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Approximation by weighted polynomials in Rk

by Maritza M. Branker (Toronto)

Abstract. We apply pluripotential theory to establish results in R
k concerning uni-

form approximation by functions of the form wnPn where w denotes a continuous non-
negative function and Pn is a polynomial of degree at most n. Then we use our work
to show that on the intersection of compact sections Σ ⊂ R

k a continuous function on
Σ is uniformly approximable by θ-incomplete polynomials (for a fixed θ, 0 < θ < 1)
iff f vanishes on θ2Σ. The class of sets Σ expressible as the intersection of compact
sections includes the intersection of a symmetric convex compact set with a single or-
thant.

1. Introduction. Let w be a nonnegative, continuous function on a
closed set Σ ⊂ R

k ⊂ C
k, k > 1, with the set {z ∈ Σ : w(z) > 0} not

pluripolar. If Σ is unbounded we also assume that |z|w(z) → 0 as |z| → ∞
for z ∈ Σ. Then w is an admissible weight function. Given a continuous
function f on Σ, we consider when f will be the uniform limit of functions
of the form wnPn where Pn is a polynomial of degree at most n. We refer
to a function of the form wnPn as a weighted polynomial. This problem
has been studied extensively in R; for an introduction see [9]. Applying the
Stone–Weierstrass theorem gives

Theorem.Given an admissible continuous weight function w on a closed

set Σ ⊂ R
k there exists a closed set Z = Z(w) ⊂ Σ such that a continuous

function fon Σ is the uniform limit of a sequence {wnPn}∞n=1 of weighted

polynomials if and only if f vanishes on Z.

Therefore we need to find Z(w) in order to solve the approximation
problem. We consider Σ as a subset of C

k and define the weighted pluri-
complex Green function VΣ,Q where Q := − logw. When w ≡ 1 and Σ is
compact this will be the usual pluricomplex Green function. A natural step
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when calculating Z(w) is to find the support Sw of the equilibrium measure
(ddcV ∗

Σ,Q)k since we have

Theorem. Let Σ ⊂ R
k be a closed set which is not pluripolar in a

neighbourhood of any of its points. Given a continuous admissible weight

w on Σ, a sequence {wnPn}∞n=1 of weighted polynomials which converges

uniformly on Sw will tend to zero for every point in Σ \ Sw.

Our attention is focused on sets for which the boundary may be de-
scribed using linear functions or positive quadratic forms. Then we have an
associated radial weight function; for example considering the unit ball in
R

k gives

Theorem. Let Σ = {x ∈ R
k : |x| ≤ 1} with the weight w = |x|α for

α > 0. A continuous function f on Σ is the uniform limit of weighted poly-

nomials wnPn, n = 1, 2, . . . , if and only if f vanishes on the set {x ∈ R
k :

|x| ≤ α/(1 + α)}.
Here | · | denotes the Euclidean norm in C

k.
Our work with linear weights leads to an application to the theory of

multivariable incomplete polynomials. In [7] G. G. Lorentz defined an in-

complete polynomial to be of the form

In(t) =
n∑

j=s

ajt
j

with a zero of order s > 0 on the interval [0, 1]. If as 6= 0, an 6= 0 the ratio
τ = s/n is called the type of In(t). Lorentz established many basic properties
of incomplete polynomials including the fact that if for a sequence {In(t)}
of incomplete polynomials one has |In(t)| ≤ 1 on [0, 1] and s ≥ θn for
some θ ∈ (0, 1) then limn→∞ In(t) = 0 on [0, θ2). In approximation theory,
incomplete polynomials have been a subject of intense study. It was shown
independently by Saff and Varga in [10] and v. Golitschek in [2] that using
incomplete polynomials of type ≥ θ, for a fixed θ, it is possible to uniformly
approximate any function f ∈ C[0, 1] with the property f ≡ 0 on [0, θ2]. In
[5] Kroó succeeded in establishing results concerning incomplete polynomials
on a restricted class of convex domains in R

2. However his methods are not
easily generalized to higher dimensions. We define a compact section in
Section 3 and then establish the following

Theorem. Let Σ be the intersection of compact sections in R
k. Then

it is possible to uniformly approximate a continuous function f on Σ by

θ-incomplete polynomials iff f vanishes on θ2Σ.

For example, suppose we have a symmetric convex compact set K in R
k.

Let Σ denote the portion of K which lies in the first orthant, that is,
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Σ := K ∩ (R+)k. Then Σ is the intersection of compact sections and the
above theorem applies.

This paper was significantly influenced by the work done on the weighted
approximation problem in the one-dimensional setting by Kuijlaars, Mhas-
kar, Saff and Varga, and Totik in [6], [8], [10], [12]. For a systematic de-
velopment of weighted potential theory and its applications see the mono-
graph [9].

The technique of proof used for many of our results utilizes weighted
pluripotential theory, first introduced by Siciak [11]. The basic theory, sum-
marized in Section 2, was done by Bloom in Appendix B of [9] and further
developed in the recent paper of Bloom and Levenberg [1]. The one vari-
able theory has already proven useful in tackling a variety of problems. It is
hoped that as weighted pluripotential theory is further developed, the same
will prove true in higher dimensions. The basic theory as well as some new
weighted generalizations of pluripotential theoretic results can be found in
Section 2. Finally, some of the results in Section 4 are generalizations of
Kroó’s work in R

2 which may be found in [5].

2. Weighted pluripotential theory. We start by recalling the basic
definitions and theorems of weighted pluripotential theory. This material,
along with complete proofs, may be found in Appendix B of [9].

Let Σ ⊂ C
k be any set and w a real-valued function on Σ such that

w ≥ 0. The function w is called a weight function or more simply a weight.
For the duration of this paper we restrict our attention to admissible weights.
Before giving the definition of an admissible weight we recall a few standard
terms. Let G denote an open set in C

k.

Definition 2.1. A function u : G → [−∞,∞) is upper semicontinuous

on G if for every z0 ∈ G, lim supz→z0 u(z) ≤ u(z0).

