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Weak solutions to the complex Monge–Ampère equation
on hyperconvex domains

by Slimane Benelkourchi (Kénitra)

Abstract. We show a very general existence theorem for a complex Monge–Ampère
type equation on hyperconvex domains.

1. Introduction. Let Ω be a bounded hyperconvex domain in Cn and
F a nonnegative function defined on R × Ω. In the present note, we shall
consider the existence and uniqueness of a weak solution of the complex
Monge–Ampère type equation

(1.1) (ddcu)n = F (u, ·)dµ

where u is plurisubharmonic on Ω and µ is a nonnegative measure. This
problem has been studied extensively by various authors; see for example
[2], [4], [9], [10], [12], [14], [15], [16], [19], [20], [21], [22] and references therein
for further information about complex Monge–Ampère equations.

The problem was first considered by Bedford and Taylor [3]. In connec-
tion with the problem of finding complete Kähler–Einstein metrics on pseu-
doconvex domains, Cheng and Yau [16] treated the case F (t, z) = eKtf(z).
More recently, Czyż [17] treated the case where F is bounded by a func-
tion independent of the first variable and µ is the Monge–Ampère measure
of a plurisubharmonic function v, generalizing some results of Cegrell [13],
Kołodziej [21] and Cegrell and Kołodziej [14], [15].

In this paper we will consider a more general case. With notations intro-
duced in the next section, our main result is stated as follows.

Main Theorem. Let Ω be a bounded hyperconex domain and µ be a
nonnegative measure which vanishes on all pluripolar subsets of Ω. Assume
that F : R×Ω → [0,∞) is a measurable function such that:
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(1) For all z ∈ Ω, the function t 7→ F (t, z) is continuous and non-
decreasing;

(2) For all t ∈ R, the function z 7→ F (t, z) belongs to L1
loc(Ω,µ);

(3) There exists a function v0 ∈ N a which is a subsolution to (1.1), i.e.

(ddcv0)
n ≥ F (v0, ·)dµ.

Then for any maximal function f ∈ E there exists a unique solution u in
N a(f) to the complex Monge–Ampère equation

(ddcu)n = F (u, ·)dµ.

Note that the solution, as we will see in the proof, is given by the following
upper envelope of all subsolutions:

u = sup{v ∈ E(Ω) : v ≤ f and (ddcv)n ≥ F (v, ·)dµ}

where E(Ω) is the set of nonpositive plurisubharmonic functions defined
on Ω for which the complex Monge–Ampère operator is well defined as a
nonnegative measure (a precise definition will be given shortly).

2. Background and definitions. Recall that Ω b Cn, n ≥ 1, is a
bounded hyperconvex domain if it is a bounded, connected, and open set such
that there exists a bounded plurisubharmonic function ρ : Ω → (−∞, 0)
such that the closure of the set {z ∈ Ω : ρ(z) < c} is compact in Ω, for
every c ∈ (−∞, 0). We denote by PSH(Ω) the family of plurisubharmonic
functions defined on Ω.

We say that a bounded plurisubharmonic function ϕ defined onΩ belongs
to E0 if limz→ζ ϕ(z) = 0 for every ζ ∈ ∂Ω, and

	
Ω(dd

cϕ)n <∞ (see [10] for
details).

Let E(Ω) be the set of plurisubharmonic functions u such that for all
z0 ∈ Ω, there exists a neighborhood Vz0 of z0 and a decreasing sequence
uj ∈ E0(Ω) which converges towards u in Vz0 and satisfies

sup
j

�

Ω

(ddcuj)
n <∞.

U. Cegrell [10] has shown that the operator (ddc ·)n is well defined on E(Ω),
is continuous under decreasing limits, and the class E(Ω) is stable under
taking maximum, i.e. if u ∈ E(Ω) and v ∈ PSH−(Ω) then max(u, v) ∈ E(Ω).
E(Ω) is the largest class with these properties [10, Theorem 4.5]. The class
E(Ω) has been further characterized by Z. Błocki [7], [8].

