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Volume comparison theorem for tubular neighborhoods of
submanifolds in Finsler geometry and its applications

by Bing-Ye Wu (Fuzhou)

Abstract. We consider the distance to compact submanifolds and study volume com-
parison for tubular neighborhoods of compact submanifolds. As applications, we obtain a
lower bound for the length of a closed geodesic of a compact Finsler manifold. When the
Finsler metric is reversible, we also provide a lower bound of the injectivity radius. Our
results are Finsler versions of Heintze–Karcher’s and Cheeger’s results for Riemannian
manifolds.

1. Introduction. The comparison technique is a powerful tool in global
differential geometry, and it has been well developed in Riemannian geom-
etry. Volume, as an important geometric invariant, plays a key role in the
comparison technique. Recently the comparison technique has been devel-
oped for Finsler manifolds, and the relationship between curvature and
topology of Finsler manifolds has also been investigated [BCS, S1, S2, W1,
W2, W3, WX]. The basic comparison objects are distance and volume. It
should be pointed out here that the volume form is uniquely determined
by the given Riemannian metric, while there are different choices of vol-
ume forms for Finsler metrics. As a result, we usually need to control the
S-curvature in order to obtain volume comparison theorems as well as re-
sults on curvature and topology. This additional assumption on S-curvature
has been removed by the author recently by using the extreme volume forms
(the maximal and minimal volume forms) [W1, W2, W3].

Generally distance is taken to a fixed point. In this paper we shall con-
sider the distance to compact submanifolds and study volume comparison
for tubular neighborhoods of compact submanifolds. As applications, we ob-
tain a lower bound for the length of a closed geodesic of a compact Finsler
manifold. When the Finsler metric is reversible, we also provide a lower
bound of the injectivity radius.
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To present our results, let us first introduce some notations of Finsler
geometry (see §2 for details). On a compact Finsler manifold (M,F ) let
volmin(M) be the minimal volume of (M,F ), µ = µ(x) the uniformity func-
tion of M , and ‖T‖(x) the norm of the T-curvature at x ∈ M . The main
results of this paper are the following two theorems.

Theorem 1.1. Let (M,F ) be an n-dimensional compact Finsler mani-
fold with flag curvature satisfying KM ≥ −1, d = diam(M), the diameter
of M , and

Λ = max
x∈M

µ(x), Ξ = max
x∈M
‖T‖(x).

Then the length L(c) of any closed geodesic c of M satisfies

L(c) ≥ (n− 1) volmin(M)

Λ(n+4)/2 vol(Sn−2)(1 +Ξ) sinhn−1 d
,

where Sn−2 denotes the standard unit (n− 2)-sphere.

Theorem 1.2. Let (M,F ) be an n-dimensional compact reversible
Finsler manifold with flag curvature satisfying |KM | ≤ 1, d = diam(M),
and

Λ = max
x∈M

µ(x), Ξ = max
x∈M
‖T‖(x).

Then the injectivity radius i(M) of M satisfies

i(M) ≥ min

{
π,

(n− 1) volmin(M)

2Λ(n+4)/2 vol(Sn−2)(1 +Ξ) sinhn−1 d

}
.

Remark 1.3. Theorems 1.1 and 1.2 are Finsler versions of Heintze–
Karcher’s and Cheeger’s results for Riemannian manifolds (see, e.g., [C, HK]).

2. Preliminaries. In this section, we give a brief description of ba-
sic quantities and fundamental formulas of Finsler geometry; for more de-
tails see [BCS, S1]. Let (M,F ) be a Finsler n-manifold with Finsler metric
F : TM → [0,∞). Let (x, y) = (xi, yi) be local coordinates on TM , and
π : TM \ 0→M the natural projection. Unlike the Riemannian case, most
Finsler quantities are functions on TM rather than M . The fundamental
tensor gij and the Cartan tensor Cijk are defined by

gij(x, y) :=
1

2

∂2F (x, y)2

∂yi∂yj
, Cijk(x, y) :=

1

4

∂3F (x, y)2

∂yi∂yj∂yk
.

Let Γ ijk(x, y) be the Chern connection coefficients, and write gy= gij(x, y)dxi

⊗ dxj . Let V = vi∂/∂xi be a nonvanishing vector field on an open subset
U ⊂M . One can introduce a Riemannian metric g̃ = gV and a linear con-
nection ∇V (called the Chern connection) on the tangent bundle over U as
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follows:

∇V∂/∂xi
∂

∂xj
:= Γ kij(x, v)

∂

∂xk
.

From the torsion-freeness and almost g-compatibility of the Chern connec-
tion we have

∇VXY −∇VYX = [X,Y ],(2.1)

X · gV (Y,Z) = gV (∇VXY, Z) + gV (Y,∇VXZ) + 2CV (∇VXV, Y, Z),(2.2)

where CV is defined by

CV (X,Y, Z) = XiY jZkCijk(x, v),

and it satisfies

(2.3) CV (V,X, Y ) = 0.

Let

TV (U) = gV (V,∇VUU −∇UUU), ∀V,U ∈ TM \ 0.

T is called the T -curvature [S1]. It is clear that T ≡ 0 if and only if (M,F )
is a Berwald manifold. The norm ‖T‖(x) of the T-curvature at x ∈ M is
defined by

‖T‖(x) = max
v,u∈TxM\{0}

|Tv(u)|
F (v)F (u)2

.

The Chern curvature RV (X,Y )Z for vector fields X,Y, Z on U is defined by

RV (X,Y )Z := ∇VX∇VY Z −∇VY∇VXZ −∇V[X,Y ]Z.

In the Riemannian case this curvature does not depend on V and coincides
with the Riemannian curvature tensor. Let RV (X) = RV (X,V )V . Then
gV (RV (X), Y ) = gV (X,RV (Y )). For a flag (V ;P ) (or (V ;W )) consisting
of a nonzero tangent vector V ∈ TxM and a 2-plane P ⊂ TxM with V ∈ P
the flag curvature K(V ;P ) is defined as follows:

K(V ;P ) = K(V ;W ) :=
gV (RV (W ),W )

gV (V, V )gV (W,W )− gV (V,W )2
.

