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An embedding relation for bounded mean oscillation
on rectangles

by BENOIT F. SEHBA (Yaoundé)

Abstract. In the two-parameter setting, we say a function belongs to the mean
little BMO if its mean over any interval and with respect to any of the two variables
has uniformly bounded mean oscillation. This space has been recently introduced by
S. Pott and the present author in relation to the multiplier algebra of the product BMO
of Chang-Fefferman. We prove that the Cotlar-Sadosky space bmo(T%) of functions of
bounded mean oscillation is a strict subspace of the mean little BMO.

1. Introduction and results

1.1. Introduction. In the two-parameter case, the mean little BMO
space consists of those functions whose mean over any interval with respect
to any of the two variables is uniformly in BMO(T). This space was in-
troduced recently in the literature by S. Pott and the author on the way
to the characterization of the multiplier algebra of the product BMO of
Chang—Fefferman [1, |5 6]. Its definition is very close in spirit to the one of
the little BMO of Cotlar and Sadosky [2], and this is somehow misleading.
It is pretty clear that the little BMO embeds continuously into the mean
little BMO and it was natural to ask if both spaces are the same. To find
out, we use an indirect method; we characterize the multiplier algebra of
the Cotlar—-Sadosky space and the set of multipliers from the little BMO to
the mean little BMO.

1.2. Definitions and results. Given two Banach function spaces X
and Y, the space of pointwise multipliers from X to Y is

MX,)Y)={p:¢f €Y forall fe X}.
When X =Y, we simply write M(X, X) = M(X).
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The so-called small BMO space on TV, introduced by Cotlar and Sadosky
and denoted bmo(T), consists of all functions b € L*(TY) such that the
quantity

A1) blx = sup = [ bt tn) — mgb|dbr - dty
RCTN  rectangle |R| R

is finite, where mpb = |R| ™! SR b(ti,...,tn)dty---dty. Seen as a quotient

space by the set of constants, bmo(T?) is a Banach space with norm

[1bllbmo(ryy := [1bll,n-

Note that in the above definition, since R is a rectangle in TV, mgf is a
constant. We will sometimes consider the case where R is a rectangle in TM
with M an integer, 0 < M < N, in which case mpgf is a function of N — M
variables.

Another notion of function of bounded mean oscillation was introduced
in [6] in the two-parameter setting. This notion is inspired from the one
of M. Cotlar and C. Sadosky [2]. One of its higher-parameter versions is
defined as follows.

DEFINITION 1.1. A function b € L?(T™) belongs to bmo,,(T) if there
is a constant C' > 0 such that for any integers 0 < Nj, No < N with
Ni + Ny = N and any rectangle R C TN,

lmgblls,N; < C.

The space bmom(’]TN ) seen as a quotient space by the set of constants is
a Banach space under the norm

[0l bmoy (7)== C*
where C* stands for the smallest constant in the above definition.
It is clear from the definitions above that bmo(T") embeds continuously
into bmo,, (T?"). We will call bmo,, the mean little BMO. Our main result
is the following.

THEOREM 1.2. The space bmo(TYN) is strictly continuously embedded
into bmoy, (TV).

To prove the above theorem, we first prove the following.

THEOREM 1.3. The only pointwise multipliers of bmo(T™) are the con-
stants.

We say a function b € L2(T"V) has bounded logarithmic mean oscillation

on rectangles, written b € lImo(TY), if
ijzl log
1]} tog. = sup S 2L () — mgb| dt < oc.
RZIlX-“XINCTN ‘R| R

Let us also introduce the mean little LMO space in product domains.



Bounded mean oscillation on rectangles 289

DEFINITION 1.4. A function b € L?(T") belongs to lmo,,(T") if there
is a constant C' > 0 such that for any decomposition 0 < Ny, No < N with
Ny 4+ No = N, and any rectangle R ¢ TM,

[mRb|« 1o, N, < C.

If C* stands for the smallest constant in Definition then seen as a
quotient space by the set of constants, Imo,,(T") is a Banach space with
the norm

Hlemom(’]I‘N) = C".

In terms of multipliers, to get close to the one-parameter situation, we

need to start from bmo(T?) and take bmo,,(T") as the target space.

THEOREM 1.5. Let ¢ € L*(TN). Then the following assertions are equiv-
alent:

(i) ¢ is a multiplier from bmo(T™) to bmo,,(TV).
(i) ¢ € Imo,, (TNV) N L>(TN).

