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A note on the plane Jacobian conjecture

by Nguyen Van Chau (Hanoi)

Abstract. It is shown that every polynomial function P : C2 → C with irreducible
fibres of the same genus must be a coordinate. Consequently, there do not exist counterex-
amples F = (P,Q) to the Jacobian conjecture such that all fibres of P are irreducible
curves with the same genus.

1. Concerning the plane Jacobian conjecture (JC2) ([10], [5]), Kaliman
[9] observed that in order to prove (JC2), it is sufficient to consider only
polynomial maps F = (P,Q) : C2 → C2 with non-zero constant Jacobian
J(P,Q) := PxQy − PyQx ≡ c 6= 0 such that all fibres of P are irreducible
curves. In 1979 Razar [16] proved the following:

Theorem 1. A non-zero constant Jacobian polynomial map F = (P,Q)
is invertible if all fibres of P are irreducible rational curves.

In other words, there do not exist counterexamples F = (P,Q) to (JC2)
such that all fibres of P are irreducible rational curves. In an attempt to
understand the nature of the plane Jacobian conjecture, Razar’s result was
reproved by Heitmann [8], Lê and Weber [12], Friedland [6], Nemethi and
Sigray [14] in several different algebraic and algebro-geometric approaches.

Following [15], we shall call a polynomial h ∈ C[x, y] a coordinate if
there is a polynomial diffeomorphism ϕ of C2 such that h ◦ϕ(x, y) = x. The
following fact gives a natural explanation for Theorem 1.

Theorem 2 ([18], [15]). A polynomial function P : C2 → C with irre-
ducible rational fibres is a coordinate.

This theorem was obtained by Vistoli [18] and Neumann and Norbury
[15] and, as mentioned in [15], it is implicit in the earlier work [13, Lemma
1.7]. Razar [16] and Friedland [6] also proved that there do not exist coun-
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terexamples F = (P,Q) to (JC2) such that all fibres of P are irreducible
and the generic fibres of P are elliptic curves.

As usual, by the genus of an irreducible plane curve we mean the genus
of its smooth portion. In this short paper, we show that there do not exist
counterexamples F = (P,Q) to (JC2) such that all fibres of P are irreducible
curves of the same genus. We will prove

Theorem 3. Suppose P :C2→C is a polynomial function with irreducible
fibres. If all the fibres of P have the same genus, then P must be a coordinate.

In other words, the genus of the fibres of any polynomial with irreducible
fibres, except for coordinate polynomials, must vary. Further investigations
on how the genus of the fibres of polynomial functions in C2 varies should
be useful in hunting for the solution of the plane Jacobian conjecture.

Note that Theorems 1–3 do not involve any assumption about the
smoothness of the fibres of P . In Theorem 1, the Jacobian condition en-
sures that all fibres of P are smooth. In Theorem 3, the assumption that all
fibres of P are irreducible curves with the same genus is so strong that it
guarantees the smoothness of all fibres of P (see Lemma 1 below).

As will be seen in Section 2, in order to prove Theorem 3, we will show
that if all the fibres of P are irreducible curves with same genus, then they
are rational curves (Lemma 2). Then Theorem 3 will be deduced from The-
orem 2. Note that the proofs of Theorem 2 in [13] and [18] use either the
Abhyankar–Moh–Suzuki Embedding Theorem or Zariski’s main theorem.
In Section 3, we will give another elementary proof of Theorem 2 by apply-
ing the Newton–Puiseux Theorem and the basic properties of the standard
resolution of singularities and of rational fibrations.

2. Let P ∈ C[x, y] be a given non-constant polynomial. Regard the
plane C2 as a subset of the projective plane P2 and consider P as a rational
morphism P : P2 → P, which is well defined everywhere on P2, except a
finite number of points on the line at infinity z = 0. By blowing-up, we
can remove the indeterminacy points of P and obtain a compactification X
of C2 and a regular extension p : X → P of P over X. The divisor D :=
X \C2 is a union of smooth rational curves with simple normal crossings. An
irreducible component D of D is horizontal if p|D is a non-constant mapping.
Note that the number of horizontal curves of P does not depend on the
regular extension p. Such a regular extension p : X → P is called standard
if, among the components of D, only the proper transform of the line at
infinity z = 0 and the horizontal curves of P may have self-intersection −1.
A standard extension of P over a compactification of C2 can be constructed
by a blowing-up process in which we only blow up at the indeterminacy
points of P and its blowing-up versions.
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Now, suppose p : X → P1 is a standard extension of P . Denote by Cs

the fibre of p over s ∈ P1 and by C the generic fibre of p. Let Ds := D∩Cs,
the portion of Cs contained in D. By definitions, the standard extension
p : X → P1 has the following useful property:

(∗) Every irreducible component of Ds, s ∈ C, has self-intersection less
than −1.

