2(y)) dy,

where β = [vol(Ω)]1−2/(q−1). This implies that JD is bounded below on Xd.Taking into aount the growth onditions imposed on G and H we seeat one that for ã ∈ R large enough the set Pã = {p ∈ Xd; ã ≥ JD(p)}is not empty. Now we an hoose a minimizing sequene {pm}m∈N ⊂ Pãfor JD. By (4.1) the sequene {div pm}m∈N ⊂ Xd is bounded in the norm
‖ · ‖Lq′(Ω,R). Moreover, by the de�nition of Xd, {pm}m∈N is bounded in
Lq−1(Ω, Rn). Thus, passing to a subsequene if neessary, we dedue that
pm ⇁ p0 as m → ∞, where p0 ∈ Lq−1(Ω, Rn), and div pm ⇁ z as m → ∞,where z ∈ Lq′(Ω, R) (⇁ denotes weak onvergene). So\

Ω

〈p0(y),∇h(y)〉 dy = lim
m→∞

\
Ω

〈pm(y),∇h(y)〉 dy

= − lim
m→∞

\
Ω

〈div pm(y), h(y)〉 dy = −
\
Ω

〈z(y), h(y)〉 dyfor any h ∈ C∞
0 (Ω, R), hene\

Ω

(〈p0(y),∇h(y)〉+ 〈z(y), h(y)〉) dy = 0for all h ∈ C∞
0 (Ω, R), and �nally, by the Euler�Lagrange lemma, div p0(y) =

z(y) for a.e. y ∈ Ω.Let B(p1; A) = {z ∈ Lq−1(Ω, Rn); ‖p1 − z‖Lq−1(Ω,Rn) ≤ A}. Sine
{pm}m∈N ⊂ B(p1; A) ⊂ Lq−1(Ω, Rn) and pm ⇁ p0, and B(p1, A) is weaklysequentially losed as a onvex, losed subset of Lq−1(Ω, Rn), we have(4.2) p0 ∈ B(p1; A).Moreover, by (4.1), {pm}m∈N satis�es the assumptions of Corollary 3.4.Therefore there exists some sequene {xm}m∈N ⊂ X minimizing J on X



Dirihlet problems without onvexity assumption 203and suh that for all m ∈ N,(4.3) Hz(y,∇xm(y)) = pm(y) for a.e. y ∈ Ω.Taking into aount hypothesis (H), we an use the Fenhel formula andrewrite (4.3) as follows:(4.4a) ∇xm(y) ∈ ∂pH
∗(y, pm(y)) for a.e. y ∈ Ω,where ∂pH

∗(y, p) is the subdi�erential of the funtion R
n ∋ p 7→ H∗(y, p),

y ∈ Ω. By Lemma 4.1 and the boundedness of {pm}m∈N in Lq−1(Ω, Rn) wesee that {∇xm}m∈N is bounded in Lq−1(Ω, Rn) and {xm}m∈N is bounded in
W 1,q−1

0 (Ω, R). Thus, we may hoose a subsequene still denoted by {xm}m∈Nweakly onvergent to x0 ∈ W 1,q−1
0 (Ω, R). Hene, by the Rellih�Kondrashovtheorem,

lim
m→∞

‖xm − x0‖Lq(Ω,R) = 0.As {xm}m∈N tends strongly to x0 in Lq(Ω, R) and {div pm}m∈N tends weaklyto div p0 in Lq′(Ω, R) we get(4.5) lim
m→∞

\
Ω

〈div pm(y), xm(y)〉 dy =
\
Ω

〈div p0(y), x0(y)〉 dyand
(4.6) lim inf

m→∞

\
Ω

[G(y, xm(y)) + G∗(y,−div pm(y))] dy

= lim
m→∞

\
Ω

G(y, xm(y)) dy + lim inf
m→∞

\
Ω

G∗(y,−div pm(y)) dy

≥
\
Ω

[G(y, x0(y)) + G∗(y,−div p0(y))] dy,whih follows from the ontinuity of Lq(Ω, R) ∋ x 7→
T
Ω G(y, x(y)) dy andweak lower semiontinuity of Lq′(Ω, R) ∋ z 7→

