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Universal sequences for Zalcman’s Lemma

and Qm-normality

by Shahar Nevo (Ramat-Gan)

Abstract. We prove the existence of sequences {̺n}
∞

n=1, ̺n → 0+, and {zn}
∞

n=1,
|zn| = 1/2, such that for every α ∈ R and for every meromorphic function G(z) on C,
there exists a meromorphic function F (z) = FG,α(z) on C such that ̺α

nF (nzn + n̺nζ)
converges to G(ζ) uniformly on compact subsets of C in the spherical metric. As a result,
we construct a family of functions meromorphic on the unit disk that is Qm-normal for
no m ≥ 1 and on which an extension of Zalcman’s Lemma holds.

1. Introduction. First we set some notations and conventions. We de-
note by ∆ the open unit disk in C. For z ∈ C and r > 0, ∆(z0, r) =
{|z − z0| < r}, ∆′(z0, r) = {0 < |z − z0| < r} and ∆(z0, r) = {|z − z0| ≤ r}.
We write fn

χ⇒ f on D to indicate that the sequence {fn} of meromor-
phic functions on D converges to f uniformly on compact subsets of D
in the spherical metric χ, and fn ⇒ f on D if the convergence is in the
Euclidean metric. For a function f meromorphic on C, Π(f) is the family
{f(nz) : n ∈ N}, considered as a family of functions on ∆. If D is a domain

and E ⊂ D, then the derived set of E with respect to D, denoted by E
(1)
D , is

the set of accumulation points of E in D. For k ≥ 2 the derived set of order

k of E with respect to D is defined inductively by E
(k)
D = (E

(k−1)
D )

(1)
D . The

family Π(f) is not normal for a nonconstant f meromorphic on C. Normal-
ity properties of Π(f) were studied from various angles, as will be explained
in what follows.

An important and very useful criterion for normality is the following
known lemma of L. Zalcman.

Zalcman’s Lemma ([Za]). A family F of functions meromorphic (an-

alytic) on the unit disk ∆ is not normal if and only if there exist
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(a) a number 0 < r < 1;
(b) points zn, |zn| < r;
(c) functions fn ∈ F ; and

(d) numbers ̺n → 0+,

such that

(1) fn(zn + ̺nζ)
χ⇒ g(ζ) on C,

where g is a nonconstant meromorphic (entire) function on C. Moreover ,
g(ζ) can be taken to satisfy the normalization g#(ζ) ≤ g#(0) = 1 for ζ ∈ C.

Here g#(ζ) is the spherical derivative,

g#(ζ) =
|g′(ζ)|

1 + |g(ζ)|2 .

Later X. C. Pang extended this result to a criterion of (non)normality
by replacing (1) by

̺α
nfn(zn + ̺nζ)

χ⇒ g(ζ) on C,

where α is any real number satisfying −1 < α < 1. This generalization is
very useful to deal with conditions for normality that involve derivatives (see
[Pa1], [Pa2]). The interested reader is referred to [PZ] for a modification of
Zalcman’s Lemma, dealing with families of functions having only multiple
zeros.

In [Ne1], we studied the collection of functions g that are limits in (1) for
members of the family Π(f), where f(z) is a given nonconstant meromorphic
function on C.

We have the following result which will be proved in Section 2.

Theorem A. There exist sequences {̺n}∞n=1, ̺n → 0+, and {zn}∞n=1,
|zn| = 1/2, such that for every α ∈ R and for every function G meromorphic

on C, there is a meromorphic function F (z) = FG,α(z) on C such that

(2) ̺α
nF (nzn + n̺nζ)

χ⇒ G(ζ) on C

and

(3) {zn : n ≥ 1} = {|z| = 1/2}.
These sequences may be said to be universal with respect to Zalcman’s

Lemma (or its extensions) for the families Π(F ).