HereW is a tangent vector such that V,W span the 2-plane P , and V ∈ TxM
is extended to a geodesic field, i.e., ∇VV V = 0 near x. Let γ : [0, b]→ M be
a unit speed geodesic with tangent vector field T . A vector field J along γ
is called a Jacobi field along γ if

(2.4) ∇TT∇TTJ + RT (J) = 0.

Given a Finsler manifold (M,F ), the dual Finsler metric F ∗ on M is
defined by

F ∗(ξx) := sup
Y ∈TxM\{0}

ξ(Y )

F (Y )
, ∀ξ ∈ T ∗M,
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and the corresponding fundamental tensor is defined by

g∗kl(ξ) =
1

2

∂2F ∗(ξ)2

∂ξk∂ξl
.

The Legendre transformation l : TM → T ∗M is defined by

l(Y ) =

{
gY (Y, ·), Y 6= 0,

0, Y = 0.

It is well-known that for any x ∈ M , the Legendre transformation is a
smooth diffeomorphism from TxM \ {0} onto T ∗xM \ {0}, and it is norm-
preserving, that is, F (Y ) = F ∗(l(Y )) for all Y ∈ TM . Let f : M → R be a
smooth function on M . The gradient of f is defined by ∇f = l−1(df). Thus
at points where df 6= 0 we have

df(X) = g∇f (∇f,X), X ∈ TM.

A volume form dµ on a Finsler manifold (M,F ) is nothing but a global
nondegenerate n-form on M . In local coordinates we can express dµ as
dµ = σ(x)dx1∧· · ·∧dxn. The frequently used volume forms in Finsler geom-
etry are the so-called Busemann–Hausdorff volume form and the Holmes–
Thompson volume form. In [W1] we introduce the maximal and minimal
volume forms for Finsler manifolds which play an important role in the
comparison technique in Finsler geometry. They are defined as follows. Let

dVmax = σmax(x)dx1 ∧ · · · ∧ dxn

and

dVmin = σmin(x)dx1 ∧ · · · ∧ dxn

with

σmax(x) := max
y∈TxM\{0}

√
det(gij(x, y)), σmin(x) := min

y∈TxM\{0}

√
det(gij(x, y)).

Then it is easy to check that the n-forms dVmax and dVmin are well-defined
on M , and they are called the maximal volume form and the minimal volume
form of (M,F ), respectively. The volume with respect to dVmax (resp. dVmin)
is called the maximal volume (resp. minimal volume).

The uniformity function µ : M → R is defined by

µ(x) = max
y,z,u∈TxM\{0}

gy(u, u)

gz(u, u)
.

Λ = maxx∈M µ(x) is called the uniformity constant [E]. It is clear that

µ−1F (u)2 ≤ gy(u, u) ≤ µF (u)2.

Similarly, the reversible function λ : M → R is defined by

λ(x) = max
y∈TxM\{0}

F (y)

F (−y)
.
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λF = maxx∈M λ(x) is called the reversibility of (M,F ) [R], and (M,F ) is
called reversible if λF = 1. It is clear that λ(x)2 ≤ µ(x).

Fix x ∈ M , and let Sx = {v ∈ TxM : F (v) = 1} and Bx = {v ∈ TxM :
F (v) < 1}. On TxM \ {0} one can consider the singular Riemannian metric
ĝ(y) = gy which induces a Riemannian metric ġ on Sx. Define the density
Θx at x ∈M by [S2]

Θx =
volġ(Sx)

vol(Sn−1)
.

Then by [W1] we have

(2.5) µ(x)−n/2 ≤ Θx =
volġ(Sx)

vol(Sn−1)
=

volĝ(Bx)

vol(Bn)
≤ µ(x)n/2.

Here Sn−1 and Bn are the unit Euclidean (n − 1)-sphere and unit n-ball,
respectively. For v ∈ Sx, the cut-value c(v) is defined by

c(v) := sup{t > 0 : dF (x, expx(tv)) = t}.
Then, we can define the tangential cut locus C(x) of x by C(x) := {c(v)v :
c(v) < ∞, v ∈ Sx}, the cut locus C(x) of x by C(x) = expx C(x), and the
injectivity radius ix at x by ix = inf{c(v) : v ∈ Sx}. When M is compact,
the injectivity radius of M is defined by i(M) = minx∈M ix.

3. Fermi coordinates for a Minkowski space. A Finsler manifold
(V, F ) is called a Minkowski space if V is a vector space and the fundamental
tensor gij(x, y) = gij(y) is independent of the position x ∈ V .

Lemma 3.1. Let (V, F ) be a Minkowski space with uniformity constant
µ, and u,w, y ∈ V be vectors such that y = w + u and gu(u,w) = 0. Then

(3.1)
1

µ
F (w)2 + F (u)2 ≤ F (y)2 ≤ µF (w)2 + F (u)2.

Proof. Let

f(t) = 1
2F (u+ tw)2 = 1

2gu+tw(u+ tw, u+ tw), t ∈ [0, 1].

Then

f ′(t) = gu+tw(w, u+ tw),(3.2)

f ′′(t) = gu+tw(w,w) ≤ µF (w)2.(3.3)

Now consider
g(t) = f(t)− 1

2µF (w)2t2 − 1
2F (u)2.

Then (3.2) and (3.3) imply that

g(0) = g′(0) = 0, g′′(t) ≤ 0.

Consequently,
2g(1) = F (y)2 − µF (w)2 − F (u)2 ≤ 0,
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which is equivalent to the right inequality of (3.1). The left inequality can
be shown similarly.

Now let W ⊂ V be a k-dimensional linear subspace of an n-dimensional
Minkowski space (V, F ). The orthogonal complement W⊥ of W in V is
defined by W⊥ = {u ∈ V \ {0} : gu(u,w) = 0, ∀w ∈ W} ∪ {0}. Let
S⊥(W ) = {u ∈ W⊥ : F (u) = 1}. Then it is easy to see that for any y ∈ V ,
one has the decomposition

y = w + ru, w ∈W, r ≥ 0, u ∈ S⊥(W ).

