
ANNALES

POLONICI MATHEMATICI

105.1 (2012)

Periodic solutions for second order Hamiltonian systems
on an arbitrary energy surface

by Chengfu Che and Xiaoping Xue (Harbin)

Abstract. Two theorems about the existence of periodic solutions with prescribed
energy for second order Hamiltonian systems are obtained. One gives existence for almost
all energies under very natural conditions. The other yields existence for all energies under
a further condition.

1. Introduction. We study the second order Hamiltonian systems

(1.1) −q̈(t) = V ′(q(t)),

where q̈(t) is the second derivative of q with respect to t, V ∈ C1(RN ,R),
and V ′(x) denotes the gradient of V with respect to x. Throughout this
paper V is called a potential function, and (·, ·) and | · | denote the inner
product and norm in RN respectively.

Define H(p, q) = 1
2 |p|

2 + V (q). Then it is well-known that H is a first
integral of the system (1.1). The Hamiltonian system corresponding to H is

(1.2) −ṗ =
∂H

∂q
, q̇ =

∂H

∂p
,

where p = q̇. It is natural to consider whether (1.1) has a periodic solu-
tion on a fixed energy surface {(p, q) : H(p, q) = h}. The search of periodic
solutions with prescribed energy is a problem with a long history. We re-
fer the readers to [R, MW, S2] for the research on the prescribed energy
problems for general Hamiltonian systems (1.2); in the following we restrict
ourselves to mentioning some results about the second order Hamiltonian
systems (1.1). In the 1980s, Benci [B], Gluck and Ziller [GZ] and Hayashi
[H] obtained the following result via totally different methods.

Theorem 1.1. Suppose V ∈ C2(RN ,R) and

(B1) Ωh := {x ∈ RN : V (x) < h} is non-empty and bounded.
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Then (1.1) has a periodic solution of energy h. If moreover

(B2) V ′(q) 6= 0 for q ∈ Vh := {x : V (x) = h},
then the periodic solution is non-constant.

The proofs of Gluck–Ziller and Hayashi used techniques from algebraic
topology and differential geometry, while Benci used the singular potential
well and an approximation scheme. But in all these proofs, the assumption
V ∈ C2(RN ,R) is essential. Recently, Zhang [Z] got the following result
under a weaker smoothness assumption:

Theorem 1.2. Suppose V ∈ C1(RN ,R) satisfies:

(A1) there exist positive constants µ1 and µ2 such that

(V ′(x), x) ≥ µ1V (x)− µ2, ∀x ∈ RN ;

(A2) V ′(x)→ 0 as |x| → ∞;
(A3) there exist positive constants a and b such that

V (x) ≥ a|x|µ1 − b, ∀x ∈ RN .
Then for any h > max{µ2/µ1, lim sup|x|→0 V (x)}, system (1.1) has a non-
constant periodic solution of energy h.

Note that (A3) implies that (B1) holds for any h > lim sup|x|→0 V (x).
Then it is natural to ask whether Theorem 1.1 holds with a weaker smooth-
ness assumption, or, in other words, whether Theorem 1.2 remains true when
V ∈ C1(RN ,R) and (B1) holds. The purpose of this paper is to answer this
question. Our main result is:

Theorem 1.3. Suppose V ∈ C1(RN ,R) satisfies the following condi-
tions:

(V1) V achieves a global minimum V0 at x0;
(V2) H := lim inf |x|→∞ V (x) > V0.

Then for almost all h ∈ (V0,H), there exists a non-constant periodic solution
of energy h.

Remark. Note that (V1) and (V2) combined are equivalent to (B1). In
fact, when (B1) holds, V achieves a minimum V0 at x0 ∈ Ωh. Since V (x) ≥ h
for x ∈ Ωc

h, V0 is a global minimum. The boundedness of Ωh implies that
lim inf |x|→∞ V (x) > h > V0. So (V1) and (V2) hold. Conversely, if (V1) and
(V2) hold, it is easy to see that for any h ∈ (V0,H), Ωh is non-empty and
bounded.