T
Ω G∗(y, z(y)) dy. Combining(4.5), (4.6) and (3.14) we see that(4.7) \

Ω

{G∗(y,−div p0(y)) + G(y, x0(y)) + 〈div p0(y), x0(y)〉} dy ≤ 0.Thus, by the properties of the Fenhel transform, we have equality in (4.7),and, in onsequene, for a.e. y ∈ Ω,
G∗(y,−div p0(y)) + G(y, x0(y)) + 〈div p0(y), x0(y)〉 = 0.Finally, we obtain(4.8) −div p0(y) ∈ ∂xG(y, x0(y)) for a.e. y ∈ Ω.Now using (4.3) we infer that\

Ω

{H∗(y, pm(y)) + H(y,∇xm(y)) − 〈pm(y),∇xm(y)〉} dy = 0.



204 A. OrpelAnalysis similar to that in the proof of (4.8) now shows that(4.9) p0(y) = Hz(y,∇x0(y)) for a.e. y ∈ Ω.(4.8) and (4.9) imply
−div Hz(y,∇x0(y)) ∈ ∂xG(y, x0(y)) for a.e. y ∈ Ω.From (4.2) and (4.9) we have x0 ∈ X and further, by the last equality,

x0 ∈ X.To prove the last assertion, it is su�ient to note that
inf
x∈X

J(x) = lim inf
m→∞

J(xm) = lim inf
m→∞

\
Ω

{H(y,∇xm(y)) − G(y, xm(y))} dy

= lim inf
m→∞

\
Ω

H(y,∇xm(y)) dy − lim
m→∞

\
Ω

G(y, xm(y)) dy

≥
\
Ω

H(y,∇x0(y)) dy −
\
Ω

G(y, x0(y)) dy = J(x0),whih is due to the ontinuity of Lq(Ω, R) ∋ x 7→
T
Ω G(y, x(y)) dy, weaklower semiontinuity of L2(Ω, Rn) ∋ z 7→

T
Ω H(y, z(y)) dy and the fats that

xm → x0 in Lq(Ω, R) and ∇xm ⇁ ∇x0 in L2(Ω, Rn) as m → ∞.
Remark 5. If 0 /∈ Xd (that is, ‖p1‖Lq−1(Ω,Rn) > A) then the abovetheorem gives the existene of a nonzero solution of (1.1).
5. Appliations. We shall apply our theory to derive the existene ofsolutions of the Dirihlet problem for a ertain lass of partial di�erentialequations.Now we reall the relevant theorems from [5℄ and [1℄:Theorem 5.1. Let Ω be a C1,1 domain in R

n. If f ∈ Lp(Ω, R) with
1 < p < ∞, and k ∈ C1(Ω, R), k0 ≥ k(y) ≥ k0 > 0 for all y ∈ Ω, then theDirihlet problem

{
div(k(y)∇u(y)) = f(y) for a.e. y ∈ Ω,
u ∈ W 1,p

0 (Ω, R),has a unique solution u ∈ W 2,p(Ω, R).Theorem 5.2. Let Ω be a C1,1 domain in R
n, 1 < p < ∞ and k ∈

C1(Ω, R) and k0 ≥ k(y) ≥ k0 > 0 for any y ∈ Ω. Then there exists aonstant c̃ (independent of u) suh that(5.1) ‖u‖W 2,p(Ω,R) ≤ c̃‖div(k∇u)‖Lp(Ω,R)for all u ∈ W 1,p
0 (Ω, R) ∩ W 2,p(Ω, R).Theorem 5.3 (Sobolev Imbedding Theorem). Let Ω be a bounded do-main in R

n and let p, m ≥ 1, k ≤ m, with pk > n. The following inequality
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0 (Ω, R) with a onstant c depending on m, k and p, butnot otherwise on Ω or on u:

max
0≤|α|≤2−k

sup
y∈Ω

|Dαu(y)| ≤ c‖u‖W m,p
0

(Ω,R).Theorem 5.4. Assume that1. q ∈ [3,∞), Ω ∈ C1,1 is a bounded domain in R
n, with n + 1 < q;2. k ∈ C1(Ω, R), k0 ≥ k(y) ≥ k0 for all y ∈ Ω;3. G : Ω ×R → R is di�erentiable with respet to the seond variable on