Consider the diffeomorphism Φ : W × S⊥(W )× [0,∞)→ V defined by

Φ(w, u, r) = w + ru, ∀(w, u, r) ∈W × S⊥(W )× [0,∞),

which provides the Fermi coordinates (w, u, r) on V . Fix a basis ea, 1≤ a≤ k,
for W , and let θα, k+1 ≤ α ≤ n−1, be the local coordinates that are intrinsic
to S⊥(W ). We shall use the following convention for the ranges of indices:

1≤ i, j, . . . ≤ n, 1≤ A,B,C ≤ n−1, 1≤ a, b, . . .≤ k < α, β, . . . ≤ n−1.

Then the coordinate vectors of Fermi coordinates are given by

∂a = dΦ(ea) = ea, ∂α = dΦ

(
∂

∂θα

)
= r

∂

∂θα
, ∂n = dΦ

(
∂

∂r

)
= u.

Consider the singular Riemannian metric g̃|y=w+ru = gu on V \W . It can
be expressed as

(3.4) g̃ = gu(ea, eb)dw
adwb + r2gu

(
∂

∂θα
,
∂

∂θβ

)
dθαdθβ + dr2.

Let ĝW = gw(ea, eb)dw
adwb and ġW⊥ = gu(∂/∂θα, ∂/∂θβ) dθαdθβ be the

Riemannian metrics on W \{0} and S⊥(W ), respectively. The corresponding
volume forms are given by

dVĝW =
√

det(gw(ea, eb)) dw
1 ∧ · · · ∧ dwk,(3.5)

dVġ
W⊥ =

√
det(gu(∂/∂θα, ∂/∂θβ)) dθ1 ∧ · · · ∧ dθn−1.(3.6)

For fixed u and w let e1, . . . , ek be a gw-orthonormal basis for W consisting
of eigenvectors of (gu(ea, eb)) with eigenvalues ρ1, . . . , ρk. Then

ρa = gu(ea, ea) ≥ µ−1gw(ea, ea) = µ−1,

and consequently

(3.7) det(gu(ea, eb)) = ρ1 · · · ρk ≥ µ−k det(gw(ea, eb)).

By (3.4)–(3.7) it is clear that

(3.8) dVg̃ ≥ µ−k/2rn−k−1dVĝW ∧ dVġW⊥ ∧ dr.
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Let B = {y ∈ V : F (y) < 1}, and z ∈ V be a unit vector such that√
det(gij(z)) = max

y∈V \{0}

√
det(gij(y)),

so that dVmax = dVgz . By the definition of uniformity constant, one can
easily check that B ⊂ Bn(

√
µ), where Bn(

√
µ) = {y ∈ V : gz(y, y) < µ}

denotes the ball of radius
√
µ in V with respect to gz. Hence,

(3.9) volg̃(B) ≤ volgz(B) ≤ volgz(Bn(
√
µ)) = µn/2 vol(Bn).

On the other hand, for any y = w + ru ∈ B one has, by (3.1),

(3.10) r2 ≤ F (y)2 − 1

µ
F (w)2 < 1, F (w)2 ≥ F (y)2 − r2

µ
.

Combining (2.5) and (3.8)–(3.10) we have

(3.11) µn/2 vol(Bn) ≥ volg̃(B) =
�

B
dVg̃

≥ µ−k/2 volġ
W⊥ (S⊥(W ))

1�

0

rn−k−1 dr
�

B(W,
√

(1−r2)/µ)

dVĝW

≥ µ−3k/2 volġ
W⊥ (S⊥(W )) vol(Bk)

1�

0

rn−k−1(1− r2)k/2 dr,

where B(W, s) = {w ∈ W : F (w) < s}. When F is Euclidean, then µ = 1,
and (3.11) reduces to the equality

(3.12) vol(Bn) = vol(Sn−k−1) vol(Bk)
1�

0

rn−k−1(1− r2)k/2 dr.

From (3.11) and (3.12) we have the following

Proposition 3.2. Under the notations as above, the volume of S⊥(W )
with respect to ġW⊥ satisfies

volġ
W⊥ (S⊥(W )) ≤ µ(n+3k)/2 vol(Sn−k−1).

4. Jacobi fields with initial submanifolds. Let (M,F ) be an n-
dimensional Finsler manifold, and P ⊂ M be a k-dimensional compact
embedded submanifold. For p ∈ P let

T⊥p (P ) = {y ∈ TpM \ {0} : gy(y, z) = 0, ∀z ∈ TpP} ∪ {0},
S⊥p (P ) = {ξ ∈ T⊥p (P ) : F (ξ) = 1}.
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T⊥p (P ) is called the normal space of P in M at p. The normal bundle T⊥(P )

and the unit normal bundle S⊥(P ) of P in M are defined by

T⊥(P ) =
⋃
p∈P

T⊥p (P ), S⊥(P ) =
⋃
p∈P
S⊥p (P ).

For u ∈ S⊥p (P ) and x, y ∈ TpP , the second fundamental form Bu(x, y) of
x, y with respect to u is defined by

Bu(x, y) = gU (U,∇UXY )|p,
where U ∈ S⊥(P ) and X,Y ∈ TP are the local extensions of u, x, y. By
(2.1)–(2.3) it is easy to check that Bu(x, y) is well-defined, and

(4.1) Bu(x, y) = Bu(y, x) = −gu(∇UXU |p, y).

Bu determines the Weingarten transformation Au : TpP → TpP via

(4.2) gu(Aux, y) = Bu(x, y), ∀x, y ∈ TpP.
The mean curvature H(u) with respect to u is defined by

H(u) =
1

k

∑
a

Au(ea, ea),

where e1, . . . , ek is a gu-orthonormal basis for TpP . It should be noted here
that we define the notions of second fundamental form and mean curvature
for Finsler submanifold by means of the Chern connection; these are different
from the notions defined by volume variation (see e.g. [S3, W4]).

We consider the distance function r = rP from P which is defined by

rP (q) = dF (P, q) = min
p∈P

dF (p, q), ∀q ∈M.