Qm-normality and the family Π(f). Let m be a positive integer. A fam-
ily F of functions meromorphic on a domain D is called Qm-normal on D
if each sequence S = {fn} in F has a subsequence S′ = {fnk

} such that

fnk

χ⇒ f on D \ E, where f is a function on D \ E (which happens to be

meromorphic or f ≡ ∞), and E ⊂ D satisfies E
(m)
D = ∅. If ν ∈ N, then
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a family F is called Qm-normal of order at most ν on D if in addition S′

can always be taken such that E
(m−1)
D contains at most ν points.

The theory of Qm-normal families was developed by C. T. Chuang [Ch].
In [Ne3] it was shown that for every m ∈ N and ν = 1, 2, 3, . . . ,∞ there
exists an entire function f = fm,ν such that Π(f) is Qm-normal of exact
order ν (i.e., Qm-normal of order ν but not of order µ for any µ < ν). In

[Ne4], it was proved that if there exist a, b ∈ Ĉ such that f attains a and b
finitely often each, and f is not a rational function, then Π(f) is Qm-normal
for no m ∈ N. In [Ne2] the following extension to Zalcman’s Lemma was
introduced.

N Lemma. Let F be a family of meromorphic functions in a domain D,
and m ≥ 1. In order that F not be a Qm-normal family in D, it is necessary

and sufficient that there exist

(a) a sequence S = {fn}∞n=1 of functions of F ;

(b) a set E ⊂ D satisfying E
(m)
D 6= ∅, and for each point z ∈ E:

(c) a sequence {ωn,z}∞n=1 of points in D such that ωn,z → z;
(d) a sequence ηn,z → 0+; and

(e) a nonconstant function gz(ζ) meromorphic on C such that

(f) fn(ωn,z + ηn,zζ)
χ⇒ gz(ζ) on C.

An analogous extension exists for Pang’s modification, where for every
−1 < α < 1 we have instead of (f)

(fα) ηα
n,zfn(ωn,z + ηn,zζ)

χ⇒ gz(ζ) on C.

We shall call this extension the extended N Lemma. The “natural” general-
ization of the N Lemma is not true in the direction (⇒) for a family F which
is not Qm-normal in D for every m ∈ N. This means that for such an F ,

there may not exist E ⊂ D with E
(m)
D 6= ∅ for every m ≥ 1 and a sequence

S of functions of F , satisfying (c)–(f) of the N Lemma. (The direction (⇐)
is true of course in this case.)

However, by the result of Theorem A, we shall construct a family F
which is Qm-normal for no m ≥ 1, but satisfies (a)–(f) of the N Lemma,
with uncountable set E in (b). This construction is detailed in Theorem B.

Remark. In [Ne5], we introduced a transfinite extension of the notion of
Qm-normality and also obtained a “correct” extension of Zalcman’s Lemma
(or of the N Lemma) for countable ordinal numbers.

Theorem B. There exists an entire function F such that Π(F ) is Qm-

normal for no m ≥ 1, and Π(F ) satisfies (a)–(f) of the N Lemma with

E = {|z| = 1/2} in (b).
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The proof of Theorem B is given in Section 3. We also give there an exten-
sion of Theorem B in the spirit of condition (fα) in the extended N Lemma,
for every α ∈ R.

2. Proof of Theorem A

Definition. Let B be a circle in C, centered at z0, and let L be a ray
with origin at z1, tangent to B at z2. We say that L is tangent to B from

the right (resp. from the left) if

arg
z0 − z1

z2 − z1
> 0

(
resp. arg

z0 − z1

z2 − z1
< 0

)
,

where we take the argument −π < arg z ≤ π.

We now construct a sequence of closed disks, {Bk}∞k=2, together with
sequences of tangent rays, {Rk}∞k=2 and {Lk}∞k=2, all originating at z = 0.