Definition 2.2. A function u : G→ [−∞,∞) is plurisubharmonic (psh)
if it is upper semicontinuous on G, u 6= −∞ on any connected component of
G and for every a ∈ G, b ∈ C

k the function of the single complex variable
λ 7→ u(a+λb) is subharmonic or identically −∞ on every component of the
set {λ ∈ C : a+ λb ∈ G}.

We say a set E ⊂ Ck is pluripolar if for each point a ∈ E, there is
a neighbourhood B of a and a plurisubharmonic function u on B such
that E ∩ B ⊂ {z ∈ B : u(z) = −∞}. We also say that a property holds
quasi-everywhere (q.e.) on a set E if it holds on E \ F , where F is pluripo-
lar.

Definition 2.3. A weight function w is admissible if it satisfies the
following:
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(i) w is upper semicontinuous;
(ii) the set {z ∈ Σ : w(z) > 0} is not pluripolar;
(iii) if Σ is unbounded then |z|w(z) → 0 as |z| → ∞ for z ∈ Σ.

We define Q = Qw := − logw.
Then the weighted pluricomplex Green function of Σ with respect to Q

is defined for z ∈ C
k by

VΣ,Q(z) := sup{u(z) : u ∈ L, u ≤ Q on Σ}
where

L := {u ∈ PSH(Ck) : u ≤ log+ |z| + C}
and C is a constant which may depend on u. We denote the upper semicon-
tinuous regularization of VΣ,Q by V ∗

Σ,Q. Observe that for w ≡ 1 on compact
Σ this definition coincides with the usual pluricomplex Green function. For
̺ > 0 we define Σ̺ := {z ∈ Σ : |z| ≤ ̺}.

Lemma 2.4. For Σ closed and ̺ sufficiently large, VΣ,Q = VΣ̺,Q.

Therefore the Borel measure (ddcV ∗
Σ,Q)k has compact support since it

is equal to (ddcV ∗
Σ̺,Q)k whose support is contained in Σ̺. We will use the

notation

µw := (ddcV ∗
Σ,Q)k, Sw := supp(µw), S∗

w = {z ∈ Σ : V ∗
Σ,Q(z) ≥ Q(z)}.

Lemma 2.5. Let Σ ⊂ C
k be a closed set and w an admissible weight

function. Then:

(i) Sw is not pluripolar ;
(ii) Sw ⊂ S∗

w;
(iii) V ∗

Σ,Q ≤ Q q.e. on Σ;

(iv) VΣ,Q = Q for q.e. z ∈ Sw (or S∗
w).

We also have the following estimates involving weighted polynomials
which will be used to prove Theorem 3.1. A weighted polynomial is of the
form wnPn where Pn always denotes a polynomial of degree at most n.

Theorem 2.6. Suppose Pn is a polynomial of degree at most n and

|wnPn(z)| ≤M for q.e. z ∈ Sw. Then:

(i) |Pn(z)| ≤M exp(nV ∗
Σ,Q(z)) for all z ∈ C

k;

(ii) |wnPn(z)| ≤M exp[n(V ∗
Σ,Q(z) −Q(z))] for all z ∈ Σ;

(iii) |wnPn(z)| ≤M for q.e. z ∈ Σ.

In particular if we define the “sup” norm of a function f on K by

‖f‖∗K = inf{‖f‖K\F : F is pluripolar, F ⊂ K}
then Theorem 2.6(iii) may be restated as

‖wnPn‖∗Sw
= ‖wnPn‖∗Σ , n = 1, 2, . . . .
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Note that if Σ is not pluripolar in a neighbourhood of any of its points and
f is continuous on Σ then ‖f‖∗Σ = ‖f‖Σ.

Theorem 2.7. Let S be any closed subset of Σ such that ‖wnPn‖∗S =
‖wnPn‖∗Σ for all polynomials Pn. Then S ⊃ Sw.

Theorem 2.8. Let Σ be a closed subset of C
k that is not pluripolar in a

neighbourhood of any of its points. Let w be a continuous admissible weight

on Σ. Then ‖wnPn‖Σ = ‖wnPn‖Sw for all polynomials Pn (n = 1, 2, . . .).
Furthermore, if S is any closed subset of Σ such that ‖wnPn‖Σ = ‖wnPn‖S

for all polynomials Pn, n = 1, 2, . . . , then S ⊃ Sw.

In order to calculate the support Sw of the extremal measure we utilize a
characterization of the points in Sw. Before stating it, we need a definition.

Definition 2.9. We say that the function g attains its essential maxi-

mum modulus on the set S in the subset S1 ⊂ S if ‖g‖∗S\S1
< ‖g‖∗S.

Proposition 2.10. Let w be an admissible weight on Σ. Then z ∈ Σ
belongs to the support Sw of the extremal measure µw if and only if for

every neighbourhood B of z there exists a weighted polynomial wnPn taking

its essential maximum modulus on Σ in B ∩Σ.

Proof. Let z ∈ Sw and let B be an arbitrary neighbourhood of z. By
Theorem 2.7 applied to the closed set Σ \ B, there exists a weighted poly-
nomial wnPn with

‖wnPn‖∗Σ\B < ‖wnPn‖∗Σ .
It follows that wnPn takes its essential maximum modulus on Σ in Σ ∩ B.
Conversely, if wnPn takes its essential maximum modulus on Σ in Σ ∩ B,
then B ∩ Sw 6= ∅. Since the neighbourhood B was arbitrary we conclude
that z ∈ Sw.

Corollary 2.11. Suppose w is a continuous admissible weight on Σ,
and assume Σ is not pluripolar in a neighbourhood of any of its points. Then

z ∈ Sw if and only if for every neighbourhood B of z there is a weighted

polynomial wnPn such that wnPn attains its maximum modulus only in B.

Our next result deals with the behaviour of the weighted pluricomplex
Green function under polynomial mappings and is a weighted version of a
result by Klimek [3].