By the first variation of arc length it is clear that a unit speed curve γ :
[0, b] → M from p ∈ P to q ∈ M realizes the distance b = r(q) only if γ is
a geodesic with ξ = γ̇(0) ∈ S⊥p (P ). For such γ extend ξ = γ̇(0) to a local

unit normal vector field ξ(s) ∈ S⊥c(s)(P ) along a curve c : (−ε, ε) → P with

c(0) = p, and consider a geodesic variation Exp : [0, b]× (−ε, ε)→M given
by (t, s) 7→ expc(s)(tξ(s)). Set

T̃ (t, s) = dExp

(
∂

∂t

)
, S̃(t, s) = dExp

(
∂

∂s

)
, T = T̃ (t, 0), S = S̃(t, 0).

It is well-known that the variation vector field S is a Jacobi field along γ. It
is clear that S(0) = ċ(0) ∈ TpP . Noticing that

∇T̃
T̃
S̃ −∇T̃

S̃
T̃ = [T̃ , S̃] = dExp([∂/∂t, ∂/∂s]) = 0,

one has

(4.3) ∇TTS(0) = ∇T̃
T̃
S̃|(0,0) = ∇T̃

S̃
T̃ |(0,0) = ∇TS(0)T̃ (0, s) = ∇TS(0)ξ,
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which together with (4.1) and (4.2) yields

∇TTS(0) +AξS(0) ⊥ξ TpP,

where ⊥ξ means perpendicular with respect to gξ. Thus it is natural to
consider Jacobi fields J along γ which satisfy

(4.4) J(0) ∈ TpP, ∇TTJ(0) +AξJ(0) ⊥ξ TpP,

called P-Jacobi fields. Consider the collection Υ of piecewise smooth trans-
verse vector fields X along γ, that is, those piecewise smooth vector fields
X along γ with X(0) ∈ TpP and X ⊥T T . Define the index form I = Iγ on
Υ by

Iγ(X,Y ) = −Bξ(X(0), Y (0)) +

b�

0

(
gT (∇TTX,∇TTY )− gT (RT (X), Y )

)
dt.

Since any Jacobi field is the variation vector field of a geodesic variation, by
(2.4) and (4.4) it is clear that for any P -Jacobi field J and X ∈ Υ one has

(4.5) I(J,X) = gT (∇TTJ,X)(b).

A point γ(t), 0 < t ≤ b, is called a focal point of P along γ if there exists a
nonzero P -Jacobi field J such that J(t) = 0. Let Υ0 = {X ∈ Υ : X(b) = 0}.
In the following we are going to prove that the Jacobi criteria still hold for
P -Jacobi fields. Let us first establish some auxiliary lemmas.

Lemma 4.1.

(1) Let f : [0, b]→ R be a piecewise smooth function such that f(0) = 0.
Then the function g(t) = (1/t)f(t) is also piecewise smooth.

(2) Let X(t) (0 ≤ t ≤ b) be a piecewise smooth vector field along γ such
that X(0) = 0. Then Y (t) = (1/t)X(t) is also a piecewise smooth
vector field along γ with Y (0) = ∇TTX(0).

Proof. (1) If f(0) = 0, then

f(t) = f(t)− f(0) =

1�

0

d

ds
f(ts) ds = t

1�

0

f ′(ts) ds

for small t, thus g(t) = (1/t)f(t) =
	1
0 f
′(ts) ds is smooth for small t, which

implies the result.

To prove (2), let the vectors e1, . . . , en be a basis for TpM , and extend
them to smooth vector fields E1(t), . . . , En(t) along γ by parallel translation.
Express X(t) as X(t) = Xi(t)Ei(t) for 0 ≤ t ≤ b. If X(0)=0, then Xi(0) = 0
for 1 ≤ i ≤ n. By (1), Y i(t) = (1/t)Xi(t) is piecewise smooth, which implies
the piecewise smoothness of Y (t) = (1/t)X(t). Furthermore,

∇TTX(0) = ∇TT (tY (t))|t=0 = Y (0).
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Next, let e1, . . . , en = ξ be a gξ-orthonormal basis for TpM such that
e1, . . . , ek is a basis for TpP . Let J1, . . . , Jn−1 be P -Jacobi fields along γ
determined by the following initial conditions:

(4.6) Ja(0) = ea, ∇TTJa(0) = −Aξea, Jα = 0, ∇TTJα(0) = eα.

A Jacobi field J is called a normal P -Jacobi field along γ if J ⊥T T . The
Jacobi fields determined by (4.6) are clearly perpendicular to T with respect
to gT , so they are normal P -Jacobi fields. Furthermore, from (2.4), (4.6) and
the symmetry of Aξ we see that

gξ(∇TTJA(0), JB(0))− gξ(JA(0),∇TTJB(0)) = 0, ∀1 ≤ A,B ≤ n− 1,

and d
dt(gT (∇TTJA, JB)−gT (JA,∇TTJB)) = 0 since JA are Jacobi fields. There-

fore,

(4.7) gT (∇TTJA, JB)− gT (JA,∇TTJB) = 0.

On the other hand, if γ(t) is not a focal point of P for any t ∈ (0, b],
then {JA(t)} are linearly independent and thus form a basis for T (t)⊥ :=
{y ∈ Tγ(t)M : T (t) ⊥T (t) y}.

Lemma 4.2. Suppose that P has no focal point along γ on (0, b], and
J1, . . . , Jn−1 are P-Jacobi fields determined by (4.6). For X ∈ Υ write
X(t) = XA(t)JA(t) for t ∈ (0, b]. Then each XA can be extended to [0, b].