For k = 2, let B2 = ∆(1, log 2) and let R2 (resp. L2) be the ray originating at
z = 0 and tangent to B2 from the right (resp. left). Suppose we have defined
Bk, Rk, Lk for k ≥ 2. Let Bk+1 be the disk centered on {|z| = (k + 1)/2}
with radius log(k + 1) such that Lk is tangent to Bk+1 from the right (i.e.,
Rk+1 = Lk). Lk+1 will be the ray that originates at z = 0 and is tangent
to Bk+1 from the left. It is easy to verify that Bk, Rk and Lk are all well
defined. For each k ≥ 2 denote by

• αk the angle between Rk and Lk, measured counterclockwise;
• ck the center of Bk, ck = (k/2)eiθk ,

where {θk}∞k=2 is defined as follows:

(4) θ2 = 0, θ3 =
α2 + α3

2
, θk =

α2

2
+

k−1∑

j=3

αj +
αk

2
, k ≥ 4,

(or θk = θk−1 + (αk−1 + αk)/2, k ≥ 3). Moreover, denote by

• Tk the arc of the circle {|z| = k/2} which subtends the angle αk;
• |Tk| the length of Tk;
• Vk the infinite angular sector between Rk and Lk with angle αk, in-

cluding Rk and Lk;
• xk, yk the points of tangency of Rk and Lk to Bk, respectively.

Geometrical considerations yield

(5)
k

2
− |xk| =

k

2
− |yk| −→

k→∞

0+.

Define

Ak := conv({0} ∪ Bk) (convex hull).
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Note that Bk and Bk+1 are pairwise disjoint as can be deduced from (5)
(for large enough k).

We deduce the relations

(6)
log k

k/2
= sin

αk

2
,

(7)
|Tk|
k/2

= αk.

Dividing (7) by (6), we get

(8)
|Tk|

2 log k
=

αk/2

sin(αk/2)
.

From (6) we see that

(9) αk ց 0,

and

(10)
∞∑

k=2

αk = ∞,

which means that the sequence {eiθk}∞k=2 encircles the origin infinitely many
times.

We now show the existence of N ∈ N such that the disks {Bk : k ≥ N}
are pairwise disjoint. From (5) we get Bk∩Bk+1 = ∅ for k ≥ N1. Let k ≥ N1

and denote by jk the smallest integer that satisfies jk > k and Ljk
⊂ Vk.

By (4) and (9), θjk
< θk + 2π; so it is sufficient to prove that

(11) Bk ∩ Bjk
= ∅

for large enough k. By (8), |Tk|/2 log k ց 1 as k → ∞; so there exists some
β > 1 such that |Tk| < β · 2 log k for k ≥ 2. By (9), we conclude that for
some 0 < C < 1 we have, for k ≥ 2,

(12) jk − k ≥ 2πC

αk
=

πCk

|Tk|
>

πCk

2β log k
.

Set

µ =
πC

2β
.

In order to prove (11), it is sufficient to show that

(13) |cjk
− ck| > log jk + log k.

We distinguish two cases.

Case 1. Suppose that jk > 2k. In this case, for some N2, we have

(14)
log k

jk
+

log jk

jk
<

1

4
<

1 − k/jk

2
, k ≥ N2.
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Case 2. Suppose that jk ≤ 2k. Then (12) implies that there exists N3

such that for k ≥ N3,

(15)
jk − k

2
≥ µk

2 log k
> log 2k + log k ≥ log jk + log k.

From (14) and (15), we deduce (13); it follows that Bk, k ≥ N =
max{N1, N2, N3}, are pairwise disjoint as claimed. Now set GN = AN and
for k ≥ N put Gk+1 = Gk ∪ Ak+1. Then the closed sets Gk satisfy

(16) GN ⊂ GN+1 ⊂ · · · ,

(17)
∞⋃

k=N

Gk = C,

(18) dist(Gk, Bk+1) > 0, Gk ∪ Bk+1 ⊂ Gk+1.

Define now, for n ≥ 2,

(19) zn =
1

2
eiθn , ̺n =

√
log n

n
,

and let G be a meromorphic function on C. For n ≥ N , set

(20) hn(z) = ̺−α
n G

(
z − cn√

log n

)
.