Theorem 2.12. Let α, β be positive integers and let f : Ck → Ck be

a holomorphic mapping. Assume f is a polynomial mapping of degree not

greater than β and

lim inf
|z|→∞

|f(z)|
|z|α > 0.
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Then f is proper and for every E ⊂ C
k with weights w̃ on f−1(E) and w

on E such that w̃ = w ◦ f we have

αV
f−1(E),Q̃/α

≤ VE,Q ◦ f ≤ βV
f−1(E),Q̃/β

.

Proof. By our first inequality f is proper and proper polynomial map-
pings are surjective. Take a set E ⊂ C

k and a function u ∈ L such that

αu ≤ Q̃ := Q ◦ f on f−1(E). The function

v(z) := α supu(f−1(z)) = α sup{u(x) : x ∈ f−1(z)}
is plurisubharmonic by Proposition 2.9.26 in [4]. Moreover, suppose M , N
are chosen such that

lim sup
|z|→∞

(u(z) − log+ |z|) < M and lim inf
|z|→∞

|f(z)|
|z|α > N.

Then we have

lim sup
|z|→∞

(v(z) − log+ |z|) = lim sup
|x|→∞

(α supu(f−1(f(x))) − log+ |f(x)|)

= lim sup
|x|→∞

[α supu(f−1(f(x))) − α log+ |x|

+ α log+ |x| − log+ |f(x)|]
≤ αM − logN <∞,

implying v ∈ L. Since αu ≤ Q̃ = Q ◦ f on f−1(E) the function v satisfies

v(z) = α supu(f−1(z)) ≤ α

(
1

α
Q̃ ◦ f−1(z)

)
on E.

It follows that

αu(x) ≤ v(f(x)) ≤ (VE,Q ◦ f)(x) for any x ∈ C
k.

Thus we have

V
f−1(E),Q̃/α

≤ 1

α
VE,Q ◦ f.

To establish our second inequality note that deg f ≤ β implies

lim sup
|z|→∞

|f(z)|
|z|β <∞.

Clearly if u ∈ L then 1
β (u ◦ f) ∈ L. Furthermore, if u ≤ Q on E we have

1

β
u ◦ f ≤ 1

β
Q ◦ f =

1

β
Q̃ on f−1(E).

Taking the supremum over all such functions completes the argument.

Corollary 2.13. Let α be a positive integer and let f : C
k → C

k be

a holomorphic mapping. Assume f is a polynomial mapping of degree not
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greater than α and

lim inf
|z|→∞

|f(z)|
|z|α > 0.

Then f is proper and for every E ⊂ C
k with weight w on E and w̃ = w ◦ f

on f−1(E) we have

VE,Q ◦ f = αV
f−1(E),Q̃/α

.

As a special case, Theorem 2.12 includes Theorem 1.10(f), found on
page 199 of [9]. Corollary 2.13 will be used in Section 3 to construct a useful
example. It will also be necessary in Section 3 to utilize the following lemma,
provided by Bloom.

Lemma 2.14. Let K ⊂ C
k be compact and w a continuous admissible

weight on K. Then for some ε > 0 we have w ≥ ε on Sw.

Proof. Let Kj := {z ∈ K : w ≥ 1/j} for j ∈ N. We will show that

for j sufficiently large, V ∗
Kj ,Q = V ∗

K,Q. Then we will have (ddcV ∗
K,Q)k =

(ddcV ∗
Kj ,Q)k and it follows that w ≥ 1/j on Sw.

By assumption w is admissible so the set {z ∈ K : w(z) > 0} is not
pluripolar. Observe that {z ∈ K : w(z) > 0} =

⋃∞
j=1Kj . For some j0 the

set Kj0 is not pluripolar. There is a constant c > 0 such that VKj0,Q
(z) < c

for all z ∈ K. Choose j1 ≥ j0 so that Q(z) ≥ c on K \ Kj1 ; it suffices to
choose j1 so that 1/j1 < c. Let u ∈ L and u(z) ≤ Q(z) on Kj1 . Then

u(z) ≤ V ∗
Kj1

,Q(z) ≤ V ∗
Kj0

,Q(z) ≤ c

for all z ∈ K, implying that u ≤ Q on K \Kj1 . It follows that u ≤ Q on K
and thus V ∗

Kj ,Q ≤ VK,Q. Finally, the fact that Kj1 ⊂ K immediately gives

the reverse inequality. Hence V ∗
Kj1

,Q = V ∗
K,Q.

The unweighted versions of the following two results are Corollary 5.2.5
and 5.2.6 in [4]. Our next result is Proposition 3.11 in [11].

Proposition 2.15. Suppose that E ⊂ C
k is bounded and F ⊂ C

k

is pluripolar. Let w be an admissible continuous weight on E ∪ F . Then

V ∗
E∪F,Q = V ∗

E,Q.

Proof. It is clear that V ∗
E∪F,Q ≤ V ∗

E,Q so we simply have to prove that

V ∗
E,Q ≤ V ∗

E∪F,Q.

Let u ∈ L be such that u ≤ Q on E and take v ∈ L such that v = −∞
on F . This is possible by Theorem 5.2.4 in [4] which states a pluripolar set
F is L-polar. We may assume v ≤ 0 on E. Then for each ε > 0,

u+ εv ≤ VE∪F,Q ≤ V ∗
E∪F,Q.
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Therefore u ≤ V ∗
E∪F,Q quasi-everywhere, and hence everywhere on C

k. It
follows that V ∗

E,Q ≤ V ∗
E∪F,Q as required.

Proposition 2.16. Let {Ej}j∈N be an increasing sequence of sets in C
k,

whose union E is bounded. Let w be an admissible weight on E. Then

lim
j→∞

V ∗
Ej ,Q = V ∗

E,Q.