Proof. SinceX(0) ∈ TpP , and the Ja(0) = ea form a basis for TpP ,Xa(0)
are well-defined, and thus Xa(t) can be extended to [0, b]. On the other hand,

by Lemma 4.1, Jα(t) = tJ̃α(t), where J̃α(t) is a smooth vector field on γ

with J̃α(0) = ∇TTJα(0) = eα, which implies that J1(t), . . . , Jk(t), J̃k+1(t),

. . . , J̃n−1(t) is a basis for T (t)⊥ for all t ∈ [0, b]. Also, since Xα(t)Jα(t)|t=0

= 0, again by Lemma 4.1, Xα(t)Jα(t) = tY (t) for some piecewise smooth

vector field Y (t) on γ. Write Y (t) = Y a(t)Ja(t) + Y α(t)J̃α(t) for t ∈ [0, b].
Then

Xα(t)Jα(t) = tY (t) = tY a(t)Ja(t)+tY α(t)J̃α(t) = tY a(t)Ja(t)+Y α(t)Jα(t).

By comparison we have Xα(t) = Y α(t) whenever t 6= 0, thus Xα can be
extended to [0, b].

Now we are ready to prove the following Finsler version of Jacobi criteria
(see e.g. [O] for the Riemannian case).

Proposition 4.3. With notations as above:

(1) If there is no focal point of P along γ, then the index form I is
positive definite on Υ0.

(2) If there is a focal point γ(r), 0 < r < b, of P along γ, then there exists
X ∈ Υ0 such that I(X,X) < 0, and consequently dP (γ(b)) < b.
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Proof. (1) For any X ∈ Υ0 write X = XA(t)JA(t) on (0, b]; it can be
extended to [0, b] by Lemma 4.2. We claim that

(4.8) gT (∇TTX,∇TTX)− gT (RT (X), X) = gT (A,A) + T · gT (X,B),

where A = (Xi)′Ji and B = Xi∇TTJi. In fact, since ∇TTX = A + B, by
(2.1)–(2.4) and (4.7) one has

T · gT (X,B) = gT (∇TTX,B) + gT (X,∇TTB)

= gT (A,B) + gT (B,B) +Xi(Xj)′gT (Ji,∇TTJj) +XiXjgT (Ji,∇TT∇TTJj)

= 2gT (A,B) + gT (B,B)− gT (RT (X), X),

which clearly implies (4.8). Now observe that X(b) = 0, and

Xi(0)gξ(X(0),∇TTJi(0)) = Xi(0)gξ(X(0),∇TJiξ) = −Bξ(X(0), X(0)),

so it follows from (4.8) that

I(X,X) = −Bξ(X(0), X(0))−Xi(0) · gξ(X(0),∇TTJi(0)) +

b�

0

gT (A,A) dt

=

b�

0

gT (A,A) dt ≥ 0,

and the last inequality becomes an equality if and only if A = 0, which is
equivalent to X = 0, thus (1) is proved.

(2) Since γ(r), 0 < r < b, is a focal point of P along γ, there is a
nonzero P -Jacobi field J along γ with J(r) = 0. Note that J(0) ⊥T T and
J(r) ⊥T T , which implies J ⊥T T . Thus for

J1(t) =

{
J(t), t ∈ [0, r],

0, t ∈ [r, b],

one clearly has J1 ∈ Υ0, and I(J1, J1) = 0. Certainly ∇TTJ(r) 6= 0. Let
Y (t) be the parallel vector field along γ such that Y (r) = −∇TTJ(r), and
φ : [0, b] → R be a smooth function with φ(0) = φ(b) = 0 and φ(r) = 1.
Write

Xε = J1 + εφY.

Then Xε ∈ Υ0, and

I(Xε, Xε) = I(J1, J1) + 2εI(J1, φY ) + ε2I(φY, φY )

= 2ε

r�

0

(
gT (∇TTJ1,∇TT (φY ))− gT (RT (J1), φY )

)
dt+ ε2I(φY, φY )

= 2εgT (∇TTJ1, φY )(r)+ ε2I(φY, φY ) =−2εgT (∇TTJ,∇TTJ)(r)+ ε2I(φY, φY ).

Now it is clear that I(Xε, Xε) is negative for sufficiently small positive ε.
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Corollary 4.4 (Index Lemma). Suppose that there is no focal point
of P along γ, let J be a normal P -Jacobi field along γ, and X ∈ Υ with
X(b) = J(b). Then I(X,X) ≥ I(J, J), with equality if and only if X = J .

Proof. It is clear that X − J ∈ Υ0, thus by Proposition 4.3 we have

(4.9) 0 ≤ I(X − J,X − J) = I(X,X)− 2I(X, J) + I(J, J).

On the other hand, (4.5) implies that

I(J,X) = gT (∇TTJ,X)(b) = gT (∇TTJ, J)(b) = I(J, J),

which together with (4.9) yields 0 ≤ I(X,X) − I(J, J), and equality holds
if and only if X = J .

5. Fermi coordinates and focal cut locus. We keep the notations
of §4. Let Exp : T⊥(P )→M be defined by

Exp(rξ) = expp(rξ), ∀ξ ∈ S⊥(P ), r ≥ 0.

Here p = π(ξ). Notice that d(expp)0 = id for any p ∈ P and P is com-
pact, hence there exists ε > 0 such that Exp is a diffeomorphism from
{rξ : ξ ∈ S⊥(P ), 0 ≤ r < ε} onto its image. Let D(P ) ⊂ T⊥(P ) be the
largest open star-like subset containing the zero section such that Exp|D(P )

is a diffeomorphism, and set D(P ) = Exp(D(P )). For any r ≥ 0, p ∈ P , and
ξ ∈ S⊥p (P ) such that rξ ∈ D(P ), (p, ξ, r) is called the Fermi coordinate of
expp(rξ) ∈ D(P ).