By the Mittag-Leffler Theorem, there exists a function h(z) meromorphic
on C such that the poles of h are exactly

⋃· ∞

h=N En, where En is the set of
poles of hn in Bn, and its singular part at any pole in Bn is the singular

part of hn at that pole. Then for every n ≥ N , h̃n = hn − h is holomorphic
in Bn.

We define a sequence {pn}∞n=N of approximating polynomials as follows.
We choose pN to satisfy

(21) max
z∈BN

|pN (z) − h̃N (z)| < 1/2N .

The existence of pN is ensured by Runge’s Theorem ([Ga, pp. 94–96, Corol-
lary 2 to Runge’s Theorem]). Assume that we have defined pN , pN+1, . . . , pn.
Again by (18) and Runge’s Theorem, there exists a polynomial pn+1 such
that

(22) max
z∈Bn+1

|pn+1(z) − h̃n+1(z)| < 1/2n+1,

and

(23) max
z∈Gn

|pn+1(z) − pn(z)| < 1/2n+1.

By (16) and (23), {pn} is a uniform Cauchy sequence on each Gn, n ≥ N ,
and hence uniformly convergent on Gn for n ≥ N . Thus, by (17), there
exists an entire function p(z) such that pn ⇒ p on C. Now (20) and (22)
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imply that p is nonconstant. By (23), for n ≥ N and z ∈ Gn we have

(24) |pn(z) − p(z)| < 1/2n.

Set F = p + h, and let K be a compact set in C. There exists N∗ ≥ N such
that K ⊂ ∆(0,

√
log N∗). From (19)–(22) and (24) and the equality of the

singular parts of F and hn in Bn, we get for ζ ∈ K and n ≥ N∗,

|̺α
nF (nzn + n̺nζ) − G(ζ)|

= |̺α
nF (cn +

√
log n ζ) − ̺α

nhn(cn +
√

log n ζ)|

= ̺α
n|p(cn +

√
log n ζ) − h̃n(cn +

√
log n ζ)|

≤ ̺α
n|p(cn +

√
log n ζ) − pn(cn +

√
log n ζ)|

+ ̺α
n|pn(cn +

√
log n ζ) − h̃n(cn +

√
log n ζ)| <

̺α
n

2n−1
−→
n→∞

0,

and (2) follows. The assertion in (3) can be deduced from (4) and (10). The
proof of Theorem A is complete.

3. Proof of Theorem B. Given a nonconstant entire function G, let
F be an entire function corresponding to G by Theorem A with α = 0. For
k ≥ 3, set

Fk(z) = F (kz).

Define a sequence {kn}∞n=1 of natural numbers inductively. Set k1 = 2.
Suppose we have chosen kn. Choose kn+1 so that kn+1 > kn and |θkn+1

−2πn|
is minimal. By (4) and (9), we then have |θkn+1

− 2πn| → 0 as n → ∞, so
zkn → 1/2 (kn+1 is chosen such that zkn+1

is the zk closest to z = 1/2 at
the end of the nth lap around the origin by the sequence {zk}∞k=2). We are
now ready to define the ingredients in (a)–(f) of the N Lemma. Let

E = {|z| = 1/2},
and let the sequence S = {fn} of functions of Π(F ) be defined by

fn = Fkn .

Now for z = 1/2, define

kn,1/2 = kn, ωn,1/2 = zkn,1/2
, ηn,1/2 = ̺kn,1/2

;

then by (2), we get

(25) fn(ωn,1/2 + ηn,1/2ζ) ⇒ G(ζ) = g1/2(ζ) on C.

It remains to find {ωn,z}, {̺n,z}, gz(ζ) for z ∈ E \ {1/2}. Let z be such
a point. By (9) and (10) there exists an increasing sequence {kn,z}∞n=1 of
positive integers such that for n ≥ 1,

(26) kn ≤ kn,z < kn+1,
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and

(27) zkn,z −→
n→∞

z.