Proof. We assume without loss of generality that E1 is not pluripolar.
Since negligible sets are pluripolar, the set {z ∈ Ej : V ∗

Ej ,Q > Q} is pluripolar

for every j. Furthermore, the countable union of pluripolar sets is pluripolar,
implying that

F =
⋃

j∈N

{z ∈ Ej : V ∗
Ej ,Q > Q}

is pluripolar. Define V = limj→∞ V ∗
Ej ,Q. It is clear that V ∈ L and V =

Q on E\F . It follows that V ≤ V ∗
E\F,Q. By the previous proposition, V ∗

E,Q =

V ∗
E\F,Q so our inequality becomes V ≤ V ∗

E,Q. Finally, the fact E =
⋃
Ej

yields V ≥ V ∗
E,Q.

One final result concerning weighted pluripotential theory is required.
In general, the weighted pluricomplex Green function can be expressed as
the upper envelope of functions of the form [deg(P )]−1 log |P |, where P is a
complex-valued polynomial, that is, P ∈ C[z1, . . . , zk] = C[z]. This is proven
as Theorem 2.8 of Appendix B of [9]. For the remainder of this paper we
restrict our attention to closed subsets of R

k, so it is natural to require our
polynomials to have real coefficients.

Lemma 2.17. For closed sets Σ ⊂ R
k with an admissible weight w,

VΣ,Q(z) = lim
n→∞

sup

{
1

n
log |Pn(z)| : Pn ∈ R[z] and ‖wnPn‖Σ ≤ 1

}

where we restrict to the class R[z] of polynomials with real coefficients.

Proof. Let Σ be a closed set in R
k and take w to be an admissible

weight on Σ. Let Fn := {Pn ∈ C[z] : ‖wnPn‖Σ ≤ 1}. Define φn(z) =
supPn∈Fn

|Pn(z)|. Then from Appendix B of [9] we have

VΣ,Q(z) = lim
n→∞

1

n
logφn(z).

Analogously, let Gn = {Rn ∈ R[z] : ‖wnRn‖Σ ≤ 1} where Rn denotes a
polynomial with real coefficients and of degree at most n. Taking ψn(z) =
supRn∈Gn

|Rn(z)| we have a well-defined function

VR(z) = lim
n→∞

1

n
logψn(z).

We have Gn ⊂ Fn, and consequently ψn ≤ φn. Hence VR(z) ≤ VΣ,Q(z) on C
k.
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Observe that a complex multivariable polynomial Pn(z) =
∑

|j|≤n αjz
j

may be decomposed by taking the real and imaginary parts of αj . That is,
Pn(z)=A(z)+iB(z) where A(z)=

∑
|j|≤nℜ(αj)z

j and B(z)=
∑

|j|≤nℑ(αj)z
j.

For x ∈ R
k this gives a decomposition of Pn(x) into real and imaginary parts

with |A(x)| ≤ |P (x)| and |B(x)| ≤ |P (x)|. Given Pn ∈ Fn the corresponding
polynomials A,B are elements of Gn. Therefore, fixing z ∈ C

k we have

|P (z)| ≤ |A(z)| + |B(z)| ≤ 2ψn(z).

Taking the supremum over Fn yields φn(z) ≤ 2ψn(z). It follows that

lim
n→∞

1

n
logφn(z) ≤ lim

n→∞

1

n
logψn(z)

and thus VΣ,Q(z) ≤ VR(z).

3. The approximation problem. This section is focused on answering
the following question:

Given a closed set Σ ⊂ R
k ⊂ C

k, k > 1, and a continuous admis-
sible weight w on Σ, when will a continuous function f on Σ be uniformly
approximable by a sequence {wnPn}∞n=1 of weighted polynomials?

We will refer to this as the weighted approximation problem. For a given
set Σ with continuous weight w we consider the weighted approximation
problem solved if we identify the set Z(w) as defined in Theorem 3.1.

For the remainder of this paper, Pn denotes a real-valued polynomial
with degree at most n. This weighted approximation problem was considered
on the real line by Kuijlaars, Mhaskar and Saff, and Totik. Their results
were preceded by many specialized results for individual weights, starting
with Lorentz’ incomplete polynomials on [0, 1]. The first result is a Stone–
Weierstrass type theorem, proven using the same technique employed in the
one-variable setting.

Theorem 3.1. Let Σ ⊂ Rk be a closed set and w a continuous, admis-

sible weight on Σ. Then there exists a closed set Z = Z(w) ⊂ Σ such that

a continuous function f on Σ is the uniform limit of weighted polynomials

{wnPn}∞n=1 if and only if f vanishes on Z.

Proof. To establish our result, we use the Stone–Weierstrass theorem,
stated below.

Let C(X) denote the family of real-valued continuous functions on a

compact Hausdorff space X and for A ⊂ C(X) let Z(A) denote the

set of points x ∈ X such that f(x) = 0 for every f ∈ A. Suppose that

A has the following properties;

(a) If f, g ∈ A then αf + βg ∈ A for all real α and β.

(b) If f, g ∈ A then fg ∈ A.
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(c) A is closed under uniform limits.

(d) If x, y ∈ X \ Z(A) then there is an f ∈ A such that f(x) 6= f(y).

Then A = {f ∈ C(X) : f ≡ 0 on Z(A)}.
In other words, we need to show that A is a closed algebra which separates
points in X \ Z(A).

From Theorem 2.6(ii) we have

|wnPn(x)| ≤ ‖wnPn‖Sw exp[n(V ∗
Σ,Q(x) −Q(x))] for allx ∈ Σ.

Since V ∗
Σ,Q ∈ L, for some constant κ > 0 we have

V ∗
Σ,Q(z) ≤ log+ |z| + κ.

Let X = {x ∈ Σ : |x| ≤ ̺} where ̺ is a sufficiently large constant so that

Q(x) − log |z| ≥ κ+ 1 for x /∈ X.

Observe that for x /∈ X,

|wnPn(x)| ≤ ‖wnPn‖Sw exp[n(log+ |x| + κ− log |x| − κ− 1)]

= ‖wnPn‖Sw exp[−n].

Hence the uniform convergence of any sequence {wnPn} on Σ is equiv-
alent to its uniform convergence on X.