Moreover,

| Mo [ bmo(m™)—sbmom (T¥) == 191l oo a7y + 1B limoy, (T3
where ||M¢||bm0(TN)ﬁ\bmom(TN) is the norm of multiplication by ¢ from
bmo(TV) to bmo,,(TV).

Theorems and clearly establish Theorem since lmo,,(TV) N
L>®(TY) contains more than the constants. The proofs are given in the next
section. The last section of this note also states that the only multiplier from
a Banach space of functions (strictly) containing bmo(T?) to bmo(T") is
the constant zero.

As we are dealing only with little spaces of functions of bounded mean
oscillation, we essentially make use of one-parameter techniques. This is not
longer possible when considering the multipliers of the product BMO of
Chang—Fefferman for which one needs more demanding techniques [4-6].

2. Comparison via multiplier algebras

2.1. Proof of Theorem The space bmo(T) has the following
equivalent definitions [2| 3] that we need here.

PROPOSITION 2.1. The following assertions are equivalent:

(1) b € bmo(THV).
(2) b € L?(TYN) and there exists a constant C > 0 such that for any
decomposition N1 + No = N with 0 < N1, No < N,

Q) 16C, ) |len, < C for all t € TNz,
(i) [16(s,)|l«,no < C for all s € TN,
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Proof. The proof in the two-parameter case was given in |2]. We follow
the simplified two-parameter proof from [§].

We first suppose that b € bmo(T"), that is, for any S C T and
K c TV2, where N; + Ny = N, we have

1 1

SR |1 18(s,t) — msurcbl ds dt < |[b]|. v

SK
If S= 51 x -+ x Sy, then letting |S1| — 0 we get
1 |V 1b(s, ) — mucxgebl ds dt < |[b]|. n
K] ) )P = Pk
for any S’ = Sy x --- x Sy, € TN1—1,
Repeating this process for S, ..., Sy,, we obtain

K] | Ib(s,t) = mcbl dt < [[b]|,

K

and consequently

sup [b(s, ) [|«,no < [|b]l, -
s€TM

The same reasoning leads to

sup [|b(, O)[[,ny < [[B][ 4,
teTN2

For the converse, we write
b(s,t) — mich = (b(s, ) — mich(s)) + (mich(s) — msxxch) .
Hence
(2.1) |b(s,t) — mgxrb| < |b(s,t) — mrb(s)| + |mrb(s) — msxxb|.

Integrating both sides of (2.1)) over S x K and with respect to the measure

i glsﬁ;' , we obtain

1
L:= |b(s,t) — mgxib|dsdt
ST ) :
< : S S |b(s,t) — mgb(s)|dsdt
ST&T))
P V| Imed(s) = moxb| ds dt
EIEER

=: L1 + Lo.
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Clearly,
S ( S —mgb(s)| dt> ds
5’ K
S )H* No ds < C.
5’
On the other hand,

|mib(s) — mgxxb|ds

— | (b(s, 1) — msb(t)) dt| ds

|b(s,t) — mgb(t)| ds dt

<|| g b(s, t) — mgb(t)| ds) dt
1)

H*Nldt<C

| 1b(s,t) — mgxxb|dsdt < 2C.
K

Hence [|b]|+«,y < co. The proof is complete. =

Note that if C* is the smallest constant in the equivalent definition above,
then C* is comparable to || [|,me(Ty)-

We make the following observation that can be proved exactly as in the
one-parameter case.

LEMMA 2.2. Let b€ L2(TY). Then

”bemo(TN) Hb”N = Sup Hl )“dt

:UL,:

Let us also observe the following.
LEMMA 2.3. The following assertions hold:

(i) Given an interval I in T, there is a function in BMO(T), denoted
log;, such that

o the restriction of log; to I islog(4/|I|),
e |[log; lBmo(r) < C where C'is a constant that does not depend on I.
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(ii) For any fi,..., fnv € BMO(T), the function
N
b(ti,...,tn) = Z fj(tj)
j=1

belongs to bmo(TY). Moreover,

N
[0l bmo(Tvy < Z | fillBMo(T)-
=1

(iii) There is a constant C > 0 such that for any b € bmo,,(TY) and any
rectangle R =1 x --- x Iy C TV,

4 4
2.2 mpb| < C (log — +---+1lo ) b|pm ,
2.2 ] < € (log - & 77 ) Pllmon o)
and this is sharp.