A sequence {kn,z}∞n=1 that satisfies (26) and (27) is of course not unique.
Note that the definition of kn,1/2 agrees with (26) and (27). We assert that
kn,z/kn → 1 as n → ∞. In fact, we will show that the convergence is uniform
on E. For this purpose, it is enough to show that kn/kn+1 → 1 as n → ∞.

Indeed, by (9),
∑kn+1

k=kn+1 αk → 2π as n → ∞, and combining it with (6) we
get, for large enough n,

(kn+1 − kn)2 log kn+1

kn+1/2
< (kn+1 − kn)2 arcsin

(
log kn+1

kn+1/2

)
<

kn+1∑

k=kn+1

αk < 3π.

So if lim kn/kn+1 < 1, we get a contradiction. Set

ωn,z = zkn,z

kn,z

kn
, ηn,z = ̺kn,z

kn,z

kn
.

By (26) and (27), we have ηn,z → 0+ and ωn,z → z as n → ∞. So together
with (2), we have

(28) |fn(ωn,z + ηn,zζ) − G(ζ)| =

∣∣∣∣Fkn

(
zkn,z

kn,z

kn
+ ̺kn,z

kn,z

kn
ζ

)
− G(ζ)

∣∣∣∣

= |F (zkn,zkn,z + ̺kn,zkn,zζ) − G(ζ)| ⇒ 0 on C

(thus, gz = G for any z ∈ E).
From (25) and (28), it follows that the family Π(F ) satisfies conditions

(a)–(f) of the N Lemma with E = {|z| = 1/2}.
We shall now give an extension of Theorem B corresponding to the ex-

tension of the N Lemma by condition (fα).

Theorem B∗. Let α ∈ R. Then there exists an entire function F such

that Π(F ) is Qm-normal for no m ≥ 1 and satisfies (a)–(e), (fα) of the

extended N Lemma with E = {|z| = 1/2|} in (b).

We need the following lemma:

Power Lemma. Let F be a family of meromorphic functions on a do-

main D and let l, m be positive integers. Then F is Qm-normal on D if and

only if Fl := {f l : f ∈ F} is Qm-normal on D.

The direction (⇒) comes from the definition of Qm-normality. The oppo-
site direction follows by applying (by negation) the N Lemma with (a)–(f).

4. Proof of Theorem B
∗
. We proceed in two steps. The first step

is to find an entire function F that satisfies (a)–(e), (fα) of the extended
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N Lemma. The second step is to show that Π(F ) is Qm-normal for no
m ≥ 1. For the first step, take any non-constant entire function G, and let
F = FG,α be the corresponding entire function from Theorem A. We apply
the proof of Theorem B with a few modifications. We have to replace (25)
by

ηα
n,1/2fn(ωn,1/2 + ηn,1/2ζ) ⇒ G(ζ) = g1/2(ζ) on C,

and also replace (28) with

|ηα
n,zfn(ωn,z + ηn,zζ) − G(ζ)|

=

∣∣∣∣η
α
n,zFkn

(
zkn,z

kn,z

kn
+ ̺kn,z

kn,z

kn
ζ

)
− G(ζ)

∣∣∣∣

= |ηα
n,zF (zkn,zkn,z + ̺kn,zkn,zζ) − G(ζ)| ⇒ 0 on C.

The last convergence (to 0) is true since ηn,z/̺kn,z → 1 as n → ∞.
Now for −1 < α < 1 the non-Qm-normality of Π(F ) for every m ≥ 1 is

ensured by the opposite direction of the extended N Lemma with (a)–(e),
(fα) and step 2 is done.

For α ≥ 1 or α ≤ −1, take l large enough such that −1 < α/l < 1.
Then by the previous discussion, there is an entire function F for which
Π(F ) is Qm-normal for no m ≥ 1 and satisfies (a)–(e), (fα/l) of the extended

N Lemma. The family Π(F l) satisfies (a)–(e), (fα) of the extended N Lemma
and since Π(F l) = Π(F )l it follows by the Power Lemma that Π(F l) is also
Qm-normal for no m ≥ 1, as desired. The proof of Theorem B∗ is complete.
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