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Multiple solutions for some Dirichlet problems
with nonlocal terms

by Filippo Cammaroto (Messina) and Francesca Faraci (Catania)

Abstract. We deal with some Dirichlet problems involving a nonlocal term. The
existence of two nonzero, nonnegative solutions is achieved by applying a recent result by
Ricceri.

1. Introduction. The interest towards nonlocal boundary value prob-
lems of the type

(P )

{
−∆u = h(u, φ(u)) in Ω,
u = 0 on ∂Ω,

where φ is a nonlocal term, has increased in the last decades, motivated
by several applications to problems arising from physical and biological phe-
nomena. Indeed problem (P ) can be considered as the stationary model of an
evolution (parabolic) problem describing fully turbulent behaviour of a real
flow ([CLMP]), interaction of self-gravitating particles ([BDEMN], [BLN]),
the occurrence of shear banding in metals ([BT]), phenomena of Ohmic heat-
ing ([L]), or population dynamics subjected to nonlocal interactions ([AB]).
The study of the steady states of the evolution problem is in general rather
complicated by the presence of the nonlocal term. For instance, the upper
and lower solutions method fails due to the absence of general maximum
principles. The usual way to deal with such problems employs fixed point
theorems ([ES], [FP], [FPS]) which provide the existence of one solution for
problem (P ). As far as we know, very few papers treat problems of type (P )
with variational methods. In these cases special forms of nonlinearities need
to be considered. We recall the paper by Fila ([F]) where the properties of
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the solution of an evolution problem with a nonlinearity of the type

h(u, φ(u)) = g(φ(u))f(u), φ(u) =
�

Ω

F (u) dx

(and F is a primitive of f) are investigated, and the work by Gomes and
Sanchez ([GS]) where existence and multiplicity results for (P ) are given
when

h(u, φ(u)) =
f(u)

φ(u)p
, φ(u) =

�

Ω

F (u) dx,

with p > 0. In particular, in [GS], the authors study a problem depending on
a positive parameter λ and, when f grows like p(u)eu (with p a polynomial
taking values in [0,+∞[), they prove the existence of one solution for every λ
via minimization of the corresponding energy functional while two solutions
are obtained for p < 1 and small values of the parameter by an application
of the Mountain Pass Theorem. The cited paper extends the celebrated work
of Bebernes and Lacey [BL] dealing with existence and nonexistence results
for (P ), when Ω is a ball or a star-shaped domain and the nonlinearity is
of exponential type. In connection with exponential nonlinearities we also
mention the paper [BDEMN] where the special case F = f is treated.

In the present paper we will consider nonlocal problems with Dirichlet
boundary conditions

(Pλ)

{
−∆u = λg(

	
Ω F (u) dx)f(u) in Ω,

u = 0 on ∂Ω,

where Ω is a bounded domain in RN (N ≥ 1) with smooth boundary ∂Ω,
λ a positive parameter, f : [0,+∞[ → R is a continuous function, F is a
primitive of f and g(t) = et or g(t) = t−p with p a real number, p ≤ 1. We
point out that in the last case, we are, at least formally, in the same setting
as in [GS].

The structure of the problems we deal with allows us to employ vari-
ational methods: this means that solutions of the above problems will be
found as critical points of an associated energy functional. Applying a re-
cent abstract multiplicity result by Ricceri for nonlocal problems [R], we
prove the existence of two nonnegative solutions for (Pλ) when λ belongs to
a suitable interval.

Before stating our results, we introduce the following notation. For N ≥ 1
denote by A the class of continuous functions f : [0,+∞[→ R with f(0) = 0
and such that when N ≥ 2,

(1.1) sup
s∈[0,+∞[

|f(s)|
1 + sq−1

< +∞

with q > 1 for N = 2, 1 < q < 2? = 2N/(N − 2) for N > 2.
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Let F be a primitive of f . We will assume that F satisfies the conditions

(F1) sup
[0,+∞[

F > F (0);

(F2) lim sup
s→0+

F (s)− F (0)

s2
≤ 0.