Now let A be the collection of all continuous functions f on X such that
f is the uniform limit of a sequence {wnPn}∞n=1 of weighted polynomials.
Our collection A satisfies condition (a) since if wnPn → f and wnRn → g
uniformly on X then wn(αPn + βRn) → αf + βg uniformly on X. To see
that condition (b) is satisfied, let T2n = PnRn, T2n+1 = Pn+1Rn. Then
the sequence {wnTn} tends uniformly to fg on X. A standard diagonal
argument proves that condition (c) is met.

To show that (d) holds, observe that for x̃ ∈ X \Z(A) there is a function
g ∈ A such that g(x̃) 6= 0. Note that w(x) > 0 for x ∈ X\Z(A). Suppose that
wnPn → g uniformly on X. Given y ∈ X \Z(A) such that y 6= x̃, there exists
j ∈ {1, . . . , k} such that x̃j 6= yj . Assume without loss of generality that
j = 1. Taking Rn+1(x) = (x1 − y1)Pn(x) and f(x) = w(x)(x1 − y1)g(x) we
see that wn+1Rn+1 converges uniformly to f , hence f ∈ A. By construction
f(x̃) 6= f(y), thus A meets all of the conditions of the Stone–Weierstrass
theorem. Therefore we apply the Stone–Weierstrass theorem to conclude
that there exists a closed set Z(w) such that a continuous function f will
be the uniform limit of weighted polynomials iff f vanishes on Z(w).

Theorem 3.2. Suppose we have a closed set Σ ⊂ R
k, not pluripolar

in a neighbourhood of any of its points, with a continuous admissible weight

function w. If a sequence {wnPn}∞n=1 of weighted polynomials converges uni-

formly on Sw then {wn(γ)Pn(γ)} tends to zero for every γ ∈ Σ \ Sw.
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Proof. Assume to the contrary that wnPn converges to some g uniformly
on Sw but wn(γ)Pn(γ) does not tend to zero for some γ ∈ Σ \Sw. Let A be
the collection of all continuous functions f on Sw that are uniform limits of
weighted polynomials wnRn, with the additional property that Rn(γ) = 0.
It is clear that A satisfies the assumptions of the Stone–Weierstrass theorem,
hence there exists a set Z ⊂ Sw such that f ∈ A if and only if f vanishes
on Z. Observe that from Lemma 2.14 we have w(z) > 0 for z ∈ Sw.

We claim that g ∈ A. Clearly,

w(x)n+2|x− γ|2Pn(x) → w(x)2|x− γ|2g(x) on Sw.

This implies that w(x)2|x−γ|2g(x) ∈ A and so w(x)2|x−γ|2g(x) must vanish
on Z. Furthermore, g vanishes on Sw precisely where w(x)2|x−γ|2g(x) does,
thus g ∈ A. Therefore, there are polynomials Rn with Rn(γ) = 0 such that
wnRn → g on Sw. It follows that wn(Pn − Rn)(γ) converges uniformly to
zero on Sw. But wnPn(γ) does not tend to zero, hence there is an ε > 0 and
an integer N such that

‖wN (PN −RN )‖Sw ≤ ε while |wN (PN −RN )(γ)| > ε.

But this contradicts Theorem 2.8 which states that

‖wN (PN −RN )‖Σ = ‖wN (PN −RN )‖Sw .

For Σ ⊂ R, Theorems 3.1 and 3.2 were proven on the real line by Kui-
jlaars in [6]. His proofs also depended on the Stone–Weierstrass theorem.
A weaker version of Theorem 3.2 was proven by Totik in [12]. We will now
construct a useful example using Corollary 2.13.

Example 3.3. Let w(t) = |t|θ/(1−θ) with 0 < θ < 1 on Σ = [−1, 1] ⊂
R ⊂ C. We will calculate the support of µw and the set Z(w). The first
step is to calculate VΣ,Q using Corollary 2.13. From [10] we know that for

E = [0, 1] with weight v(t) = tθ/(1−θ), 0 < θ < 1, the weighted Green
function is

VE,Qv(t) = log |φ(t)| − θ

1 − θ

(
log t− log

∣∣∣∣
φ(t) − φ(0)

φ(0)φ(t) − 1

∣∣∣∣ − log |φ(t)|
)

where φ is the mapping

φ(t) =

√
t− θ2 +

√
t− 1√

t− θ2 −
√
t− 1

.

Observe that for f(t) = t2 we have f−1(E) = [−1, 1]. Therefore, by Corol-
lary 2.13,

VΣ,Qw(t) =
1

2
log |φ(t2)| − θ

1 − θ
log |t|

+
θ

2(1 − θ)

(
log

∣∣∣∣
φ(t2) − φ(0)

φ(0)φ(t2) − 1

∣∣∣∣ − log |φ(t2)|
)
.
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Furthermore, it was also calculated that the support of the extremal measure
µv on E is [θ2, 1]. It follows that the support of the extremal measure µw

on Σ is [−1,−θ]∪ [θ, 1]. Finally, since Qw is convex we may apply Theorem
4.3 from [12] to conclude that Z(w) = [−θ, θ].

Note: Replacing θ/(1−θ) by α, we have w(t) = |t|α on Σ = [−1, 1] where
α > 0. Then the support of the extremal measure is Sw =

[
−1,− α

1+α

]
∪[

α
1+α , 1

]
and Z(w) =

[
− α

1+α ,
α

1+α

]
. We tend to use θ/(1 − θ) since we are

interested in applications to the theory of θ-incomplete polynomials.

Theorem 3.4. Suppose we have a continuous even admissible weight

v(t) on the interval [−1, 1]. Then for the weight w(x) = v(|x|) on the real

unit ball Σ = {x ∈ R
k : |x| ≤ 1} we have Z(w) = {x ∈ Σ : |x| ∈ Z(v)}.

