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Weak solutions to the complex Monge—Ampére equation
on hyperconvex domains

by SLIMANE BENELKOURCHI (Kénitra)

Abstract. We show a very general existence theorem for a complex Monge—Ampére
type equation on hyperconvex domains.

1. Introduction. Let {2 be a bounded hyperconvex domain in C™ and
F' a nonnegative function defined on R x §2. In the present note, we shall
consider the existence and uniqueness of a weak solution of the complex
Monge—-Ampére type equation

(1.1) (dd°u)" = F(u, -)dp

where v is plurisubharmonic on (2 and p is a nonnegative measure. This
problem has been studied extensively by various authors; see for example
2], [, [9], [10], [12], [14], [15], [16], [19], [20], [21], [22] and references therein
for further information about complex Monge-Ampére equations.

The problem was first considered by Bedford and Taylor [3]. In connec-
tion with the problem of finding complete Kéhler—Einstein metrics on pseu-
doconvex domains, Cheng and Yau [16] treated the case F(t,z) = eX!f(z).
More recently, Czyz [17] treated the case where F' is bounded by a func-
tion independent of the first variable and p is the Monge—Ampére measure
of a plurisubharmonic function v, generalizing some results of Cegrell [13],
Kotodziej [21] and Cegrell and Kotodziej [14], [15].

In this paper we will consider a more general case. With notations intro-
duced in the next section, our main result is stated as follows.

MAIN THEOREM. Let §2 be a bounded hyperconexr domain and i be a
nonnegative measure which vanishes on all pluripolar subsets of 2. Assume
that F' : R x £2 — [0,00) is a measurable function such that:
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(1) For all z € 2, the function t — F\(t,z) is continuous and non-
decreasing;
(2) For allt € R, the function z — F(t,z) belongs to L (82, u);

loc

(3) There exists a function vg € N which is a subsolution to (1.1)), i.e.
(dd°vo)" > F(up, )d.

Then for any maximal function f € £ there exists a unique solution u in
Ne(f) to the complex Monge—Ampére equation

(dd°u)"™ = F(u,-)dp.

Note that the solution, as we will see in the proof, is given by the following
upper envelope of all subsolutions:

u=sup{v € £(2) :v < f and (ddv)" > F(v,-)du}

where £(f2) is the set of nonpositive plurisubharmonic functions defined
on {2 for which the complex Monge-Ampére operator is well defined as a
nonnegative measure (a precise definition will be given shortly).

2. Background and definitions. Recall that 2 € C", n > 1, is a
bounded hyperconvexr domain if it is a bounded, connected, and open set such
that there exists a bounded plurisubharmonic function p : 2 — (—o00,0)
such that the closure of the set {z € 2 : p(z) < ¢} is compact in 2, for
every ¢ € (—o0,0). We denote by PSH({?2) the family of plurisubharmonic
functions defined on (2.

We say that a bounded plurisubharmonic function ¢ defined on {2 belongs
to & if lim,_,¢ p(z) = 0 for every ¢ € 912, and {,(dd“¢)" < oo (see [10] for
details).

Let £(£2) be the set of plurisubharmonic functions w such that for all
zo € {2, there exists a neighborhood V, of 2y and a decreasing sequence
uj € E(§2) which converges towards u in V,, and satisfies

sup S(ddCUj)" < 0.
)
U. Cegrell [10] has shown that the operator (dd®-)™ is well defined on £(£2),
is continuous under decreasing limits, and the class £(f2) is stable under
taking maximum, i.e. if u € £(£2) and v € PSH™ (£2) then max(u,v) € £(£2).
E(12) is the largest class with these properties [I0, Theorem 4.5|. The class
E(2) has been further characterized by Z. Blocki [7], [§].

The class F(§2) is the “global version” of £(f2): a function u belongs to
F(£2) iff there exists a decreasing sequence u; € & /(§2) converging towards u
in all of £2, with sup; {,(ddu;)™ < oo. Further characterizations are given
in [5], [6].
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Define N (£2) to be the family of all u € £(£2) which satisfy: if v € PSH({2)
is maximal and u < v then v > 0, i.e. the smallest maximal psh function
above u is null. In fact, this class is the analogue of potentials for subharmonic
functions (see [9] for more details).

The class F*(£2) (resp. N%(£2), £*(£2),...) is the set of functions u in
F(£2) (resp. N(£2), £(£2),...) whose Monge-Ampére measure (dd“u)™ is
absolutely continuous with respect to capacity, i.e. it does not charge pluri-
polar sets.

Finally, for f € &€, we denote by N(f) (resp. F(f)) the family of those
u € PSH(2) such that there exists ¢ € N (resp. ¢ € F) satisfying

p(2) + f(2) Sulz) < f(2), Vzel

We shall use repeatedly the following well known comparison principle
from [4] as well as its generalizations to the class N(f) (cf. [1], []).