Our first result, which deals with the case when g(t) = et in (Pλ), reads as
follows:

Theorem 1.1. Let f ∈ A. Assume that F satisfies (F1)–(F2), and that

(i) F is bounded.

Then there exist an open interval A ⊆ ]0,+∞[ and a number ρ > 0 such
that, for each λ ∈ A, the problem

(Qλ)

{
−∆u = λe

	
Ω F (u) dxf(u) in Ω,

u = 0 on ∂Ω,

has at least two nonzero, nonnegative solutions whose norms in H1
0 (Ω) are

less than ρ.

In the next result we choose g(t) = t−p with p a real number less than 1.

Theorem 1.2. Let f ∈ A and p < 1. Assume that F satisfies (F1)–(F2),
and

(j) F (s) > 0 for every s ∈ [0,+∞[;
(jj) lim sups→+∞ F (s)/sr < +∞ for some r ∈ ]0, 2/(1− p)[.

Then there exist an open interval A ⊆ ]0,+∞[ and a number ρ > 0 such
that, for each λ ∈ A, the problem

(Rλ)

 −∆u = λ
f(u)(	

Ω F (u) dx
)p in Ω,

u = 0 on ∂Ω,

has at least two nonzero, nonnegative solutions whose norms in H1
0 (Ω) are

less than ρ.

Our last theorem treats the case of g(t) = t−1. Denote by |Ω| the measure
of Ω.

Theorem 1.3. Let f ∈ A. Assume that F satisfies (F1)–(F2) and

(l) F (s) > 1/|Ω| for every s ∈ [0,+∞[.

If N = 1 we also require that

(ll) lim sups→+∞ F (s)/sr < +∞ for some r ∈ ]0,+∞[.



34 F. Cammaroto and F. Faraci

Then there exist an open interval A ⊆ ]0,+∞[ and a number ρ > 0 such
that, for each λ ∈ A, the problem

(Sλ)

 −∆u = λ
f(u)	

Ω F (u) dx
in Ω,

u = 0 on ∂Ω,

has at least two nonzero, nonnegative solutions whose norms in H1
0 (Ω) are

less than ρ.

Example 1.4. Put

2? =

{
2N
N−2 if N > 2,

+∞ if N ≤ 2.

1. Let 2 < q < 2? and f(s) = qsq−1 cos(sq) for s ≥ 0. The primitive
F (s) = sin(sq) satisfies the assumptions of Theorem 1.1.

2. Let 0 < r < min{2/(1− p), 2?}, q > max{2, r} and

f(s) = sq−1 q + rsq−r

(1 + sq−r)2
.

The primitive

F (s) =
sq + sq−r + 1

1 + sq−r

satisfies the hypotheses of Theorem 1.2.
3. Let 2 < q < 2? and f(s) = qsq−1. The function F (s) = sq + c is a

primitive of f satisfying the assumptions of Theorem 1.3 for c > 1/|Ω|.

2. Preliminary results. The proofs of our results are based on the
following multiplicity theorem for nonlocal problems by Ricceri, which is a
consequence of an abstract three critical points theorem where a minimax
inequality plays a crucial role. The following statement follows easily from
[R, Theorems 1.6, 1.7 and Proposition 1.4].

Theorem 2.1. Let X be a separable and reflexive real Banach space,
Ψ : X → R a sequentially weakly lower semicontinuous functional of class
C1 whose derivative admits a continuous inverse on X? such that Ψ(0) = 0,
and J : X → R a functional of class C1 with compact derivative. Assume
that there exists µ > 0 such that

(2.1) inf
x∈X

[Ψ(x)− µ(eJ(x)−J(0) − 1)] < 0 ≤ inf
x∈X

[Ψ(x)− µ(J(x)− J(0))]

and that, for every λ ∈ Λ ≡ ]µe− supX J , µe− infX J [,

(2.2) lim
‖x‖→∞

(Ψ(x)− λeJ(x)) = +∞.
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Then there exist an open interval A ⊆ Λ and a number ρ > 0 such that, for
each λ ∈ A, the equation

Ψ ′(x) = λeJ(x)J ′(x)

has at least three solutions whose norms are less than ρ.