Proof. Suppose there exists a point q ∈ {x ∈ Σ : |x| ∈ Z(v)} and
a continuous function f on Σ which can be uniformly approximated by
weighted polynomials wnPn but is nonzero at q. Consider the line passing
through the point q and the origin, L = {tx∗ : −1 ≤ t ≤ 1} for some
x∗ ∈ ∂Σ. Observe that for points on L our weight becomes

w(tx∗) = v(|tx∗|) = v(|t|)
since x∗ is a boundary point of Σ. Restricting our sequence {wnPn}∞n=1 to L
gives rise to a sequence of weighted polynomials in variable t on [−1, 1] for
the weight v(t). By definition, this sequence tends to zero for every t ∈ Z(v).
However, the uniform limit of this sequence is the function h(t) = f(tx∗) and
h is nonzero at t ∈ Z(v) where q = tx∗. This is impossible, and consequently
our original sequence on Σ could not have f as its uniform limit if f(q) 6= 0.
Hence, we have {x ∈ Σ : |x| ∈ Z(v)} ⊂ Z(w).

To establish the reverse inclusion we will prove the contrapositive. Take
a point q ∈ Σ such that r = |q| /∈ Z(v). Let f be a continuous even function
on [−1, 1], nonzero at r and vanishing on Z(v). By the definition of Z(v) our
function f is uniformly approximable by a sequence {v(t)nPn(t)}∞n=1. Since
f is an even function we have

v(t)n

(
Pn(t) + Pn(−t)

2

)
→ f uniformly.

Consequently, we take our sequence to be of the form {v(t2)n/2Rn/2(t
2)}∞n=1.

Let t = |x|. Under this substitution, our weight v(t) becomes the weight
w(x) on Σ. We let Tn(x1, . . . , xk) = Rn/2(x

2
1 + · · · + x2

k) so that wnTn →
h(x1, . . . , xk) uniformly, where h(x1, . . . , xk) = f(|x|) on Σ. By construction,
h(q) 6= 0, and we have defined a sequence wnTn, n = 1, 2, . . . , which uni-
formly converges to h on Σ. Thus q /∈ Z(w). It follows that Z(w) ⊂ {x ∈ Σ :
|x| ∈ Z(v)}, allowing us to conclude that Z(w) = {x ∈ Σ : |x| ∈ Z(v)}.
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Corollary 3.5. Suppose we have a continuous even admissible weight

v(t) on the interval [−1, 1] and Sv = [−1, 1] \ int(Z(v)). Then for the weight

w(x) = v(|x|) on the real unit ball Σ = {x ∈ R
k : |x| ≤ 1} we have

Sw = Σ \ int(Z(w)).

Proof. From Theorem 3.2 we know that Sw must contain {x ∈ Σ :
|x| /∈ Z(v)}. The support Sw is a closed set and Sv = [−1, 1] \ int(Z(v))
so we have {x ∈ Σ : |x| ∈ Sv} ⊂ Sw. To show containment in the other
direction, we argue by contradiction. Suppose there is a point q ∈ Sw with
r = |q| /∈ Sv. Then q ∈ int(Z(w)). Let B denote a neighbourhood of q,
and assume without loss of generality that B is in the interior of Z(w).
Then, by Corollary 2.11, there exists a weighted polynomial wnPn taking
its maximum modulus on Σ in Σ ∩ B. Let L be the line through q and
the origin, L = {tx∗ : −1 ≤ t ≤ 1} where x∗ ∈ ∂Σ. Observe that wnPn,
restricted to L, gives a univariate weighted polynomial v(t)nTn(t) taking its
maximum modulus on B ∩L, a neighbourhood of r. Consequently, r should
be in the support of the extremal measure for L, associated with the weight
v(t). But by assumption r is not in Sv since Sv ∩ int(Z(w)) = ∅. It follows
that q /∈ Sw, yielding Sw = {x ∈ Σ : |x| ∈ Sv}.

We may now use Example 3.3 combined with Theorem 3.4 to solve the
approximation problem for the real unit ball {x ∈ Rk : |x| ≤ 1} with
associated radial weight.

Example 3.6. Let Σ = {x ∈ R
k : |x| ≤ 1} ⊂ R

k ⊂ C
k. Define a

weight function on Σ by w(x) = |x|θ/(1−θ) for 0 < θ < 1. Then we have
Z(w) = θΣ = {x ∈ Σ : |x| ≤ θ} and Sw = {x ∈ Σ : θ ≤ |x| ≤ 1}.

Turning our attention to linear weights, we prove a theorem which will
be extremely useful when considering multivariable incomplete polynomials.
Let S[a, b] denote the line segment with initial point a and terminal point b
in R

k, and let Mc denote the ray through the point c (c 6= 0) and the origin.
Suppose L is a hyperplane in R

k not containing the origin. Take a compact
subset Γ of L together with all line segments from the origin to points of Γ .
The resulting union Σ :=

⋃
q∈Γ S[0, q] will be called a compact section if it

is not pluripolar in a neighbourhood of any of its points. If the equation of

the hyperplane L is
∑k

j=1 cjxj = d then the associated linear form for Σ is

ℓ(x) := d−1
∑k

j=1 cjxj .
Given a compact set Σ, starlike with respect to the origin, and a point

p ∈ Σ we denote Σ ∩Mp by Rp. Recall Σ is starlike with respect to the

origin if for any point q ∈ Σ the closed line segment joining the origin to q
lies entirely in Σ. If Σ is a compact section then Rp for a given point p ∈ Σ
will be of the form S[0, b] for some b ∈ Γ .
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Theorem 3.7. Let Σ be a compact section in R
k and suppose our weight

function on Σ is w(x) = l(x)θ/(1−θ) where l denotes the associated linear

form and θ is fixed , 0 < θ < 1. Then Z(w) = θ2Σ = {θ2x : x ∈ Σ} and

Sw = Σ \ θ2Σ.

Proof. To show that θ2Σ ⊂ Z we take a point a ∈ θ2Σ and suppose f is a
continuous function on Σ which is the uniform limit of weighted polynomials
{wnPn}∞n=1. Restrict to Ra = {tb : 0 ≤ t ≤ 1} with a = tb for some

t ∈ [0, θ2] and b ∈ Γ . Then wnPn|Ra gives a sequence tnθ/(1−θ)Tn(t), n =
1, 2, . . . , where Tn(t) = Pn(tb). Then by the univariate result the sequence

{tnθ/(1−θ)Tn(t)} tends to zero uniformly for t ∈ [0, θ2], forcing our function
f on Σ to be zero at a. Thus θ2Σ ⊂ Z(w).