In the following we consider the coordinate vector fields of Fermi coor-
dinates. Let us restrict ourselves to ξ ∈ S⊥p (P ), and let θα, k + 1 ≤ α ≤
n− 1, be the local coordinates that are intrinsic to S⊥p (P ). First note that
rP (expp(rξ)) = r when expp(rξ) ∈ D(P ), so

(5.1) ∂n := dExp

(
∂

∂r

)
= ∇r = T

is just the tangent vector of γ : r 7→ expp(rξ). Next, to calculate

dExp(∂/∂θα), let ηα : (−ε, ε) → S⊥p be curves such that η(0) = ξ and η̇(0)
= ∂/∂θα. Then (r, u) 7→ expp(rηα(u)) is a geodesic variation of the geo-
desic γ, and the corresponding variation vector field is just the coordinate
vector

(5.2) ∂α|expp(rξ) := dExp

(
∂

∂θα

) ∣∣∣∣
expp(rξ)

= d(expp)rξ

(
r
∂

∂θα

)
,

which is the P -Jacobi field along γ determined by

(5.3) ∂α(0) = 0, ∇TT∂α(0) =
∂

∂θα
.
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Finally, let p1, . . . , pk be the local coordinates of P near p ∈ P . Then by §4
we see that the coordinate vector

(5.4) ∂a = dExp

(
∂

∂pa

)
is the P -Jacobi field satisfying

(5.5) ∂a(0) =
∂

∂pa
, ∇TT∂a(0) +Aξ∂a(0) ⊥ξ TpP.

By the definition of focal point it is clear that if there is no focal point of
P along γ(t) = expp(tξ), 0 < t ≤ r, then {∂a(t), ∂α(t)} is a basis for γ̇(t)⊥,
which implies that Exp is nonsingular at tξ for 0 < t ≤ r. In other words,
expp(rξ) (ξ ∈ S⊥p (P )) is a focal point of P if and only if Exp is singular
at rξ. Also, let

σ(p, ξ, r) =
√

det(gAB)
∣∣
expp(rξ)

, gAB = gγ̇(t)(∂A, ∂B).

Then expp(rξ) (ξ ∈ S⊥p (P )) is a focal point of P if and only if σ(p, ξ, r) = 0.
Thus the set of focal points of P is closed.

For ξ ∈ S⊥p (α), the focal cut-value cP (ξ) of ξ with respect to P is defined
by

cP (ξ) = sup{s > 0 : rP (expp(sξ)) = s},
and expp(cP (ξ)ξ) is called the focal cut point of P .

Proposition 5.1. x ∈M is a focal cut point of P if and only if either

(1) x is a focal point of P , or
(2) there are two distinct vectors ξ, η ∈S⊥(P ) such that x= Exp(rP (x)ξ)

= Exp(rP (x)η).

Proof. The sufficiency is obvious by Proposition 4.3, so we only need to
prove the necessity. Suppose that x is a focal cut point of P . By definition,
one can find p ∈ P and ξ ∈ S⊥p (P ) such that r0 := rP (x) = sup{s > 0 :
rP (expp(sξ)) = s}. Consider a strictly decreasing sequence {sj} with sj > r0
for all j, and sj → r0 as j → ∞. By definition of r0, there are pj ∈ P ,
ξj ∈ S⊥pj (P ) and rj < sj such that expp(sjξ) = exppj (rjξj) for all j. Note that

S⊥(P ) is compact, thus {(pj , ξj)} has a convergent subsequence. Without
loss of generality, we may assume that (pj , ξj)→ (q, η) ∈ S⊥(P ) as j →∞.
If (q, η) = (p, ξ), then Exp is not a diffeomorphism on a neighborhood of
(p, r0ξ) in T⊥(P ), which implies that Exp is singular at r0ξ and thus x =
expp(r0ξ) is a focal point of P , as in (1). On the other hand, the case when
(q, η) 6= (p, ξ) is just described by (2).

Let C(P ) = {cP (ξ)ξ : ξ ∈ S⊥(P )} and C(P ) = Exp(C(P )) be the
tangent focal cut locus and focal cut locus of P , respectively.



280 B. Y. Wu

Proposition 5.2. The focal cut-value function cα : S⊥(α) → (0,∞]

defined by ξ 7→ cα(ξ) is continuous. Consequently, D(P ) = {tξ : ξ ∈ S⊥(P ),
t ∈ [0, cP (ξ))}, D(P ) = M \ C(P ), and C(P ) has zero Hausdorff measure
in M .

Proof. Suppose we are given ξ ∈ S⊥(P ) with a sequence {ξj} ⊂ S⊥(P )
with ξj → ξ as j →∞. Set

p = π(ξ), pj = π(ξj), dj = cP (ξj).

We must prove

cP (ξ) ≥ lim sup
j→∞

dj and lim inf
j→∞

dj ≥ cP (ξ).

To prove cP (ξ) ≥ lim supj→∞ dj , we may assume cP (ξ) < ∞ (otherwise,
there is nothing to prove). Given any ε > 0, the number of dj = cP (ξj) that
exceed cP (ξ)+ε must be finite. Otherwise, for those ξj in question, relabeled
as a sequence {ξi}, we have

dP
(
P,Exp((cP (ξ) + ε)ξi)

)
= cP (ξ) + ε.

Upon letting i→∞, this says that the distance from P to expp((cP (ξ)+ε)ξ)
is cP (ξ) + ε. In other words, the geodesic expp(tξ) continues to minimize the
distance from P beyond the focal cut point of P , which is a contradiction.
Thus, for all but finitely many ξj , we must have dk ≤ cP (ξ) + ε. Hence
lim supj→∞ dj ≤ cP (ξ).

Next we will prove lim infj→∞ dj ≥ cP (ξ). It suffices to assume that
{dj = cP (ξj)} converges to δ < ∞ as j → ∞. From Proposition 5.1 we
see that by passing to a subsequence if necessary, we may assume that
either (i) Exp(djξj) is a focal point of P for all j, or (ii) for each j there
exists ηj ∈ S⊥(P ), ηj 6= ξj , for which Exp(djξj) = Exp(djηj). In case (i),
Exp(δξ) is certainly a focal point of P since the set of focal points is closed,
so cP (ξ) ≤ δ. In case (ii), by passing to a subsequence if necessary, we may
assume the existence of η ∈ S⊥(P ) for which ηj → η as j → ∞. But then
Exp(δξ) = Exp(δη). If η 6= ξ, then certainly cP (ξ) ≤ δ. If η = ξ, then Exp
is not a diffeomorphism on a neighborhood of δξ in T⊥(P ), which implies
Exp(δξ) is a focal point, as in case (i). Thus we are done.