Proof. Assertion (ii) follows directly from the definition of bmo(T¥).

(i) is surely well known, we give a proof here for completeness: Let J be
a fixed interval in T. Let Jy = J and Jj be the intervals in T with the same
center as J and such that |J| = 2¥|J|, where k =1,..., N —1 and N is the
smallest integer such that 2/V|J| > 1. We define Jy = T. Thus,

4
NSIngm < N+2.
Next, we define Uy = Jy = J and Uy = Ji \ Jy—1 for k = 1,..., N. Now
consider the function log; defined on T by
N

(2.3) log(t) =Y (N+2—k)xu,(t), teT.
k=0
Clearly,

4
log ;(t) :N+2:10g2m forall t € J.

LEMMA 2.4. For each interval J C T, the function log; defined by (2.3))
belongs to BMO(T).

Proof. We start by estimating the L2-norm of log ;. We have

N N+2
llogs3 =D (N +2=k?*|Us| = Y K*|In1a4l
k=0 k=2
N+2 N+2 N+2
S Z k22N+27k‘|J| S Z k22N+27k217N -8 Z k227k'
k=1 k=1 k=1

It is clear that the last sum is finite, and so log; € L?(T).
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For any dyadic interval I C T, let m € {0,1,..., N+ 1} be minimal such
that INU,, # 0, and [ € {0,1,..., N + 1} be maximal with I N U,,; # 0.
Let us estimate the length of I NU; for any m < j <m + 1.

If l =1 then I NU,, = I and there is nothing to say. If [ = 2 then
[INUy| <|I| and [I N Upr| < |1).

Next, we consider the case [ > 2. We remark that in this case, half of
Upmn+ti—1 is contained in I. Consequently, for any m < j < m + [, we have
[INU;| < QWM. Finally, we have

1IN U] < 211 O Uppga| < 2111,

Hence,

~

+
L= §|1ogJ (N+2—m—1)|dt = Hzmﬂ— XUy | dt
I k=m

m+l
Z (m+1— k)| NU <4II\ Z (m+1— k)27 1k ]|

—42%

Thus, for each interval J C T, the function log; given by belongs to
BMO(T) and there exists a positive constant C' independent of J such that
[log ;s [lBMmo(Ty < C.

To prove (iii), we observe that by definition, given b € bmo,,(T"), for
any rectangle S C TX with 0 < K < N, ||mgb||« ny—x is uniformly bounded.
It follows from the one-parameter estimate of the mean of a function of

bounded mean oscillation and the definition of bmo,, (T") that for any rect-
angle Q c TN-1,

4 4
pmstmed)| 5 (106 77 ) Il % (108 71 ) e e

In particular, for any rectangle R = I x --- x Iy C TV, we have

4
mab| < 0(2 108 777 Pllmon %)

The sharpness follows by applylng the last inequality to logp(t1,...,tN) =
Zj plogy (t;), R =11 x -+ x Iy, and using (ii). =

Lemma [2.4 and its proof complete the proof of Lemma [2.3] =

We now reformulate and prove Theorem
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THEOREM 2.5. Let ¢ € L2(TN). Then the following assertions are equiv-
alent:

(a) ¢ is a multiplier of bmo(TV).

(b) ¢ is a constant.

Proof. Clearly, (b)=-(a). We prove that (a)=(Db).

Assume that ¢ € L?(TV) is a multiplier of bmo(T"). Then for any f in
bmo(TV), and any integer 0 < Ny < N, No = N—Nq, [[(¢f)(-, )|+, is uni-
formly bounded for all t € T2 fixed and || (¢ ) (-, t)|l«.5; < |0 lbmo (Tvy- Let
us take as f the function f(s,t)=logp(s,t) :Zg:ll logg, (s )+Z 11ogg, (1),
where R=SxQ C TN xTN, § =8 x---x Sy, Q= Q1 XX Qn,
and Sk, Q; C T. Then it follows that

s ) 5 11605, 0(5,6) = ms(6)] ds < 6 lmorrvy  for all § < TV

But from Lemma () for any t € Q C T2 fixed,
Z 10g Q1 +Zk1110g TSHl

L:= 5| §q|¢(57t)_m3¢| ds
< |;‘ Vlo(s,)logg(s, t) — mg(plogg)|ds

< ||¢10gR||bmo(1rN) S 1Mo,
where ||My]| is the norm of multiplication by ¢, My(f) = ¢f.
Hence for any S C ']I‘Nl Q C TV and t € Q, we have

24 (Zl()gr@ *2_: g\sk\><rsrg'¢(s 0~ mstlds) < oo

Letting for example |Q1]| — 0 in (2.4)), we see that necessarily ¢(s,t) =
é(t) for any s € S € TM. As N; runs through (0, N), we find that for any
(tla" . 7tN) € TN?