The class F(Ω) is the “global version” of E(Ω): a function u belongs to
F(Ω) iff there exists a decreasing sequence uj ∈ E0(Ω) converging towards u
in all of Ω, with supj

	
Ω(dd

cuj)
n < ∞. Further characterizations are given

in [5], [6].
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DefineN (Ω) to be the family of all u ∈ E(Ω) which satisfy: if v ∈ PSH(Ω)
is maximal and u ≤ v then v ≥ 0, i.e. the smallest maximal psh function
above u is null. In fact, this class is the analogue of potentials for subharmonic
functions (see [9] for more details).

The class Fa(Ω) (resp. N a(Ω), Ea(Ω), . . .) is the set of functions u in
F(Ω) (resp. N (Ω), E(Ω), . . .) whose Monge–Ampère measure (ddcu)n is
absolutely continuous with respect to capacity, i.e. it does not charge pluri-
polar sets.

Finally, for f ∈ E , we denote by N (f) (resp. F(f)) the family of those
u ∈ PSH(Ω) such that there exists ϕ ∈ N (resp. ϕ ∈ F) satisfying

ϕ(z) + f(z) ≤ u(z) ≤ f(z), ∀z ∈ Ω.

We shall use repeatedly the following well known comparison principle
from [4] as well as its generalizations to the class N (f) (cf. [1], [9]).

Theorem 2.1 ([1], [4], [9]). Let f ∈ E(Ω) be a maximal function and let
u, v ∈ N (f) be such that (ddcu)n vanishes on all pluripolar sets in Ω. Then

�

(u<v)

(ddcv)n ≤
�

(u<v)

(ddcu)n.

Furthermore, if (ddcu)n = (ddcv)n then u = v.

3. Proof of Main Theorem

Lemma 3.1 (Stability). Let µ be a finite nonnegative measure which van-
ishes on all pluripolar subsets of Ω and f ∈ E(Ω) be a maximal function.
Fix a function v0 ∈ E(Ω). Then for any uj , u ∈ N a(f) that satisfy

(ddcuj)
n = hjdµ, (ddcu)n = hdµ

and 0 ≤ hdµ, hjdµ ≤ (ddcv0)
n, and hjdµ→ hdµ as measures, the sequence

uj converges towards u weakly.

The statement of the lemma fails if no control on the complex Monge–
Ampère measures is assumed (see [15]).

Proof. It follows from the comparison principle that uj≥v0 for all j∈N.
Therefore by the general properties of psh functions (uj)j is relatively com-
pact in the L1

loc topology. Let ũ ∈ N a(f) be any cluster point of the se-
quence uj . Assume that uj → ũ pointwise dλ-almost everywhere, where
dλ denotes the Lebesgue measure. By [11, Lemma 2.1], after extracting a
subsequence if necessary, we have uj → ũ dµ-almost everywhere. Then

ũ =
(
lim sup
j→∞

uj

)∗
= lim

j→∞

(
sup
k≥j

uk

)∗
.
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Now, consider the following auxiliary functions:

ũj =
(
sup
k≥j

uk

)∗
=
(
lim
l→∞

sup
l≥k≥j

uk

)∗
=
(
lim
l→∞

ũlj

)∗
.

Observe that
(ddcmax(uj , uk))

n ≥ min(hj , hk)dµ.

Therefore
(ddcũj)

n = lim
l→∞

(ddcũlj)
n ≥ lim

l→∞
min
l≥k≥j

hk dµ.

We let j converge to ∞ to get

(ddcũ)n ≥ hdµ.
Now, for the reverse inequality, pick a negative psh function ϕ ∈ E0. For any
j ≥ 1 and since uj ≤ ũj , by integration by parts, which is valid in N a(f)
(cf. [1]), we have �

Ω

−ϕ(ddcuj)n ≥
�

Ω

−ϕ(ddcũj)n.

Therefore

lim
j→∞

�

Ω

ϕhj dµ ≤ lim
j→∞

�

Ω

ϕ(ddcũj)
n =

�

Ω

ϕ(ddcũ)n.

Together with the first inequality, we get�

Ω

ϕ(ddcũ)n =
�

Ω

ϕhdµ, ∀ϕ ∈ E0.