6. Volume comparison theorem. Let (M,F ) be an n-dimensional
Finsler manifold, P ⊂ M be a k-dimensional compact embedded subman-
ifold, and (p, ξ, r) be Fermi coordinates with coordinate vectors ∂1, . . . , ∂n
constructed in (5.1)–(5.5). Consider the singular Riemannian metric g = g∇r
on D(P ) \ P . Then the corresponding Riemannian volume form of g is

(6.1) dVg = σ(p, ξ, r)dVTpP (ξ) ∧ dVS⊥p (P )(ξ) ∧ dr,
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where

σ(p, ξ, r) =
√

det(gAB)
∣∣
expp(rξ)

, gAB = g∇r(∂A, ∂B),

dVTpP (ξ) =
√

det(gξ(∂/∂pa, ∂/∂pb)) dp
1 ∧ · · · ∧ dpk,

dVS⊥p (P )(ξ) =
√

det(gξ(∂/∂θα, ∂/∂θβ)) dθ1 ∧ · · · ∧ dθn−1.

Let w ∈ TpP be a unit vector such that√
det(gw(∂/∂pa, ∂/∂pb)) = min

u∈TpP\{0}

√
det(gu(∂/∂pa, ∂/∂pb)),

so dVmin(TpP ) = dVgw(TpP ). Fix ξ ∈ S⊥p (P ) and let e1, . . . , ek be a
gw-orthonormal basis for TpP consisting of eigenvectors of (gξ(ea, eb)) with
eigenvalues ρ1, . . . , ρk. Then

ρa = gξ(ea, ea) ≤ µ(p)gw(ea, ea) = µ(p),

and consequently

det(gξ(ea, eb)) = ρ1 · · · ρk ≤ µ(p)k det(gw(ea, eb)),

which together with (6.1) yields

(6.2) dVg ≤ µ(p)k/2σ(p, ξ, r)dVmin(TpP ) ∧ dVS⊥p (P ) ∧ dr.

In order to deduce the volume comparison theorem, we have to estimate
the quantity σ(p, ξ, r). For this purpose, assume that the flag curvature of
(M,F ) satisfies KM ≥ κ. Fix ξ ∈ S⊥(P ) with p = π(ξ) ∈ P such that there
is no focal cut point of P along γ(t) = expp(tξ) for t ∈ (0, r]. Furthermore, we
may assume that gT (r)(∂A(r), ∂B(r)) = δAB for fixed r. Then by (2.1)–(2.3)
and (4.5) we have

∂gAB
∂r

(r) = T · gT (r)(∂A, ∂B)(r)

= gT (r)(∇TT∂A(r), ∂B(r)) + gT (r)(∂A(r),∇TT∂B(r)) = 2Ir(∂A, ∂B),

where Ir is the index form on γ|[0, r]. Consequently,

∂

∂r
log σ(p, ξ, r) =

1

2
gAB

∂gAB
∂r

(r) =
∑
A

Ir(∂A, ∂A).

Let EA(t), 0 ≤ t ≤ r, be the parallel vector fields along γ such that EA(r) =
∂A(r), A = 1, . . . , n − 1. Now {EA(0)} is an orthonormal basis for ξ⊥.
By using the orthogonal transformation if necessary, we may assume that
Ea(0) ∈ TpP , Eα(0) ⊥ξ TpP , and AξEa(0) = λaEa(0). Set

Xa =
(cκ − λasκ)(t)

(cκ − λasκ)(r)
Ea(t), Xα =

sκ(t)

sκ(r)
Eα(t),
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where

sκ(t) =


1√
κ

sin
√
κt, κ > 0,

t, κ = 0,
1√
−κ sinh

√
−κt, κ < 0,

cκ = s′κ.

By construction it is clear that XA ∈ Υ with XA(r) = ∂A(r), and

∇TT∇TTXA + κXA = 0.

By the Index Lemma (Corollary 4.4) one has

∂

∂r
log σ(p, ξ, r) =

∑
A

Ir(∂A, ∂A) ≤
∑
A

Ir(XA, XA)

= −
∑
A

gξ(Aξ(XA(0)), XA(0))

+
∑
A

r�

0

(
gT (∇TTXA,∇TTXA)− gT (RT (XA), XA)

)
dt

≤ −
∑
A

gξ
(
Aξ(XA(0)), XA(0)

)
+
∑
A

r�

0

(
gT (∇TTXA,∇TTXA)− κgT (XA, XA)

)
dt

= −
∑
A

gξ
(
Aξ(XA(0)), XA(0)

)
+
∑
A

gT (∇TTXA, XA)|r0

=
∑
A

gT (∇TTXA, XA)(r)

=
∂

∂r
log
(
sn−k−1κ (r)

∏
a

(cκ(r)− λasκ(r))
)
.

By (5.2) it is clear that σ(p, ξ, r)→ 0 as r → 0, thus

σ(p, ξ, r) ≤ sn−k−1κ (r)
∏
a

(cκ(r)− λasκ(r))(6.3)

≤ sn−k−1κ (r)(cκ(r)−H(ξ)sκ(r))k,

where H(ξ) = (1/k)
∑

a λa is the mean curvature of P with respect to ξ.
Now (6.2) and (6.3) give

(6.4)

dVg ≤ µ(p)k/2sn−k−1κ (r)(cκ(r)−H(ξ)sκ(r))kdVmin(TpP ) ∧ dVS⊥p (P ) ∧ dr.

Let B(P ;R) = {x ∈ M : rP (x) < R} be the tubular neighborhood of P of
radius r. We have the following comparison theorem for the minimal volume
of B(P ;R).
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Theorem 6.1. Let (M,F ) be an n-dimensional forward complete Finsler
manifold with flag curvature satisfying KM ≥ κ, and let P ⊂ M be a
k-dimensional compact embedded submanifold with mean curvature satis-
fying |H(ξ)| ≤ Θ for some Θ ≥ 0. Suppose also that the uniformity constant
of M satisfies µ ≤ Λ. Then the minimal volume of B(P ;R) satisfies

volmin(B(P ;R)) ≤ Λ(n+4k)/2 vol(Sn−k−1) volmin(P )

×
R�

0

sn−k−1κ (r)(cκ(r) +Θsκ(r))kdr.