There is a gap between Theorems 1.1 and 1.3: the latter says nothing
about the energy in a zero measure set. Without further information, the
conclusion of Theorem 1.3 cannot hold on all energy surfaces, since there
exist examples such that (1.1) has no non-constant periodic solution (see
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Remark II in [B]). Recalling Theorem 1.1, we conjecture that there exists
a non-constant periodic solution on all energy surfaces if V ∈ C1(RN ,R)
and (B1), (B2) hold. But up till now we have not been able to prove this.
Therefore, we use the stronger assumption (A1).

Theorem 1.4. Suppose V ∈ C1(RN ,R) satisfies (V1), (V2) and (A1).
Then for any h ∈ (µ2/µ1,H), there exists a non-constant periodic solution
of energy h.

Remark. If there exists a critical point x0 of V on Vh, (A1) becomes
µ1V (x0)− µ2 ≤ 0, i.e., h ≤ µ2/µ1. So (A1) implies (B2) when h > µ2/µ1.

Remark. Combining the conditions (A1), (A2) with (A3), we have the
following inequalities:

µ1(a|x|µ1 − b)− µ2 ≤ µ1V (x)− µ2 ≤ (V ′(x), x) ≤ |V ′(x)| |x| = o(1)|x|.

This implies µ1 < 1. As in Theorem 1.4 we do not need (A2), there is no
such restriction on µ1. Moreover we weaken (A3) to (V2). For these reasons,
Theorem 1.4 improves Theorem 1.2 considerably.

In order to prove Theorems 1.3 and 1.4, we use the functional

(1.3) f(u) =
1

2

1�

0

|u̇|2 dt
1�

0

(h− V (u)) dt, u ∈W 1,2(R/Z,RN ).

Zhang [Z] also applied this functional and the generalized mountain-pass
theorem of Benci–Rabinowitz [BR]. In this paper we adopt a different ap-
proach. We consider (1.3) as a family of functionals fh parameterized by h,
and then use the monotonicity method to treat this parameter dependent
functional. The monotonicity method was introduced by Struwe in [S2, S1]
to solve some specific variational problems. Then Jeanjean [J] developed an
abstract version of Struwe’s method for a family of functionals I(λ, ·) of a
special form

I(λ, u) = A(u)− λB(u),

under the assumption that I(λ, u) has a mountain-pass geometry uniformly
for λ in a fixed bounded interval. Moreover if I(λ, u) is monotone with
respect to λ, then one can obtain a bounded P.S. sequence for almost all λ.
Noting that the functional fh is increasing with respect to h, if there exists a
min-max scheme uniformly for h, then we can use the same idea to obtain a
bounded P.S. sequence for almost all h without any further condition. That
is the main reason we obtain Theorem 1.3 under natural conditions (V1)
and (V2). For more applications of the monotonicity technique we refer the
readers to [CT], [SZ] and [MS].
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2. Proofs of Theorems 1.3 and 1.4. We apply the above mentioned
functional

(2.1) fh(u) =
1

2

1�

0

|u̇|2 dt
1�

0

(h− V (u)) dt

defined on E := W 1,2(R/Z,RN ) to study the system (1.1). E is a Hilbert
space with inner product and norm defined by

〈u, v〉 =

1�

0

(u̇, v̇) dt+

1�

0

(u, v) dt, ‖u‖ :=

1�

0

|u̇|2 dt+

1�

0

|u|2 dt.

Moreover, E has an orthogonal decomposition E = E1 ⊕ E2, where

E1 = RN and E2 = {y ∈ E :
	T
0 y(t) dt = 0}, and it is compactly embedded

into C(R/Z,RN ). We recall two well-known inequalities (see Proposition 1.3
in [MW]): Sobolev’s inequality

(2.2) ‖y‖∞ := max
t∈[0,1]

|y(t)| ≤ 1

121/2
‖ẏ‖2 for every y ∈ E2,

and Wirtinger’s inequality:

(2.3) ‖y‖2 ≤
1

2π
‖ẏ‖2 for every y ∈ E2.

Here ‖ · ‖p denotes the Lp norm.

By our assumptions, it is easy to see that fh ∈ C1(E,R), and its deriva-
tive satisfies

(2.4) 〈f ′h(u), v〉 =

1�

0

(u̇, v̇) dt

1�

0

(h− V (u)) dt− 1

2

1�

0

|u̇|2 dt
1�

0

(V ′(u), v) dt.