We will also make use of the following two corollaries which are direct
consequences of Theorem 2.1 with J replaced with ln J and ln(ln J) respec-
tively.

Corollary 2.2. Let X and Ψ be as in Theorem 2.1 and J : X → R a
functional of class C1 with compact derivative satisfying J(x) > 0 for every
x ∈ X. Assume that there exists µ > 0 such that

(2.3) inf
x∈X

[
Ψ(x)− µ

(
J(x)

J(0)
− 1

)]
< 0 ≤ inf

x∈X

[
Ψ(x)− µ ln

(
J(x)

J(0)

)]
and that, for every λ ∈ Λ ≡ ]µ/supX J, µ/infX J [,

(2.4) lim
‖x‖→∞

(Ψ(x)− λJ(x)) = +∞.

Then there exist an open interval A ⊆ Λ and a number ρ > 0 such that, for
each λ ∈ A, the equation

Ψ ′(x) = λJ ′(x)

has at least three solutions whose norms are less than ρ.

Corollary 2.3. Let X and Ψ be as in Theorem 2.1 and J : X → R a
functional of class C1 with compact derivative satisfying J(x) > 1 for every
x ∈ X. Assume that there exists µ > 0 such that

(2.5) inf
x∈X

[
Ψ(x)− µ

(
ln J(x)

ln J(0)
− 1

)]
< 0 ≤ inf

x∈X

[
Ψ(x)− µ ln

(
ln J(x)

ln J(0)

)]
and that, for every λ ∈ Λ ≡ ]µ/supX ln J, µ/infX ln J [,

(2.6) lim
‖x‖→∞

(Ψ(x)− λ ln J(x)) = +∞.

Then there exist an open interval A ⊆ Λ and a number ρ > 0 such that, for
each λ ∈ A, the equation

Ψ ′(x) = λ
J ′(x)

J(x)

has at least three solutions whose norms are less than ρ.

3. Proofs. In our arguments we will need the following abstract lemma.

Lemma 3.1. Let (X, ‖ · ‖X) be a normed space, f : X → R a sequentially
weakly upper semicontinuous function with f(θ) = 0, g : X → R a sequen-
tially weakly lower semicontinuous function such that g(θ) = 0 and g(x) > 0
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for every x 6= θ. Assume also that X is compactly embedded into another
space (Y, ‖ · ‖Y ) and

(3.1) lim sup
x∈X, ‖x‖Y→0

f(x)

g(x)
≤ 0.

Then the function

h(x) =


max{f(x), 0}

g(x)
if x 6= θ,

0 if x = θ,

is sequentially weakly upper semicontinuous in X.

Proof. Let x0 ∈ X and {xn} a sequence in X \ {θ} weakly converging
to x0. We claim that lim supn h(xn) ≤ h(x0). We distinguish two cases.

If x0 6= θ, we can fix a positive number ε with ε < g(x0). By the assump-
tions,

lim sup
n

f(xn) ≤ f(x0) and lim inf
n

g(xn) ≥ g(x0)

and so, for n large enough, f(xn) < f(x0) + ε and g(xn) > g(x0)− ε. Then

lim sup
n

h(xn) = lim sup
n

max{f(xn), 0}
g(xn)

≤ max{f(x0), 0}+ ε

g(x0)− ε
and letting ε tend to zero proves the claim.

If x0 = θ, from the compact embedding of X into Y , we have ‖xn‖Y → 0
and, for a fixed positive number ε, thanks to assumption (3.1), for n large
enough, f(xn)/g(xn) < ε. Then

lim sup
n

h(xn) = lim sup
n

max{f(xn), 0}
g(xn)

≤ ε

and letting ε tend to zero yields the claim.