Conversely, suppose our point a ∈ Σ lies outside of θ2Σ. We will produce
a continuous function on Σ which is the uniform limit of weighted polynomi-
als and nonzero at a. Let r = l(a) and take g(t) to be a continuous function

on [0, 1] which is the uniform limit of the sequence {tnθ/(1−θ)Pn(t)}∞n=1 and
g(r) 6= 0. Then the substitution t = l(x) gives a function f on {x ∈ R

k :
0 ≤ l(x) ≤ 1}. Observe f is nonzero at a and f is the uniform limit of
the weighted polynomials l(x)nθ/(1−θ)Pn(l(x)) where Pn(l(x)) is a polyno-
mial of degree at most n. Hence, by restricting to Σ we have shown that
Z(w) = θ2Σ.

We turn our attention to Sw. By Theorem 3.2, Sw is at least Σ \ θ2Σ.
To show that Sw is precisely this set, take a point q in its complement
and let B denote a neighbourhood of q, also contained in its complement.
By Corollary 2.11, there exists a weighted polynomial wmPm, taking its
maximum modulus on Σ ∩ B. Restricting to Rq gives a weighted poly-

nomial tmθ/(1−θ)Qm(t). It follows that l(q) ∈ Sv where v(t) = tθ/(1−θ) on
[0, 1]. This is impossible since Sv = [θ2, 1], allowing us to conclude that

Sw = Σ \ θ2Σ.
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Σ

y = mx + b

b > 0

Fig. 1. Example of a compact section
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A simple example of a compact section is a k-simplex in R
k with a

vertex at the origin. Note that compact sections are not necessarily convex,
our definition only requires a compact section to be starlike with respect to
the origin. It is helpful to explore a special case: we consider a 2-simplex in
R

2 with a vertex at the origin.

Example 3.8. Let Σ be the closed triangle in R
2 as in Figure 1. Let

l(x, y) = 1
b (y −mx) and define our weight function w on Σ by

w(x, y) = l(x, y)θ/(1−θ) for a fixed θ, 0 < θ < 1.

Then Z(w) = θ2Σ and Sw = Σ \ θ2Σ.

4. Approximation by incomplete polynomials. The weighted ap-
proximation problem discussed in the previous section evolved from the
incomplete polynomials of G. G. Lorentz. We define a θ-incomplete polyno-

mial Pn of degree n in R
k, k ≥ 1, for a given θ, 0 < θ < 1, to be of the

form

Pn =
n∑

m≥⌊θn⌋

Hm(x1, . . . , xk)

where Hm is a polynomial, homogeneous of degree m and ⌊θn⌋ denotes
the integer part of θn. We will always take θ to be in the open interval
(0, 1).

On [0, 1] with weight w(t) = tθ/(1−θ) approximating by weighted polyno-
mials is equivalent to approximating by θ-incomplete polynomials. That is,
given a continuous function f on [0, 1], it is the uniform limit of θ-incomplete
polynomials if and only if it is uniformly approximable by weighted poly-
nomials. We turn our attention to multivariable θ-incomplete polynomials,
beginning with a Stone–Weierstrass type theorem.

Theorem 4.1. Given a compact set Σ ⊂ R
k and a real number θ,

0 < θ < 1, there exists a closed set Zθ ⊂ Σ such that a continuous function

on Σ is the uniform limit of a sequence {Pn}∞n=1 of θ-incomplete polynomials

if and only if f vanishes on Zθ.

We omit the proof of Theorem 4.1 since it is completely analogous to
the proof of Theorem 3.1.

Proposition 4.2. Let Σ be a compact set in R
k, starlike with respect to

the origin. Then in order for a continuous function f on Σ to be the uniform

limit of a sequence {Pni
}∞i=1 of θ-incomplete polynomials for a fixed θ, f must

vanish on θ2Σ.

Proof. Suppose f is the uniform limit of θ-incomplete polynomials
{Pni

}∞i=1 on Σ. Take a closed line segment S[0, b] in Σ for a boundary



276 M. M. Branker

point b. Then S[0, b] = {tb : 0 ≤ t ≤ 1}. Restricting to S[0, b] gives a se-
quence of univariate θ-incomplete polynomials Rni

(t) = Pni
(tb) converging

uniformly to the continuous function g(t) = f(tb) on [0, 1]. Therefore, by
the combined results of Lorentz and Kuijlaars, Rni

tends to zero as ni → ∞
for t ∈ [0, θ2]. It follows that f ≡ 0 on θ2Σ.

Corollary 4.3. Let Σ be a compact set in R
k, starlike with respect to

the origin. Then θ2Σ ⊂ Zθ for Zθ as defined in Theorem 4.1.

The proof of Proposition 4.2 is very similar to the proof of Proposition 1
in [5]. In the same paper, Kroó considered incomplete polynomials on a
restricted class of convex domains which included sections of the unit disk
with central angle less than π/2 and parallelograms with a vertex at the
origin in R

2. Our next result shows that on compact sections, approximation
with θ-incomplete polynomials is equivalent to approximating with weighted
polynomials for the weight used in Theorem 3.8.

Theorem 4.4. Let Σ be a compact section in R
k and θ be fixed. Then

a continuous function f on Σ is the uniform limit of a sequence {Pn}∞n=1

of θ-incomplete polynomials if and only if f ≡ 0 on θ2Σ. In other words,
Zθ = θ2Σ.