The following lemma establishes the relationship between the critical points
of fh and the periodic solutions of (1.1).

Lemma 2.1. Let ũ ∈ E be a critical point of fh and fh(ũ) > 0. Set

(2.5) T 2 =
1
2

	1
0 | ˙̃u|

2 dt	1
0(h− V (ũ)) dt

.

Then q̃(t) = ũ(t/T ) is a non-constant T -periodic solution for (1.1) with
energy h.

The proof of this lemma can be found in [AZ].

In the rest of this paper, without loss of generality, we assume that the
minimum of V is 0 and that it is achieved at 0. In order to prove Theorem 1.3,
it is sufficient to prove that for any given interval [h1, h2] ⊂ (0,H) and for
almost all h ∈ [h1, h2], fh has a critical point. From now on, we will not
write the integration interval explicitly.
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Next we show fh has a linking geometry uniformly for h ∈ [h1, h2]. Let
S := ∂Bρ ∩ E2, where ρ is given in the following lemma.

Lemma 2.2. There exist ρ > 0 and α > 0 such that fh|S ≥ α for all
h ∈ [h1, h2].

Proof. By the continuity of V and V (0) = 0, there exists a constant ρ1
such that

V (x) < h1/2 for |x| ≤ ρ1.
Let ρ =

√
12 ρ1. It follows from (2.2) that

fh(u) ≥ fh1(u) =
1

2

�
|u̇|2 dt

�
(h1 − V (u)) dt ≥ h1ρ

2

2
=: α

for u ∈ S.

Next let w0 = sin(2πt)e, where e is a unit vector in RN . Then it can be
verified that w0 ∈ E2. Set W := E1 ⊕ span{w0}.

Lemma 2.3. Suppose {yj} is a sequence in W with ‖yj‖ → ∞ as j →∞.
Then for any θ ∈ (0, 1) there exists a set U ⊂ [0, 1] with meas(U) > θ and a
subsequence {yjk} such that yjk(t)→∞ uniformly for t ∈ U .

Proof. Since the dimension of W is finite, all norms on W are equivalent.
We may assume ‖yj‖ 6= 0 and define a bounded sequence by putting zj =
yj/‖yj‖. Then there exist a subsequence of {zjk} (not relabeled) and z ∈W
such that zjk → z uniformly, with ‖z‖ = 1. Let U = {t ∈ [0, 1] : |z(t)| > 2ε}.
Since {t ∈ [0, 1] : |z(t)| = 0} is a finite set and w is continuous, we can
choose ε sufficiently small such that meas(U) > θ. Then

|yjk(t)| = ‖yjk‖ |zjk(t)| ≥ ‖yjk‖(|z(t)| − |z(t)− zjk(t)|)
≥ ‖yjk‖(2ε− |z(t)− zjk(t)|)→∞.

That is, yjk(t)→∞ uniformly for t ∈ U .

Given a positive constant R, we define

QR = {v + rw0 : v ∈ E1, r ≥ 0 and ‖v + rw0‖ ≤ R}.

Lemma 2.4. There exists R > ρ such that fh|∂QR ≤ 0 for all h ∈ [h1, h2].

Proof. If this is not true, then there exist sequences {Rn} and {yn} ⊂
∂QRn such that

Rn →∞, fh2(yn) > 0.

For simplicity, we write Qn for QRn in the following. The boundary of
Qn consists two parts:

∂Qn = ∂Q1
n ∪ ∂Q2

n

= {v ∈ E1 : ‖v‖ ≤ Rn} ∪ {v + λw0 : λ > 0, |v + rw0| = Rn}.
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If u ∈ ∂Q1
n ⊂ E1, then obviously fh(u) = 0. Since fh2(yn) > 0, the only

possibility is yn ∈ ∂Q2
n, i.e., ‖yn‖ = Rn → ∞. Choose θ ∈ (0, 1) such that

(2− θ)/θ < H/h2. Then according to Lemma 2.3, there exist a set U ⊂ [0, 1]
with meas(U) > θ and a subsequence {ynk} such that ynk(t)→∞ uniformly
for t ∈ U . By (V2) there exists a positive constant D such that

V (x) ≥ H− H− h2
2

for |x| ≥ D.