Proof. Noting that the focal cut locus C(P ) has zero Hausdorff measure
in M , by Proposition 3.2 and (6.4) we get

(6.1) volmin(B(P ;R)) =
�

B(P ;r)

dVmin ≤
�

B(P ;r)

dVg ≤ Λk/2
�

P

dVmin(TpP )

×
�

S⊥p (P )

dVS⊥p (P )(ξ)

min{R,cP (ξ)}�

0

sn−k−1κ (r)(cκ(r)−H(ξ)sκ(r))k dr

≤ Λ(n+4k)/2 vol(Sn−k−1) volmin(P )

R�

0

sn−k−1κ (r)(cκ(r) +Θsκ(r))k dr.

Proof of Theorem 1.1. Let c : [0, L(c)] → M be a closed geodesic with

unit speed. Noting that in this case ∇ċċċ = 0, for any ξ ∈ S⊥(c) one has

H(ξ) = gξ(ξ,∇ξċ ċ) = gξ(ξ,∇ξċ ċ−∇
ċ
ċċ) = Tξ(ċ),

and thus
|H(ξ)| ≤ max

t∈[0,L(c)]
‖T‖(c(t)) ≤ Ξ.

Hence, by Theorem 6.1 we get

volmin(M) = volmin(B(c; d))

≤ Λ(n+4)/2 vol(Sn−2)L(c)

d�

0

sinhn−2 r · (cosh r +Ξ sinh r) dr

≤ Λ(n+4)/2 vol(Sn−2)L(c)(1 +Ξ)

d�

0

sinhn−2 r cosh r dr

= Λ(n+4)/2 vol(Sn−2)L(c)(1 +Ξ) · sinhn−1 d

n− 1
,

which clearly implies the desired result.

7. Proof of Theorem 1.2. In this last section we shall complete the
proof of Theorem 1.2. For this purpose we need some auxiliary lemmas. First
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by using Wirtinger’s inequality we can prove the following lemma in almost
the same way as Theorem 2.14 in [C].

Lemma 7.1. Let (M,F ) be a Finsler manifold with flag curvature satis-
fying KM ≤ 1, and γ : [0, b]→M be a unit speed geodesic such that γ(b) is
conjugate to γ(0) along γ. Then b ≥ π.

The next lemma of [D] is crucial to proving Theorem 1.2. We provide
the proof for completeness.

Lemma 7.2 ([D]). Let (M,F ) be an n-dimensional compact reversible
Finsler manifold, p ∈M , and q ∈ C(p) such that i = i(M) = dF (p, q). Then
either

(1) p and q are mutually conjugate along some minimizing geodesic con-
necting p and q, or

(2) there is a closed geodesic τ passing through p and q with L(τ) = 2i.

Proof. By the definition of injectivity radius we can certainly find
q ∈ C(p) such that i = dF (p, q), and in fact q is the nearest point to p
in C(p). If p and q are not mutually conjugate along any minimizing geodesic
connecting p and q, it is well-known that there exist at least two distinct
minimizing geodesics γ1, γ2 : [0, i] → M connecting p and q (see [BCS]).
It follows that expp : TpM → M is nonsingular on some open disjoint do-
mains U1 and U2 of iγ̇1(0) and iγ̇2(0), respectively. Write Ui = expp(Ui) for
i = 1, 2. It is clear that q ∈ U1 and q ∈ U2, and thus U = U1 ∩ U2 6= ∅.
Define fi : U → R by setting

fi(x) = F ((expp |Ui)−1(x)), i = 1, 2.

These functions are differentiable and of maximal rank with f1(q)=f2(q) = i.
We claim that γ̇1(i) + γ̇2(i) = 0. Otherwise, since F is reversible, we have

l(γ̇1(i)) 6= l(−γ̇2(i)) = −l(γ̇2(i)),
where l : TqM → T ∗qM is the Legendre transformation. Hence, one can find
X ∈ TqM such that

l(γ̇1(i))(X) + l(γ̇2(i))(X) < 0,

or equivalently,

gγ̇1(i)(γ̇1(i), X) + gγ̇2(i)(γ̇2(i), X) < 0.

Let c : (−ε, ε)→ U be the curve determined by c(0) = q and ċ(0) = X. For
any u ∈ (−ε, ε) let

γi,u(t) = expp(t(expp |Ui)−1(c(u))), i = 1, 2.

Then γ1,u and γ2,u are two distinct geodesics from p to c(u) with L(γ1,u) =
f1(c(u)) and L(γ2,u) = f2(c(u)). We see from the first variation formula of



Volume comparison theorem for tubular neighborhoods 285

arc length that

d

du
L(γi,u)

∣∣∣∣
u=0

= gγ̇i(i)(γ̇i(i), X), i = 1, 2,

and consequently

d

du
(L(γ1,u) + L(γ2,u))

∣∣∣∣
u=0

= gγ̇1(i)(γ̇1(i), X) + gγ̇2(i)(γ̇2(i), X) < 0.

Therefore, for sufficiently small u > 0, one has

L(γ1,u) + L(γ2,u) < L(γ1,0) + L(γ2,0) = 2i,

and there is a cut point q′ of p on γ1,u or γ2,u with dF (p, q′) < i, which
contradicts the choice of q. Thus, γ̇1(i)+γ̇2(i) = 0, and we can prove similarly
that γ̇1(0) + γ̇2(0) = 0. Now let τ = γ1 ∪ γ̃2 with γ̃2(t) = γ2(i− t); it is clear
that τ is the desired closed geodesic.

Proof of Theorem 1.2. Let p, q ∈ M be as in Lemma 7.2. If p and q
are mutually conjugate along some minimizing geodesic connecting p and q,
then Lemma 7.1 implies that i(M) = dF (p, q) ≥ π. Otherwise, there is a
closed geodesic τ with L(τ) = 2i; then by Theorem 1.1, one gets

i(M) =
1

2
L(τ) ≥ (n− 1) volmin(M)

2Λ(n+4)/2 vol(Sn−2)(1 +Ξ) sinhn−1 d
,

which clearly implies the result.
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