¢(t1, . ,tN) = ¢(tj) = ¢(tj1, . 7tjk)7 7,01 € {1, . ,N},
0 < k < N. This shows that ¢ is a constant. =

J

We have the following consequence which says that the only bounded
functions in Imo(T?) are the constants. This is pretty different from the
one-parameter case [7].

COROLLARY 2.6. Assume that ¢ € L>®(TV) and

Z;V:l log %
(25) ol = sup I F () — mps|dt < oo
R111X~--X1NCTN ‘R’ R

Then ¢ is a constant.
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Proof. Following Theorem [I.3 we only need to prove that any bounded
function ¢ which satisfies is a multiplier of bmo(T"). For this we first
recall that if f € bmo(T"), then for any rectangle R = I x --- x Iy C TV,
we have

4 4
Imrfl S <log i ‘ -+ log \IN’> Il £ lbmo(ry-

Now assume that ¢ € L°(TV) and satisfies (2.5, and let f € bmo(TV).
Then using the above estimate, for any R = I; x --- x Iy C TV we obtain

’R| S o) f(t) — mpf|dt + —; UmeH¢< ) — mpd| dt

IR!

H(b”Loo(TN)

< VIF(t) — mefdt

R
Hf”bmo(’]I‘N) (logu;“l' 4+ 4 10g ﬁ)
R

< (1@l oo rvy + 11l tog, N f [[bmo(r)-

It follows from the latter and Lemma [2.2] that if ¢ is bounded and satisfies
. then for any f € bmo(TY), ¢f belongs to bmo(T%). That is, ¢ is a
multiplier of bmo(T%). m

Vl6(t) — mrg| dt
R

REMARK 2.7. Let us first recall that in the one-parameter case, it is
a result of D. Stegenga [7] that L°°(T) N LMO(T) is the exact range of
pointwise multipliers of BMO(T). Let us define another little LMO space in
the two-parameter case as follows.

DEFINITION 2.8. A function b € L?(T?) is in lmoj,y (T?) if there is a
constant C' > 0 such that ||b(-, )|« 10g,1 < C forallt € T and ||b(s, )|« 10g,1 <
C for all s € T.

Clearly, Imoj,, (T?) is a subspace of Imo,,(T?). The one-parameter in-
tuition and the equivalent definition of bmo(T?) in Proposition may
lead one to expect that any function ¢ € L% (T?) N Imoj,y, (T?) is a multi-
plier of bmo(T?). This is not the case as the above results show and since
L>®(T?)NImojyy (T?) contains more than the constants. For example, for any
¢1,¢2 € L*°(T) N LMO(T), the function ¢ : (s,t) — ¢1(s)¢2(t) belongs to
L>°(T?) N Imojyy (T?).

2.2. Proof of Theorem (1.5, (i)=-(ii): We start by proving that any
multiplier from bmo(T%) to bmom(']TN ) is a bounded function. We recall the
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following estimate of the mean over a rectangle of functions in bmo,, (T):

4 4
imgb| S <10g[1|+ -+ +log |IN|> [llbmon, vy, R=T1x---x Iy C TV,

It follows that if ¢ is a multiplier from bmo(T) to bmoy,(T), then for any
b € bmo(T¥") and any rectangle R = I x --- x Iy C TV, we have

N
4
=1

N
4
<c (Z log ,I,) IV llmo e o (2 [Bllomoe-
j=1 !

Applying (2.6) to b = logy, +--- + log;, and using assertions (i) and (ii) of
Lemma we see that there is a constant C' > 0 such that

ImRO| < Cl|Mglhmo(r™)sbmon (rvy  for any R =1y x -+ x Iy C TV,

We conclude that ¢ € L®(TV).