Then it follows from fh2(yn) > 0 and ‖ynk‖ = Rn →∞ that

0 <
�
(h2 − V (ynk)) dt =

�

U

(h2 − V (ynk)) dt+
�

Uc

(h2 − V (ynk)) dt

≤ −θH− h2
2

+ (1− θ)h2 < 0,

a contradiction.

For brevity, we write Q for QR in the rest of this paper. We use the
above constructed S and Q to define a family of maps,

Γ = {γ ∈ C(Q̄,X) : γ|∂Q = I},
and a family of numbers,

ch = inf
γ∈Γ

sup
u∈Q

fh(γ(u)).

Here Q̄ is the closure of Q, ∂Q the boundary of Q relative to E1⊕span{w0},
and I is the identity operator. The numbers ch yield a map c : (h1, h2)→ R
given by c(h) := ch.

Lemma 2.5. c(h) has the following two properties:

(i) c(h) is increasing on [h1, h2];
(ii) there exists a positive constant β such that α ≤ c(h) ≤ β for all

h ∈ [h1, h2].

Proof. (i) Obvious.

(ii) According to [R, Proposition 5.9], S and Q are linked, i.e. γ(Q) ∩ S
6= ∅ for all γ ∈ Γ ; this implies

sup
u∈Q

fh1(γ(u)) ≥ inf
u∈S

fh1(u) ≥ α, ∀γ ∈ Γ.

Hence ch ≥ ch1 ≥ α for all h ∈ [h1, h2]. On the other hand

ch ≤ sup
u∈Q

fh(u) ≤ sup
u∈Q

fh2(u) =: β.

Since c(h) is increasing, the derivative c′h = dc(h)/dh exists for almost all
h ∈ [h1, h2]. Fix a point h0 in [h1, h2] where c′h0 exists and let {hn} ⊂ [h1, h2]
be a strictly decreasing sequence approaching h0.
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Lemma 2.6. There exists a bounded P.S. sequence for fh0 at level ch0,
i.e. there exist a constant K and a sequence {un} such that

fh0(un)→ ch0 , f
′
h0(un)→ 0, as n→∞, and ‖un‖ ≤ K + 1.

Proof. The proof will be divided into two steps.

Step 1. First, we show that there exists a sequence of maps {γn} ⊂ Γ
such that

(i) supu∈Q fh0(γn(u)) ≤ ch0 + (c′h0 + 2)(hn − h0);
(ii) An = {γn(u) : fh0(γn(u)) ≥ ch0 − (hn − h0), y ∈ Q} is uniformly

bounded.

By the definition of chn , there exists γn ∈ Γ such that

sup
u∈Q

fhn(γn(u)) ≤ chn + (hn − h0).

Since fh is increasing with respect to h, we have

fh0(γn(u)) ≤ fhn(γn(u)) ≤ chn + (hn − h0)
= ch0 + (chn − ch0) + (hn − h0)
= ch0 + (c′h0 + o(1) + 1)(hn − h0)
≤ ch0 + (c′h0 + 2)(hn − h0),

where we have used chn − ch0 = (c′h0 + o(1))(hn − h0). This proves (i).
If z = γn(u) ∈ An, by definition we have fh0(γn(u)) ≥ ch0 − (hn − h0).

This implies

fhn(z)− fh0(z)

hn − h0
≤ chn + (hn − h0)− ch0 + (hn − h0)

hn − h0
≤ c′h0 + 3.

On the other hand

fhn(z)− fh0(z)

hn − h0
=

hn−h0
2

	
|ż(t)|2 dt

hn − h0
=

1

2

�
|ż(t)|2 dt.

Thus

(2.6)
� 1

2
|ż(t)|2 dt ≤ c′h0 + 3.