R for a.e. y ∈ Ω;4. there exists z ∈ Lq−1(Ω, R) with the following properties. Let z ∈
W 2,q−1(Ω, R) denote the solution of the equation

−div(k(y)∇z(y)) = Gx(y, z(y)) for a.e. y ∈ Ω(the existene of z follows from Theorem 5.1) and let c̃ be the onstantintrodued in Theorem 5.2 for W 1,q−1
0 (Ω, R) ∩ W 2,q−1(Ω, R). Thenthere exist onstants S1 > 0, b1, b2 > 0, 1 < r < q and funtions

k1, k2 ∈ L1(Ω, R) suh that(a) for all x ∈ R and a.e. y ∈ Ω,(5.2) b1

r
|x|r + k1(y) ≤ G(y, x) ≤

b2

q
|x|q + k2(y),(b) B(z; c̃S1) ∋ x 7→

T
Ω G(y, x(y)) dy is onvex , where

B(z; c̃S1) := {u ∈ W 2,q−1
0 (Ω, R); ‖u − z‖

W 2,q−1

0
(Ω,R)

< c̃S1},() for any x ∈ B(z; c̃S1),(5.3) ‖Gx(·, x(·)) − Gx(·, z(·))‖Lq−1(Ω,R) < S1.Then there exists a solution
x0 ∈ {u ∈ W 1,q−1

0 (Ω, R); ‖k∇u − k∇z‖Lq−1(Ω,Rn) ≤ k0c̃S1}of the Dirihlet problem for the PDE(5.4) −div(k(y)∇x(y)) = Gx(y, x(y)) for a.e. y ∈ Ωsuh that div(k(·)∇x0(·)) ∈ Lq′(Ω, R).Proof. First we reall the de�nition of X:
X = {x ∈ W 1,q−1

0 (Ω, R); div(k∇x) ∈ Lq′(Ω, R)and ‖k∇x − k∇z‖Lq−1(Ω,Rn) ≤ k0c̃S1}.Let
X0 := {x ∈ W 2,q−1

0 (Ω, R); ‖div(k∇x) + Gx(·, z(·))‖Lq−1(Ω,R) < S1}.



206 A. OrpelWe show the inlusion X0 ⊂ B(z; c̃S1). Fix x ∈ X0. Using Theorem 5.2, wehave
‖x − z‖

W 2,q−1

0
(Ω,R)

≤ c̃‖div(k∇x − k∇z)‖Lq−1(Ω,R)(5.5)

≤ c̃‖div k∇x + Gx(·, z(·))‖Lq−1(Ω,R) < c̃S1,so that x ∈ B(z; c̃S1).Now we prove that X0 has the following property: for every x ∈ X0, thereexists x ∈ X0 suh that
(5.6)

\
Ω

{〈x(y),−div(k(y)∇x(y))〉 − G∗(y,−div(k(y)∇x(y))} dy

=
\
Ω

G(y, x(y)) dy.To this end �x x ∈ X0. Sine Gx(·, x(·)) ∈ Lq−1(Ω, R), by Theorem 5.1 thereexists a unique solution x0 ∈ W 1,q−1
0 (Ω, R) ∩ W 2,q−1(Ω, R) of the Dirihletproblem for the equation(5.7) −div(k(y)∇x0(y)) = Gx(y, x(y)) a.e. on Ω.Thus, by (5.3), (5.7) and the inlusion X0 ⊂ B(z; c̃S1), we obtain

‖div(k(y)∇x0(y)) + Gx(·, z(·))‖Lq−1(Ω,R)

= ‖Gx(·, x(·))) − Gx(·, z(·))‖Lq−1(Ω,R) < S1.This implies x0 ∈ X0 and, in onsequene, x0 ∈ B(z; c̃S1). Thus, by (5.7)and the onvexity of the funtional
φ(u) =