We have D(Ω) ⊂ E0−E0 (cf. [10, Lemma 2.1]), so the equality holds for any
ϕ ∈ D(Ω). Hence

(ddcũ)n = hdµ = (ddcu)n.

Uniqueness in N a(f) implies that ũ = u, which concludes the proof.

Proof of Main Theorem. Assume first that F (t, ·) ∈ L1(dµ). Then F (f, ·)
∈ L1(dµ). It follows from [9] and [1] that the nonnegative measure F (f, ·)dµ
is the Monge–Ampère measure of a function u0 from the class Fa(f). Then

(ddcu0)
n = F (f, ·)dµ ≥ F (u0, ·)dµ.

We denote by A the set of all u ∈ Fa(f) such that u ≥ u0. The set A is
convex and compact with respect to the L1(dλ) topology, where dλ denotes
the Lebesgue measure in Cn. Once more, by [9] (see also [1]), for each u ∈ A
there exists a unique û ∈ Fa(f) such that

(ddcû)n = F (u, ·)dµ.
Since û ≤ f and F is nondecreasing in the first variable, we have

(ddcû)n = F (u, ·)dµ ≤ F (f, ·)dµ = (ddcu0)
n.

The comparison principle yields û ≥ u ≥ u0, hence û ∈ A.
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We define the map T : A → A by u 7→ û. By Schauder’s fixed point
theorem, we are done as soon as we show that the map T is continuous.
Let uj ∈ A converge towards u ∈ A. By Lemma 3.1, it is enough to show
that F (uj , ·)dµ→ F (u, ·)dµ. After extracting a subsequence, we may assume
that uj → u dλ-a.e. Applying Lemma 2.1. in [11], we get uj → u dµ-a.e. By
Lebesgue’s convergence theorem we have F (uj , ·)dµ→ F (u, ·)dµ.

We now complete the proof of the general case. Set

K := {ϕ ∈ N a(f) : (ddcϕ)n ≥ F (ϕ, ·)dµ}.

Claim 1. K is not empty.

Indeed, it follows from the monotonicity of F that

(ddcv0 + f)n ≥ (ddcv0)
n ≥ F (v0, )dµ ≥ F (v0 + f, ·)dµ,

so the function ϕ0 := v0 + f belongs to K.

Let
K0 := {ϕ ∈ K : ϕ ≥ ϕ0}.

Claim 2. K0 is stable under taking the maximum.

Indeed, let ϕ1, ϕ2 ∈ K0. It is clear that max(u1, u2) ≥ ϕ0. Since N a(f) is
stable under taking maximum, we have max(u1, u2) ∈ N a(f). On the other
hand, from [18],

(ddcmax(u1, u2))
n ≥ 1(u1≥u2)(dd

cu1)
n + 1(u1<u2)(dd

cu2)
n

≥ 1(u1≥u2)F (u1, ·)dµ+ 1(u1<u2)F (u2, .)dµ
≥ F (max(u1, u2), ·)dµ.

This implies that max(u1, u2) ∈ K0.

Claim 3. K0 is compact in L1
loc(Ω).

It is enough to prove thatK0 is closed. Let ϕj ∈ K0 be a sequence converg-
ing towards ϕ ∈ N a(f). The limit function is given by ϕ = (lim supj→∞ ϕj)

∗.
Then ϕ0 ≤ ϕ ≤ f. The continuity of the complex Monge–Ampère operator
and the properties of F yield

(ddcϕ)n = lim
j→∞

(
ddc sup

k≥j
ϕk

)n
= lim

j→∞
lim
l→∞

(
ddc max

l≥k≥j
ϕk

)n
≥ lim

j→∞
lim
l→∞

F
(
max
l≥k≥j

ϕk, ·
)
dµ.

Therefore ϕ ∈ K0.

Consider the upper envelope

φ(z) := sup{ϕ(z) : ϕ ∈ K0}.
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Notice that in order to get a psh function we should a priori replace φ by
its upper semicontinuous regularization φ∗(z) := lim supζ→z φ(ζ); but since
φ∗ ∈ K0, also φ∗ contributes to the envelope (i.e. φ∗ ∈ K0), and hence φ = φ∗.