If An is not uniformly bounded, then there exists a sequence {zn} such that

zn ∈ An, ‖zn‖ → ∞ as n→∞.
Let zn = vn + wn where vn ∈ E1 and wn ∈ E2. From zn ∈ An and (2.6) we
have ‖ẇn‖22 ≤ 2(c′h0 + 3), so the only possibility is |vn| → ∞. Then from

|zn(t)| ≥ |vn| − ‖wn‖∞ ≥ |vn| − 2c(c′h0 + 3),

it follows that |zn(t)| → ∞ uniformly. Using (V2) we find that�
(h0 − V (zn)) dt ≤

�
(h2 − V (zn)) dt < 0
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for n large enough. This contradicts the fact that fh0(zn) ≥ α/2 for large n.
So there exists a constant K such that

‖z‖ ≤ K for any z ∈
∞⋃
n=1

An.

Step 2. Define Nε = {z : ‖z‖ ≤ K + 1, |fh0(z) − ch0 | ≤ ε}. Then
An ⊂ Nε for large n and Nε is non-empty. We will show that for any ε > 0,
infz∈Nε ‖f ′h0(z)‖ = 0. If this is not true, then there exists ε0 such that

inf
z∈Nε0

‖f ′h0(z)‖ ≥ ε0.

Without loss of generality, we can assume ε0 <
1
2(ch0 − α), where α is the

constant obtained in Lemma 2.2. A classical deformation argument shows
that there exist ε ∈ (0, ε0) and a homeomorphism η : X → X such that

• η(z) = z if |fh0(z)− ch0 | > ε0;
• fh0(η(z)) ≤ fh0(z) for all z ∈ X;
• fh0(η(z)) ≤ ch0 − ε for all z ∈ N := {z : ‖z‖ ≤ K, |fh0(z)− ch0 | ≤ ε}.

We choose a sufficiently large n such that (c′h0 +2)(hn−h0) ≤ ε and let γn
be the corresponding maps. Then η◦γn ∈ Γ . If γn(u) ∈ {z : fh0(z) < ch0−ε},
then

(2.7) fh0(η ◦ γn(u)) < fh0(γn(u)) < ch0 − ε.

If γn(u) ∈ {z : fh0(z) > ch0 − ε}, by Step 1 we know ‖γn(u)‖ ≤ K, and
|fh0(γn(u))− ch0 | ≤ ε; then

(2.8) fh0(η ◦ γn(u)) < fh0(γn(u))− ε.

From (2.7) and (2.8) we know

sup
u∈Q

fh0(η ◦ γn(u)) ≤ ch0 − ε.

This contradicts the definition of ch0 . Thus for any ε > 0, infz∈Nε ‖f ′h0(z)‖
= 0. By the definition of infz∈Nε ‖f ′h0(z)‖ there exists a bounded P.S. se-
quence {un}.

Now we are ready to give the proof of Theorem 1.3.

Proof of Theorem 1.3. Since the P.S. sequence {un} obtained in Lem-
ma 2.6 is bounded, there exists a subsequence, still denoted by un, which is
weakly convergent to a point u ∈ E. By the embedding theorems, it is also
uniformly convergent to u. Then we have

(2.9) V (un)→ V (u), (V ′(un), un)→ (V ′(u), u) uniformly as n→∞.
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Since {un} is a P.S. sequence at level ch0 , we have fh0(un) ≥ α/2 for
large n. From (V1) and minV (x) = 0 we have

0 < α/2 ≤ fh0(un) =
1

2

�
|u̇n|2 dt

�
(h0 − V (un)) dt

≤ h0
2

�
|u̇n|2.

That is,

(2.10) ‖u̇n‖22 ≥ α/h0 > 0

for large n. From (2.4) we have

〈f ′h0(un), un〉 =
�
|u̇n|2 dt

�(
h0 − V (un)− 1

2
(V ′(un), un)

)
dt.

Hence

(2.11)
�
(h0 − V (un)) dt =

1

2

�
(V ′(un), un) dt+

〈f ′h0(un), un〉
‖u̇n‖22

.

Since f ′h0(un) → 0 and {un} is bounded, we deduce that 〈f ′h0(un), un〉 → 0
as n→∞. Letting n→∞ on both sides of (2.11), it follows from (2.9) and
(2.10) that

(2.12)
�
(h0 − V (u)) dt =

1

2

�
(V ′(u), u) dt.