{T
Ω G(y, u(y)) dy for u ∈ B(z; c̃S1),

+∞ for u ∈ W 2,q−1
0 (Ω, R) \ B(z; c̃S1),we obtain

−div(k∇x0) ∈ ∂φ(x)and the properties of the subdi�erential yield (5.6).Moreover, from (5.5), for all x ∈ X0, we have(5.8) ‖k∇x − k∇z‖Lq−1(Ω,Rn) ≤ k0‖x − z‖
W 2,q−1

0
(Ω,R)

≤ k0c̃S1.Summarizing, X0 6= ∅ (z ∈ X0), X0 ⊂ X and X0 has the required property.Now we de�ne X to be the union of X0 and the set of all solutions ofproblem (5.4) whih belongs to X. Let Xd be given by
Xd := {p ∈ Lq−1(Ω, Rn); there exists x ∈ X suh that

p(y) = k(y)∇x(y) for a.e. y ∈ Ω}.Now Theorem 4.2 yields the existene of a solution x0 ∈ W 1,q−1
0 (Ω, R),with div(k(·)∇x0(·)) ∈ Lq′(Ω, R), of the PDE

div(k(y)∇x(y)) + Gx(y, x(y)) = 0.
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Remark 6. It worth noting that if ‖k∇z‖Lq−1(Ω,Rn) > k0c̃S1 then theabove theorem states the existene of a nonzero solution of (5.4).Proof. If the solution desribed by Theorem 5.4 is the zero funtion, then

0 ∈ X, whih implies the estimate
‖k∇z‖Lq(Ω,R) ≤ k0c̃S1.But it ontradits our assumption.As a onsequene of Theorem 5.4 we obtainTheorem 5.5. Suppose that1. q ∈ [3,∞) and Ω ∈ C1,1 is a bounded domain in R

n, with n + 1 < q;2. k ∈ C1(Ω, R), k0 ≥ k(y) ≥ k0 for all y ∈ Ω;3. G : Ω ×R → R is di�erentiable with respet to the seond variable on
R for a.e. y ∈ Ω;4. there exist onstants b1, b2 > 0, 1 < r < q and funtions k1, k2 ∈
L1(Ω, R) suh that for all x ∈ R and a.a. y ∈ Ω,

b1

r
|x|r + k1(y) ≤ G(y, x) ≤

b2

q
|x|q + k2(y);5. I is a subset of N suh that for eah i ∈ I there exists zi ∈ Lq−1(Ω, R)with the following properties:(a) there exists Si

1 > 0 suh that
‖Gx(·, x(·)) − Gx(·, zi(·))‖Lq−1(Ω,R) < Si

1for any x ∈ B(zi; S
i
1c̃)(b) B(zi; S

i
1c̃) ∋ x 7→

T
Ω G(y, x(y)) dy is onvex ,where zi ∈ W 2,q−1

0 (Ω, R) satis�es the equality
−div(k(y)∇zi(y)) = Gx(y, zi(y)) for a.e. y ∈ Ω(the existene of zi follows from Theorem 5.1).Then for all i ∈ I there exists a solution xi of the Dirihlet problem for thePDE(5.9) −div(k(y)∇x(y)) = Gx(y, x(y)) for a.e. y ∈ Ωsuh that div(k(·)∇xi(·)) ∈ Lq′(Ω, R) and xi ∈ Bi, where

Bi = {u ∈ W 1,q−1
0 (Ω, R); ‖k∇u − k∇zi‖Lq−1(Ω,Rn) ≤ k0c̃S

i
1}.If we assume additionally that Bi∩Bj = ∅ for all i, j ∈ I, i 6= j, then xi 6= xjfor all i, j ∈ I, i 6= j and , in onsequene, #S ≥ #I, where S denotes theset of solutions for (5.9).Now we shall give an expliit example of G satisfying the assumptions ofTheorem 5.4.