Proof. By definition, Σ is a compact set in R
k, starlike with respect to

the origin. By Corollary 4.3, Zθ is at least θ2Σ. Conversely, suppose we have
a continuous function f on Σ and f ≡ 0 on θ2Σ. Then by Theorem 3.7,
the function f is the uniform limit of a sequence {ℓ(x)nθ/(1−θ)Pn(x)}∞n=1 of
weighted polynomials where ℓ is the linear form associated to Σ. Actually
from the proof of Theorem 3.7 we may write our sequence as {ℓ(x)nθ/(1−θ)

· Pn(ℓ(x))}∞n=1. We will use this sequence of weighted polynomials to con-
struct a sequence of θ-incomplete polynomials also uniformly approximat-
ing f . Observe that ℓ(x)nθ/(1−θ)Pn(ℓ(x)) has degree at most n+ nθ/(1 − θ)
and θ(n+ nθ/(1 − θ)) = θn/(1 − θ).

We add an additional assumption for the moment, namely assume θ is
rational. Then we may write θ/(1 − θ) = p/q where p, q ∈ N. For n = mq
where m = 1, 2, . . . , we have nθ/(1 − θ) = mp and ℓ(x)mpPmq(ℓ(x)) is a
θ-incomplete polynomial. Therefore from the original sequence of weighted
polynomials we have a subsequence {ℓ(x)mpPmq(ℓ(x))}∞m=1 of θ-incomplete
polynomials whose uniform limit is f . We need a sequence {Rn(x)}∞n=1 uni-
formly converging to f . Let Pmq(ℓ(x)) =: Pmq,0(x). Observe that the con-
tinuous functions f(x)/ℓ(x)j for j = 1, . . . , p + q − 1 also vanish on θ2Σ.
Therefore there exist corresponding sequences {ℓ(x)mpPmq,j(x)}∞m=1 whose
uniform limit is f/ℓj for j = 1, . . . , p+ q − 1. It follows that the sequences
{ℓ(x)mp+jPmq,j(x)}∞m=1 uniformly converge to f . Since for every natural
number n ≥ p + q there is a pair {j,m} such that n = m(p + q) + j, we
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have constructed a sequence {Rn(x)}∞n=p+q uniformly converging to f . De-
fine Rn(x) = ℓ(x)n for n = 1, . . . , p + q − 1 in order to get a sequence
{Rn(x)}∞n=1. Hence for rational θ we have Zθ = θ2Σ.

Now for an arbitrary θ, take θ1 to be rational and satisfying θ < θ1 < 1.
By the previous argument Zθ1

= θ2
1Σ. Given any continuous function f ≡ 0

on θ2Σ we may define the continuous function g on Σ by

g =

{
0 if z ∈ θ2

1Σ,

f if z ∈ Σ \ θ2
1Σ.

Then g is the uniform limit of θ1-incomplete polynomials {Pn(x)}∞n=1. More-
over, since θ1 > θ each θ1-incomplete polynomial is also a θ-incomplete poly-
nomial. Therefore given any rational θ1 > θ we have Zθ ⊂ Zθ1

= θ2
1Σ. It

follows that Zθ = θ2Σ.

Note that in R
2 this includes Lemma 3 of [5] which was proven using

approximation theory. Our goal is to find a class of sets Σ, more general
than compact sections, for which Zθ will also be θ2Σ.

Theorem 4.5. Let Σ be the arbitrary intersection of compact sections

in R
k. Then for a fixed θ we have Zθ = θ2Σ.

Proof. Fixing θ we know from Corollary 4.3 that Zθ is at least θ2Σ. In
order to establish equality we show that given a point x0 ∈ Σ \ θ2 Σ
it is possible to produce a continuous function f on Σ which is uniformly
approximable by θ-incomplete polynomials {Pn(x)}∞n=1 and nonzero at x0.
Given such a point x0, we know that for some compact section ∆i we have
Σ ⊂ ∆i and x0 ∈ ∆i \ θ2∆i. By Theorem 4.4, there is a continuous function
f on ∆i which is the uniform limit of θ-incomplete polynomials {Pn}∞n=1

and is nonzero at x0. Restricting to Σ completes our argument.

We can use Theorem 4.5 to immediately produce a class of sets Σ for
which Zθ = θ2Σ. Let K be a symmetric convex compact set in R

k. We
assume K is symmetric in each coordinate, that is, if (x1, . . . , xk) ∈ K
then (±x1, . . . ,±xk) ∈ K. Due to convexity, at every boundary point of
K there exists at least one supporting hyperplane to K. Since the class of
θ-incomplete polynomials is rotation invariant it suffices to state our lemma
for the nonnegative orthant of R

k.

Lemma 4.6. Let Σ = K∩(R+)k where K is a symmetric convex compact

set in R
k. Then Σ is an arbitrary intersection of k-simplices.

Proof. Let γ ∈ Σ be a boundary point of K such that there exists a
supporting hyperplane Hγ to K at γ which is not parallel to any of the

coordinate hyperplanes {x ∈ R
k : xj = 0} where j = 1, . . . , k. Observe
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that Hγ will also be a supporting hyperplane to Σ at γ. Then the com-

pact set ∆γ bounded by the coordinate hyperplanes {x ∈ R
k : xj = 0}

for j = 1, . . . , k and Hγ will be a k-simplex. Moreover, by definition, it
contains Σ. We continue this procedure of constructing k-simplices, using
all supporting hyperplanes to Σ which are not parallel to coordinate hy-
perplanes. Taking the intersection of the corresponding k-simplices gives
the appropriate expression for Σ. Note that by construction each ∆γ con-
tains Σ, so their intersection will also contain Σ. Equality is a consequence
of the use of supporting hyperplanes to Σ.

Since a k-simplex in R
k is a compact section, combining the previous

two results immediately gives

Proposition 4.7. Let Σ = K∩(R+)k where K is defined in the previous

lemma. Then for a fixed θ, we have Zθ = θ2Σ. In other words, in order

for a continuous function f on Σ to be the uniform limit of θ-incomplete

polynomials it is necessary and sufficient for f to vanish on θ2Σ.

We conclude this paper with a conjecture. If K is a convex compact
symmetric set in R

k with nonempty interior then Zθ = θK. That is, it
will be possible to uniformly approximate a continuous function f on K by
θ-incomplete polynomials if and only if f ≡ 0 on θK.
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