Since fh0(un) ≥ α/2 for large n, we know
	

(h0 − V (un)) dt ≥ 0 for
large n. We claim that there exists a positive constant δ such that

(2.13)
�
(h0 − V (un)) dt ≥ δ

for all large n. If this is not true, there exists a subsequence of {un} (not
relabeled) such that

	
(h0 − V (un)) dt → 0 as n → ∞. We know that {un}

is bounded, so

fh0(un) =
1

2

�
|u̇n|2 dt

�
(h0 − V (un)) dt→ 0.

This contradicts the fact that fh0(un) ≥ α/2 > 0. Then from the combina-
tion of (2.9), (2.12) and (2.13), we have

(2.14)
1

2

�
(V ′(u), u) dt =

�
(h0 − V (u)) dt ≥ δ > 0.

As f ′h0(un) → 0 we have 〈f ′h0(un), z〉 → 0 for any z ∈ E. Taking z = u and
using (2.14) we get

(2.15) lim
n→∞

�
(u̇n, u̇) dt = lim

n→∞

�
|u̇n|2 dt.



10 C. F. Che and X. P. Xue

Since un weakly converges to u, we have�
(u̇n, u̇) dt+

�
(un, u) dt = 〈un, u〉

→ 〈u, u〉 =
�
(u̇, u̇) dt+

�
(u, u) dt.

Combining (2.15), (2.16) and the Sobolev embedding theorem, we have

‖un − u‖2 =
�
|u̇n − u̇|2 dt+

�
|un − u|2 dt

=
( �
|u̇n|2 dt− 2

�
(u̇n, u̇) dt+

�
|u̇|2 dt

)
+
�
|un − u|2 dt

→ (‖u̇‖22 − 2‖u̇‖22 + ‖u̇‖22) + 0 = 0,

that is, un → u strongly in E. Then from the continuity of f ′h0 we have
f ′h0(u) = 0. Applying Lemma 2.1, we get a non-constant periodic solution
q(t) := u(t/T ) with energy h0. Since h0 is arbitrary in a full-measure subset
of [h1, h2] and the interval [h1, h2] is chosen arbitrarily, the theorem follows.

Proof of Theorem 1.4. We show that for any given h ∈ [h1, h2] ⊂
(µ2/µ1,H), fh has a critical point. Applying Theorem 1.3, we get sequences
{hn} ⊂ (h1, h2) and {un} such that

hn → h, α ≤ fhn(un) ≤ β, f ′hn(un) = 0.

First, we need to show {‖un‖} is bounded. From f ′hn(un) = 0 we obtain

2
�
(hn − V (un)) dt =

�
(V ′(un), un) dt.

Combining this with (A1) we have
�
(hn − V (un)) dt ≥ hn −

2hn + µ2
µ1 + 2

=
µ1hn − µ2
µ1 + 2

≥ µ1h1 − µ2
µ1 + 2

> 0.

Therefore,

0 <
�
|u̇n|2 dt =

fhn(un)	
(hn − V (un)) dt

≤ β(µ1 + 2)

µ1h1 − µ2
=: C1.

Let un = vn+wn where vn ∈ E1 and wn ∈ E2. Since ‖ẇn‖22 = ‖u̇n‖22 ≤ C1, if
‖un‖ is unbounded, the only possibility is |vn| → ∞. In this case un(t)→∞
uniformly. Using (V2) we find that�

(hn − V (un)) dt ≤
�
(h2 − V (un)) dt < 0

for large n. This contradicts the fact that fhn(un) ≥ α. So {‖un‖} is
bounded. Applying a similar argument to those used in the proof of The-
orem 1.3, we deduce that there exists a subsequence of {un} converging
strongly to some point u0 in E. Then by the continuity of fh(u) and f ′h(u)
with respect to h and u, we know that the limit point u0 of {un} satisfies

fh(u0) ≥ α, f ′h(u0) = 0.
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Let q0(t) := u0(t/T0), where T 2
0 = 1

2

	1
0 |u̇0|

2 dt/
	1
0(h− V (u0)) dt. By Lem-

ma 2.1 we know q0 is a non-constant periodic solution of energy h. Since the
interval [h1, h2] is chosen arbitrarily, the theorem follows.
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