208 A. OrpelExample 5.6. Assume that1. n = 4, q = 6, Ω ⊂ R
4;2. k ∈ C1(Ω, R), k0 ≥ k(y) ≥ k0 for all y ∈ Ω;3. z is any element of C0(Ω, R) suh that ‖z5−6z3+8z +1‖L5(Ω,R) < 1

10 ;4. b > 0, a ∈ L∞(Ω, R) and
b < ‖a‖L∞(Ω,R) < min

{
1,

3

40 5

√
|Ω| + 5, 5

}
.Then there exists a nonzero solution

x0 ∈

{
u ∈ W 1,5

0 (Ω, R); ‖k∇u − k∇z‖L5(Ω,Rn) ≤ k0
3

5(1 + c)

}

of the Dirihlet problem for the PDE
(5.10) −div(k(y)∇x(y)) =

a(y)

(1 + c)(1 + c̃)
((x(y))5−6(x(y))3 +8x(y)+1)for a.e. y ∈ Ω, suh that div(k(·)∇x0(·)) ∈ L6/5(Ω, R), with c being theSobolev onstant (Theorem 5.3 for W 2,5

0 (Ω, R) and k = 2) and c̃ desribedin Theorem 5.2 for p = 5.Proof. It is lear that the right-hand side of (5.10) is the derivative of
G : Ω × R → R given by

G(y, x) =
a(y)

6(1 + c)(1 + c̃)
((x2 − 4)2(x2 − 1) + 6x)with respet to the seond variable. For a.e. y ∈ Ω the funtion G(y, ·) isdi�erentiable on R and onvex in the interval (−7/10, 7/10). Moreover forall x ∈ R and a.e. y ∈ Ω we have

a(y)

6(1 + c)(1 + c̃)
(3x4 − 200) ≤ G(y, x) ≤

a(y)

6(1 + c)(1 + c̃)
(26x6 + 36),so that G satis�es the required growth onditions. Sine Gx(·, z(·))∈L5(Ω, R)Theorem 5.1 leads to the existene of z ∈ W 1,5

0 (Ω, R)∩W 2,5(Ω, R) whih isa solution of the PDE
−div(k(y)∇u(y)) =

a(y)

(1 + c)(1 + c̃)
((z(y))5 − 6(z(y))3 + 8z(y) + 1).From 5.2 we know that

(5.11) ‖z‖C0(Ω,R) ≤ c‖z‖W 2,5(Ω,R) ≤ cc̃‖div(k(y)∇z(y))‖L5(Ω,R)

≤ (1 + c)(1 + c̃)‖div(k(y)∇z(y))‖L5(Ω,R)

= (1 + c)(1 + c̃)

∥∥∥∥
a(y)

(1 + c)(1 + c̃)
(z5 − 6z3 + 8z + 1)

∥∥∥∥
L5(Ω,R)

≤ ‖a‖L∞(Ω,R)‖z
5 − 6z3 + 8z + 1‖L5(Ω,R) ≤

1

10
.
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S1 :=

3

5(1+c)c̃
,

B(z; c̃S1) :=

{
u∈W 2,5

0 (Ω, R); ‖u − z‖
W 2,5

0
(Ω,R)

<
3

5(1+c)

}
.Using (5.11) we have the inlusion B(z; c̃S1)⊂{u∈C0(Ω, R); ‖u‖C0
< 7/10},so that x 7→

T
Ω G(y, x(y)) dy is onvex in B(z; c̃S1).Now we shall show that for all x ∈ B(z; c̃S1),
‖Gx(·, x(·)) − Gx(·, z(·))‖L5(Ω,R) <

3

5(1 + c)c̃
.Indeed,

‖Gx(·, x(·)) − Gx(·, z(·))‖L5(Ω,R)

≤
‖a‖L∞(Ω,R)

(1 + c)c̃
{(x(y))5 − 6(x(y))3 + 8x(y)‖L5(Ω,R)

+ ‖(z(y))5 − 6(z(y))3 + 8z(y)‖L5(Ω,R)}

≤
‖a‖L∞(Ω,R)

(1 + c)c̃

[
5
√

|Ω|

((
7

10

)5

+ 6

(
7

10

)3

+ 8

(
7

10

))
+

11

10

]