Claim 4. φ is a solution to the Monge–Ampère equation (1.1).

It follows from Choquet’s Lemma that there exists a sequence φj ∈ K0

such that
φ =

(
lim sup
j→∞

φj

)∗
.

Since K0 is stable under taking the maximum, we can assume that φj is
nondecreasing. We use the classical balayage procedure to prove that φ is
actually a solution of (1.1). Pick a ball B b Ω and define

φBj (z) := sup{v(z) : v∗ ≤ φj on ∂B, v ∈ PSH(B)}, z ∈ B.

By the first part of the proof, there exists φ̃j ∈ Fa(φBj ,B) such that

(ddcφ̃j)
n = 1BF (φ̃j , ·)dµ.

In fact, φ̃j is the following upper envelope:

φ̃j = sup{w ∈ E(B) : w ≤ φBj and (ddcw)n ≥ F (w, ·)dµ}.

Indeed, if we denote by g the right hand side function, then φ̃j ≤ g ≤ φBj .

Hence g ∈ Fa(φBj ,B). It follows from [1, Lemma 3.3] that

(3.1)
�

Ω

χ(ddcφ̃j)
n ≤

�

Ω

χ(ddcg)n, ∀χ ∈ E0.

On the other hand, as before, we have g = (lim gk)
∗ where gk ∈ E(B) is a

nondecreasing sequence satisfying φBj ≥ gk ≥ φj and (ddcgk)
n ≥ F (gk, ·)dµ.

Therefore (ddcg)n ≥ F (g, ·)dµ. Thus
(3.2) (ddcφ̃j)

n = F (φ̃j , ·)dµ ≤ F (g, ·)dµ ≤ (ddcg)n.

Combining (3.1) and (3.2), we get

(ddcφ̃j)
n = (ddcg)n,

therefore, by the comparison principle, φ̃j = g.
Now, for j ∈ N, consider the function ψj defined on Ω by

ψj(z) =

{
φ̃j(z) if z ∈ B,
φj(z) if z 6∈ B.

On B we have φj ≤ φ̃j ≤ φBj ≤ f and on Ω \ B we have φ̃j = φj ≤ f.
Hence ψj ∈ N a(f). From the definition of ψj , we deduce that (ddcψj)

n ≥
F (ψj , ·)dµ. Therefore ψj ∈ K0 and

φ =
(
lim
j→∞

ψj

)∗
.



Weak solutions to the complex Monge–Ampère equation 245

Since the complex Monge–Ampère operator is continuous under monotonic
sequences and B is arbitrary, to conclude the proof of the claim it is enough
to observe that the sequence ψj is nondecreasing.

Uniqueness follows in a classical way from the comparison principle and
the monotonicity of F . Indeed, assume that there exist two solutions ϕ1 and
ϕ2 in N a(f) such that

(ddcϕi)
n = F (ϕi, ·)dµ, i = 1, 2.

Since F is nondecreasing in the first variable, we have

F (ϕ1, ·)dµ ≤ F (ϕ2, ·)dµ on (ϕ1 < ϕ2).

On the other hand, by the comparison principle,�

(ϕ1<ϕ2)

F (ϕ2, ·) dµ =
�

(ϕ1<ϕ2)

(ddcϕ2)
n ≤

�

(ϕ1<ϕ2)

(ddcϕ1)
n

=
�

(ϕ1<ϕ2)

F (ϕ2, ·) dµ.

Therefore
F (ϕ1, ·)dµ = F (ϕ2, ·)dµ on (ϕ1 < ϕ2).

In the same way, we get the equality on (ϕ1 > ϕ2) and so on Ω. Hence
(ddcϕ1)

n = (ddcϕ2)
n on Ω. Therefore uniqueness in the class N a(f) yields

ϕ1 = ϕ2, and the proof is complete.

Remarks. 1. We have no precise knowledge when a subsolution of (1.1)
exists. However, if there exists a negative function ψ ∈ PSH(Ω) such that�

Ω

−ψF (0, ·) dµ <∞,

then (1.1) admits a subsolution v ∈ N a. This is an immediate consequence
of [9, Proposition 5.2].

2. Condition (2) in Main Theorem is necessary.
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