We begin with the following observation.

Lemma 1. Assume that all fibres of P are irreducible curves with the
same genus g. Then the fibres Cs, s ∈ C, are smooth irreducible curves with
the same genus g.

Proof. As usual, we denote by KX the canonical bundle of the surface
X, by π(V ) the virtual genus of an algebraic curve V in X, and by g(V )
the genus of the desingularization of V whenever V is irreducible. By the
adjunction formula

2π(V )− 2 = KX .V + V.V,

and, for V irreducible, π(V ) = g(V ) if and only if V is smooth. Furthermore,
if V is a fibre of a fibration over X, then V.V = 0 and hence

2π(V )− 2 = KX .V

(see, for example, [7]). For s ∈ C denote by Fs the closure in X of the curve
{(x, y) ∈ C2 : P (x, y) = s}. By the assumptions the curves Fs are irreducible
and

(1) g(Fs) ≡ g, s ∈ C.
Now, let s ∈ C be given. By the adjunction formula (see [7])

(2) 2g − 2 = KX .Cs.

If Cs is irreducible, we have Cs = Fs and Fs.Fs = 0. Again, using the
adjunction formula, we get 2π(Fs)− 2 = KX .Fs. Therefore, by (1) and (2)
we obtain π(Fs) = g = g(Fs). Thus, Cs is a smooth irreducible curve of
genus g.

So, to complete the proof we only need to show that Cs is irreducible.
Indeed, assume it is not. Write

Cs =

k∑
i=1

miEi + nFs,

where Ei are irreducible components of Ds with multiplicity mi and n is the
multiplicity of Fs in Cs. The equality (2) becomes

(3) 2g − 2 =

k∑
i=1

miKX .Ei + nKX .Fs.
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Since Ei are smooth irreducible rational curves, π(Ei) = 0. Furthermore,
Ei.Ei < −1 by property (∗) and Fs < 0 by Zariski’s lemma (see, for example,
[1]). Then, applying the adjunction formula to Ei and Fs we have

KX .Ei = −(Ei.Ei + 2) ≥ 0

and

KX .Fs = 2π(Fs)− 2− Fs.Fs > 2π(Fs)− 2.

From the above estimates and (3) it follows that 2g − 2 > 2π(Fs)− 2. This
is impossible, since π(Fs) ≥ g(Fs) = g. Hence, Cs must be irreducible.

Lemma 2. Let P be as in Lemma 1. Then g = 0 and P has only one
horizontal curve. In particular, the fibres of P are irreducible rational curves.

Proof. We will use Suzuki’s formula [17]

(4)
∑
s∈P1

χ(Cs)− χ(C) = χ(X)− 2χ(C),

where χ(V ) is the Euler–Poincaré characteristic of V . Denote by m the
number of irreducible components of the divisor D, by m∞ the number of
irreducible components of C∞ and by h the number of horizontal curves
of P . Note that χ(X) = 2 + m and χ(C∞) = 1 + m∞. Furthermore, by
Lemma 1, χ(Cs) = χ(C) = 2− 2g for all s ∈ C, and h = m−m∞. Now, by
the above estimates, we have∑

s∈P1

χ(Cs)− χ(C) = χ(C∞)− χ(C) = 1 +m∞ − (2− 2g)

and

χ(X)− 2χ(C) = 2 +m− 2(2− 2g).

Then, the equality (4) becomes

1 +m∞ − (2− 2g) = 2 +m− 2(2− 2g),

or equivalently,

2g = 1− (m−m∞) = 1− h.
Since g ≥ 0 and h ≥ 1, it follows that g = 0 and h = 1.

Proof of Theorem 3. Combine Lemma 2 with Theorem 2.

3. The main arguments in the proofs of Theorem 2 in [18] and [13] lead
to the fact that if the fibres of P are rational irreducible curves, then P has
only one horizontal curve and its fibres are diffeomorphic to C. Then the fact
that P is a coordinate results from the Abhyankar–Moh–Suzuki Embedding
Theorem, as in [13, Lemma 1.7], or from Zariski’s main theorem, as in [18,
Lemma 4.8]. However, Theorem 2 can also be proved by using the basic
observations below.
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(i) Let H ∈ C[x, y], H(x, y) =
∑

ij cijx
iyj . Recall that the so-called

Newton polygon NH of H is the convex hull of the set {(0, 0)} ∪ {(i, j) :
cij 6= 0}.