≤
‖a‖L∞(Ω,R)

(1 + c)c̃

[
8 5
√

|Ω| +
11

10

]
≤

3

5(1 + c)c̃
,as laimed.We have just shown that all the assumptions of Theorem 5.4 are satis�ed.Sine zero does not satisfy the equation below, there exists a nonzero solution

x0 ∈ W 1,5
0 (Ω, R) of

−div(k(y)∇x(y)) =
a(y)

(1 + c)(1 + c̃)
((x(y))5 − 6(x(y))3 + 8x(y) + 1)for a.e. y ∈ Ω with div(k(·)∇x0(·)) ∈ L6/5(Ω, R).

Referenes[1℄ R. A. Adams, Sobolev Spaes, Aademi Press, New York. 1975.[2℄ A. Benkirane and A. Elmahi, A strongly nonlinear ellipti equation having naturalgrowth terms and L1data, Nonlinear Anal. 39 (2000), 403�411.[3℄ M. Degiovanni and S. Zani, Multiple solutions of semilinear ellipti equations withone-sided growth onditions, Math. Comput. Modelling 32 (2000), 1377�1393.[4℄ C. Ebmeyer and J. Frehse, Mixed boundary value problems for nonlinear elliptiequations with p-struture in nonsmooth domains, Di�erential Integral Equations14 (2001), 801�820.



210 A. Orpel[5℄ D. Gilbarg and N. S. Trudinger, Ellipti Partial Di�erential Equations of SeondOrder , Springer, 1983.[6℄ N. Grenon, Existene and omparison results for quasilinear ellipti equations withritial growth in the gradient , J. Di�erential Equations 171 (2001), 1�23.[7℄ L. Huang and Y. Li, Multiple solutions of an ellipti equation, Fuijan Shifan DaxueXuebao Ziran Kexue Ban 16 (2000), 15�19.[8℄ I. Kuzin and S. Pohozaev, Entire Solutions of Semilinear Ellipti Equations, Progr.Nonlinear Di�erential Equations Appl. 33, Birkhäuser, Basel, 1997.[9℄ J.-L. Lions et E. Magenes, Problèmes aux limites non homogènes et appliations,Dunod, Paris, 1968.[10℄ P. Magrone, On a lass of semilinear ellipti equations with potential hanging sign,Dynam. Systems Appl. 9 (2000), 459�467.[11℄ J. Mawhin, Problèmes de Dirihlet variationnels non linéaires, Presses Univ. deMontréal, 1987.[12℄ J. Mawhin and M. Willem, Critial Points Theory and Hamiltonian Systems, Sprin-ger, New York, 1989.[13℄ P. H. Rabinowitz, Minimax Methods in Critial Point Theory with Appliations toDi�erential Equations, Amer. Math. So., 1986.[14℄ B. Rieri, Existene and loation of solutions to the Dirihlet problem for a lassof nonlinear ellipti equations, Appl. Math. Lett. 14 (2001), 143�148.[15℄ Y. Sun and S. Wu, On a nonlinear ellipti equation with sublinear term at the origin,Ata Math. Si. Ser. A Chin. Ed. 20 (2000), 461�467.[16℄ Z. Wang, Nonlinear boundary value problems with onave nonlinearities near theorigin, NoDEA Nonlinear Di�erential Equations Appl. 8 (2001), 15�33.[17℄ M. Willem, Minimax Theorems, Progr. Nonlinear Di�erential Equations Appl. 24,Birkhäuser, Basel, 1996.[18℄ X. Xu, The boundary value problem for nonlinear ellipti equations in annular do-mains, Ata Math. Si. Ser. A Chin. Ed. 20 (2000), suppl. 675�683.[19℄ P. Zhao and C. Zhong, On the in�nitely many positive solutions of a superritialellipti problem, Nonlinear Anal. 44 (2001), 123�139.Faulty of MathematisUniversity of �ód¹Banaha 2290-238 �ód¹, PolandE-mail: orpela�math.uni.lodz.plReçu par la Rédation le 17.2.2004Révisé le 21.2.2005 (1502)