THEOREM 2.1 ([II, [], [9]). Let f € £(£2) be a mazimal function and let
u,v € N(f) be such that (dd°u)™ vanishes on all pluripolar sets in §2. Then

| (ddvym < | (dd°u)™.
(u<w) (u<w)

Furthermore, if (dd“u)™ = (dd°v)™ then u = v.

3. Proof of Main Theorem

LEMMA 3.1 (Stability). Let p be a finite nonnegative measure which van-
ishes on all pluripolar subsets of 2 and f € E(£2) be a maximal function.
Fiz a function vy € E(82). Then for any uj,u € N*(f) that satisfy

(ddu;)" = hjdp,  (dd°uw)™ = hdp

and 0 < hdp, hjdp < (dd°vo)", and hjdp — hdp as measures, the sequence
uj converges towards u weakly.

The statement of the lemma fails if no control on the complex Monge—
Ampeére measures is assumed (see [15]).

Proof. 1t follows from the comparison principle that u; >wvq for all j€N.
Therefore by the general properties of psh functions (u;); is relatively com-
pact in the Li_ topology. Let & € N%(f) be any cluster point of the se-
quence uj. Assume that u; — 4 pointwise dA-almost everywhere, where
dA denotes the Lebesgue measure. By [11, Lemma 2.1], after extracting a
subsequence if necessary, we have u; — @ du-almost everywhere. Then

U= (limsup uj>* = lim (sup uk>*

j—00 J=00 N>
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Now, consider the following auxiliary functions:
_— "y *:<1. AN
= (qupe) = (fm s o) = (i )
Observe that
(dd° max(uj,ug))" > min(h;, hy)dp.
Therefore
(dd°@i;)™ = lim (dd°a)™ > lim min hy, dp.

l—00 l—=001>k>j
We let j converge to oo to get
(dd“a)"™ > hdpu.
Now, for the reverse inequality, pick a negative psh function ¢ € &. For any
J > 1 and since u; < @;, by integration by parts, which is valid in N*(f)
(cf. [I]), we have
| —e(dduy)" > | —p(ddci)".
2 2
Therefore
lim | hy dp < Tim | p(dd?a;)" = § p(dda)".
j—)OO ]-}OO
19 19 19
Together with the first inequality, we get
| p(ddea)" = | phdu, Vpe&.
2 2

We have D(£2) C & — & (cf. [10, Lemma 2.1]), so the equality holds for any
© € D(£2). Hence
(dd°u)"™ = hdp = (ddu)™.

Uniqueness in N*(f) implies that @ = u, which concludes the proof. =

Proof of Main Theorem. Assume first that F(t,-) € L'(du). Then F(f,)
€ L'(dp). Tt follows from [9] and [I] that the nonnegative measure F(f,-)du
is the Monge—Ampére measure of a function ug from the class F*(f). Then

(ddcu())n = F(f7 )d,u > F(u07 )d,u

We denote by A the set of all u € F(f) such that u > wug. The set A is
convex and compact with respect to the L!(d)) topology, where d\ denotes
the Lebesgue measure in C". Once more, by [9] (see also [1]), for each u € A
there exists a unique 4 € F°(f) such that

(dd“a)"™ = F(u,-)dp.
Since 4 < f and F' is nondecreasing in the first variable, we have
(dd°a)"™ = F(u,-)du < F(f, )dp = (ddup)™.

The comparison principle yields @ > u > ug, hence 4 € A.
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We define the map T : A — A by u — 4. By Schauder’s fixed point
theorem, we are done as soon as we show that the map T is continuous.
Let uj € A converge towards u € A. By Lemma , it is enough to show
that F'(u;,-)du — F(u,-)du. After extracting a subsequence, we may assume
that u; — u d\-a.e. Applying Lemma 2.1. in [I1], we get u; — u dp-a.e. By
Lebesgue’s convergence theorem we have F'(u;, -)dp — F(u, -)dpu.

We now complete the proof of the general case. Set

K:={p e N(f): (dd°p)" = F(e,-)dp}.
CLAaM 1. K is not empty.
Indeed, it follows from the monotonicity of F' that
(ddvo + f)" > (ddvo)"™ > F(vg, )dpu > F(vo + f,-)du,
so the function g := vy + f belongs to K.