To prove that ¢ € Imo,,(T), by the definition we only need to check
that for any integer 0 < M < N and any rectangle R C TV |mg¢ * log, K
(K = N — M) is uniformly bounded. Let S be a rectangle in TX and let
logg(t1,...,tx) = logg, (t1) + -+ + logg, (tx) with S; C T be again the
associated sum of functions which are uniformly in BMO(T). We have

Zjl.il log Al
= | o) = msenol d
J s

L=

- |;‘ § Im(¢1085)(t) — msxr(6logs)| dt
S

< [[mr(¢10gs) [lbmo. (15) < [|#1085 [[bmoy, (1)
S HM¢Hbmo(’H‘N)—>bmom(TN)HlogSHbmo(TN)

= | Mpllbmo(T™ )—bmon (TV) 1108 5 lbmo(1x) S 1Mo lbmo(TN )—sbmoyy, (TN -

Hence for any integer 0 < M < N and any R C TM, MR« 10g, N—1r 1S
uniformly bounded. Thus, by definition, ¢ € Imo,,(TV).

(ii)=(i): Assume that ¢ € L>(T™) N 1mo,,(TV). To prove that ¢ is in
M (bmo(TN), bmo,, (TV)), we only need to check that for any integer 0 <
M < N, any rectangle R C TM and any f € bmo(TY), |mg(¢f)||«x
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(K=N-M)is uniformly bounded. Let S be a rectangle in T . Then

L= |S\ S! r(Of)(t) — msxromsxrf|dt
< ‘;‘ [ Imal(® — msxrd)(f — msxnf)l(t)] dt
S
1

S (msxrf)(Mmr®)(t) — msxrpmsxrf|dt

}—‘CQ‘
[95)

|S|S (msxr®)(mrf)(t) — msxrdmsxrf|dt

=L1+ Lo+ Ls.

To estimate the first term, we only use the fact that ¢ € L>(T%) to obtain

b= \é 5 mel(¢ — msxre)(f — msxnf)](t)] dt
= \slymsiR[(qﬁ—meRqﬁ)(f — g m )|ty tx)|dbs - diy
_W S |f(t1se oo i) — msxrfldty---din

SXR
< 1@l oo (o™ | f l[bmo(Ty -

For the second term, we use the fact that since ||mpgf||« x is uniformly
bounded,

K
4
imsxrf] = lms(maf)| < (Zlogw) Imrf ek
j=1 !

K 4
< (108 17 ) 1 lmon o)
2185,

where S = 81 x - x Sg € TK with K = N — M. Consequently,

o= ,; J (mswr f)(mro) () — msxrdmsnf| dt
S
S log A 1 lbmory

S
< ooy, () 178Dl tog, 16 < ([ fllbmoy (1) |6l mo,, () -
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The last term only uses the fact that ¢ € L>(TN):

Ly = |;| [ 1msxr®) (maf) () — (msxrd)(msxnf) dt
S

1
< H¢HL0°(TN)@ S [(mrf)(t) — msxrf|dt
s

< @l Lo (rmylmefllx < 1Dl Loo(mny Lf [bmop (13-
The estimates of Ly, Lo and L3 and Lemma allow us to conclude that

19 f lbmon (mvy < Al oo ray + [ imon (¥ DI lbmocray-
This completes the proof of the theorem. m

3. Multipliers to bmo(T"). We would like to deduce some conse-
quences of the above approach. We consider multipliers from any Banach
space of functions on TY (strictly) containing bmo(T?) to bmo(T"). We
have the following general result.

THEOREM 3.1. Let X be any Banach space of functions on TV that
strictly contains bmo(TY). Then M(X,bmo(T")) = {0}.

Proof. Clearly, multiplication by 0 sends any function of X to bmo(T™).
Conversely, let ¢ be any multiplier from X to bmo(T%); then ¢ is also a
multiplier from bmo(T%) to itself. It follows from Theorem that ¢ is
a constant C. Suppose that C' # 0 and recall that bmo(T¥) is a proper
subspace of X. Then for any f € X, we have f = C(%f) = (b(%f) €
bmo(T¥). This contradicts the fact that bmo(T") is a strict subspace of X.
Hence C' is necessarily 0. m

Taking as X the Chang Fefferman BMO space or bmo,,(T") we have
the following corrolary.

COROLLARY 3.2. We have
M(BMO(TY), bmo(TY)) = M(bmo,,(TV), bmo(T)) = {0}.
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