Fact 1. Assume that degxH > 0 and degyH > 0. If H has only one
horizontal curve, then

(a) NH is a triangle with vertices (0, 0), (degxH, 0) and (0, degyH),

(b) the sum HE of the monomials cijx
iyj in H with (i, j) lying on the

edge joining (degxH, 0) and (0,degyH) is of the form

HE(x, y) = C(yq − axp)m,

where C 6= 0, a 6= 0, p, q,m are natural numbers and gcd(p, q) = 1.

In fact, if H has only one horizontal curve, the branches at infinity of
each generic fibre H = c can be given by Newton–Puiseux expansions of the
same form,

y = bxp/q + lower terms in x, p/q ≤ 1,

or

x = byq/p + lower terms in y, q/p ≤ 1,

where b 6= 0 and gcd(p, q) = 1. Then the Newton polygon NH and the face
polynomial HE can be detected by using the Newton–Puiseux Theorem and
the basic properties of Newton–Puiseux expansions (see [4]).

(ii) Let P ∈ C[x, y] with degP > 1, degx P > 0 and degy P > 0. Assume
that the fibres of P are irreducible rational curves, and hence P has only
one horizontal curve. In view of Fact 1, we can assume that PE(x, y) =
C(yq − axp)m with C 6= 0, a 6= 0 and gcd(p, q) = 1.

Fact 2. PE(x, y) has the form C(yq − ax)m or C(y − axp)m, p, q ≥ 1.

To see this, we only need to consider the case p/q 6= 1. Assume, for ex-
ample, that p/q < 1. Let p : X → P1 be a standard extension, which results
from a blowing-up process π : X → P2 that only blows up at the indeter-
minacy points of P and its blown-up versions. By Lemma 1 the divisor at
infinity D is the union of the fibre C∞ and the unique horizontal curve D,
D = C∞ ∪ D. The fibre C∞ contains the proper transform D0 of the line
at infinity z = 0 of C2. Since degP > 1 and the morphism p : X → P1 is
a P1-fibration, the fibre C∞ is reducible and can be contracted to one of its
components by blowing down components of self-intersection −1. Further-
more, the proper transform D0 of the line at infinity z = 0 is the unique
component of C∞ having self-intersection −1. Then, one can see that the
first Puiseux chain of the dual graph of D must be of the forms
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D0•
−1
− e1◦
−2
− · · ·−

ek◦
−2
−

...
©
−2
−

f1◦ − · · · −
fl◦

and

D0•
−1
−

...
©
−2
−

f1◦ − · · · −
fl◦,

where the weights are the self-intersection numbers. This Puiseux chain
coincides with the resolution graph of the germ curve at infinity γ, composed
of the line at infinity z = 0 and a branch curve at infinity given by a Newton–
Puiseux expansion of the form

y = bxp/q + lower terms in x, b 6= 0.

Note that the line at infinity z = 0 of C2 has self-intersection 1. Then,
examining in detail the resolving singularities of γ, we can easily see that
the conditions for self-intersection numbers are satisfied only when p = 1,
q > 1 and l = 1.

Thus, once the fibres of P are irreducible rational curves, Fact 2 enables
us to easily construct a polynomial automorphism Φ of C2 such that P ◦
Φ(x, y) = x.

4. Let us conclude with the following two remarks.

(i) It is not difficult to see that a non-zero constant Jacobian polynomial
map F = (P,Q) is invertible if P has only one horizontal curve. This is a
key point in the geometric proof of Theorem 1 presented in [12]. In fact, let
p : X → P1 be a regular extension of P . We can consider Q as a rational
morphism from X to P1. If P has only one horizontal curve, then by the
Jacobian condition the restriction of Q to the unique horizontal curve of P
must be a constant mapping with value ∞. So, the restriction of Q to any
generic fibre P = c is proper. Therefore, by the simple connectedness of C
such a generic fibre P = c is isomorphic to C. Hence, (P,Q) is invertible.
It seems very difficult to estimate the possible number of horizontal curves
of polynomial components of non-zero constant Jacobian polynomial maps
of C2.

(ii) Boileau and Fourrier [3] presented a topological version of the
Abhyankar–Moh–Suzuki Theorem: if P ∈ C[x, y] is irreducible and the fibre
P = 0 is diffeomorphic to C, then the function P : C2 → C gives a trivial
fibration over C2 with fibre C. In particular, the fibres of such polynomials
P are irreducible rational curves. Thus, a combination of this version with
Facts 1 and 2 of the previous section enables us to give a geometric proof of
the Abhyankar–Moh–Suzuki Theorem.
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