Let
Ko:={p e k:v >0}
CLAIM 2. Ky is stable under taking the mazimum.
Indeed, let o1, p2 € Ko. It is clear that max(ug, uz) > . Since N(f) is

stable under taking maximum, we have max(ui,ug) € N(f). On the other
hand, from [I§],

(ddc max(ul, ug))" Z 1(ulzu2)(ddcul)n + 1(ul<u2)(ddC’U,2)n
> 1(u12uz)F(U1, -)d,u + 1(u1<u2)F(’u,2, .)du
> F(max(uy,u2), - )dp.
This implies that max(uq,u2) € Ko.

CLAIM 3. K is compact in L (§2).

loc
It is enough to prove that Ky is closed. Let ¢; € Ko be a sequence converg-
ing towards ¢ € N(f). The limit function is given by ¢ = (limsup;_,, ©;)*-
Then g < ¢ < f. The continuity of the complex Monge-Ampére operator
and the properties of F' yield

(dd°p)™ m (ddC sup g0k>n = lim lim <aldc max (pk>n

=1

> lim lim F(max Ok, ')d,u.

j—o0l—o00 1>k>j

Therefore ¢ € K.

Consider the upper envelope

d(2) :==sup{p(z) : p € Ko}
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Notice that in order to get a psh function we should a priori replace ¢ by
its upper semicontinuous regularization ¢*(z) := limsup._,, ¢(¢); but since
¢* € Ko, also ¢* contributes to the envelope (i.e. * € Ky), and hence ¢ = ¢*.

CLAIM 4. ¢ is a solution to the Monge—Ampére equation ((1.1)).

It follows from Choquet’s Lemma that there exists a sequence ¢; € Kq
such that

o= (hm sup qﬁj) *.

Jj—o0
Since Ko is stable under taking the maximum, we can assume that ¢; is

nondecreasing. We use the classical balayage procedure to prove that ¢ is
actually a solution of ([1.1). Pick a ball B € {2 and define

gzbf(z) :=sup{v(z) : v* < ¢; on OB, v € PSH(B)}, 2z € B.

By the first part of the proof, there exists qz~5j eF a(qb;-3 , B) such that
(dd°¢;)" = 18 F (j, -)dp.
In fact, ggj is the following upper envelope:
¢j =sup{w € E(B) 1w < qﬁf and (dd‘w)™ > F(w,-)du}.
Indeed, if we denote by ¢ the right hand side function, then (;3]- <g< qﬁf .
Hence g € ]:“(qﬁjB,B). It follows from [I, Lemma 3.3| that
(3.1) | x(dd°g;)" < | x(dd°g)",  Vx € &.
9] 9}

On the other hand, as before, we have g = (lim g;)* where g € £(B) is a
nondecreasing sequence satisfying gi)f > gr > ¢j and (dd°gi)" > F(gx, -)dpu.
Therefore (dd°g)™ > F(g,-)du. Thus

(3:2) (dd°d;)" = F($;,-)du < F(g,)du < (dd°g)".
Combining (3.1)) and (3.2), we get
(dd°G;)" = (dd‘g)",
therefore, by the comparison principle, (;3]- =g.
Now, for j € N, consider the function v; defined on {2 by

bi(z) if z € B,
Uz =
0i(z) if 2 ¢ B.
On B we have ¢; < ¢; < qﬁf < f and on 2\ B we have ¢; = ¢; < f.
Hence v; € N%(f). From the definition of ;, we deduce that (dd®y;)" >
F(1j,-)dp. Therefore ¢; € Ky and
¢ = (hm ¢j> .

Jj—o0
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Since the complex Monge—Ampére operator is continuous under monotonic
sequences and B is arbitrary, to conclude the proof of the claim it is enough
to observe that the sequence 1); is nondecreasing.

Uniqueness follows in a classical way from the comparison principle and
the monotonicity of F. Indeed, assume that there exist two solutions ¢ and
2 in N%(f) such that

(ddc(pi)n = F(QOZ', ')du, 1= 1, 2.
Since F' is nondecreasing in the first variable, we have
F(er,-)du < F(pa,-)dp on (@1 < ¢2).
On the other hand, by the comparison principle,
| Floe,)du= | (ddp)" < | (ddy)"
(p1<p2) (p1<p2) (p1<p2)

(p1<¢p2)

Therefore
F(p1,-)dp = F(pz,-)dp on (o1 < ¢2).
In the same way, we get the equality on (p; > ¢2) and so on 2. Hence

(dd®p1)"™ = (dd®p2)™ on 2. Therefore uniqueness in the class N(f) yields
1 = 9, and the proof is complete. =

REMARKS. 1. We have no precise knowledge when a subsolution of (|1.1))
exists. However, if there exists a negative function ¢ € PSH({2) such that

S —¢F(0> ')du < o0,
2
then admits a subsolution v € N%. This is an immediate consequence
of [9, Proposition 5.2].
2. Condition (2) in Main Theorem is necessary.
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