3.1. Proofs of Theorems 1.1–1.3. We denote by X the space H1
0 (Ω)

endowed with the usual norm ‖u‖ = (
	
Ω |∇u|

2 dx)1/2. Let Ψ : X → R be
defined by

Ψ(u) = ‖u‖2/2.
Then Ψ satisfies all the assumptions of Theorem 2.1, i.e. it is sequentially
weakly lower semicontinuous (being continuous and convex), it is of class C1

and its derivative has a continuous inverse on X?.
Assume that f ∈ A and F satisfies the assumptions (F1)–(F2). We extend

f and its primitive F to the real axis by putting f(s) = 0 and F (s) = F (0)
for every s ≤ 0. Let I : X → R be defined by

I(u) =
�

Ω

F (u) dx.

As f ∈ A, I is of class C1 with compact derivative.
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We also have

(3.2) sup
X
I > I(0).

Indeed, from (F1), there exists s0 > 0 such that F (s0) > F (0). Let δ > 0
be small enough. The function u0 : Ω → R defined by

u0(x) =

{
s0 if d(x, ∂Ω) > δ,

s0d(x, ∂Ω)/δ if d(x, ∂Ω) ≤ δ,

belongs to X and

I(u0) =
�

{x∈Ω : d(x,∂Ω)>δ}

F (s0) dx+
�

{x∈Ω : d(x,∂Ω)≤δ}

F (u0) dx

≥ F (s0)|{x ∈ Ω : d(x, ∂Ω) > δ}| − cF |{x ∈ Ω : d(x, ∂Ω) ≤ δ}|

where cF = maxF[0,s0] if N = 1, and cF = a(s0 + sq0) if N ≥ 2 for some
positive constant a.

If we let δ → 0, the right hand side above tends to

F (s0)|Ω| > F (0)|Ω|,

and so for δ small enough,
I(u0) > I(0).

By (F2), for any ε > 0 there exists δε > 0 such that for |s| ≤ δε,

F (s)− F (0) < εs2.

As f ∈ A, for N ≥ 2 there exists q < 2? for N > 2, q < +∞ for N = 2
(without loss of generality we can assume q > 2) such that (1.1) holds.
Hence, there exists c > 0 such that for |s| > δε,

F (s)− F (0) ≤ c|s|q.

For N = 1, the latter inequality still holds for some q ∈ R, as a consequence
of assumption (i) of Theorem 1.1, (jj) of Theorem 1.2 or (ll) of Theorem 1.3
(in the last two cases choose q = r). In conclusion, there exists q ∈ ]2,+∞[
if N ≤ 2 or q ∈ ]2, 2?[ if N > 2 such that

(3.3) F (s)− F (0) ≤ εs2 + c|s|q for every s ∈ R.

Recall that the space X is compactly embedded into (Lq(Ω), ‖ · ‖q) and
there exists a constant cq such that

(3.4) ‖u‖q ≤ cq‖u‖ for every u ∈ X.

We claim that

(3.5) lim sup
‖u‖q→0

I(u)− I(0)

‖u‖2
≤ 0.
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Assume by contradiction that

l ≡ lim sup
‖u‖q→0

I(u)− I(0)

‖u‖2
> 0.

Choose 0 < ε < l(c2
q |Ω|(q−2)/q)−1 in (3.3). Then

I(u)− I(0) ≤ ε‖u‖22 + c‖u‖qq ≤ ε|Ω|(q−2)/q‖u‖2q + c‖u‖qq
for every u ∈ X, and, from (3.4),

I(u)− I(0)

‖u‖2
≤ εc2

q |Ω|(q−2)/q + cc2
q‖u‖q−2

q .

Letting ‖u‖q → 0, we deduce
l ≤ εc2

q |Ω|(q−2)/q,

contrary to the choice of ε.

Proof of Theorem 1.1. In order to apply Theorem 2.1 with J = I, let us
prove the existence of some positive µ such that inequality (2.1) holds.

For this purpose we define Φ : X → R by

Φ(u) =


max{I(u)− I(0), 0}

‖u‖2
if u 6= 0,

0 if u = 0,

and we prove that it has a positive maximum on X.
Notice first that, from (3.2), one has

(3.6) sup
X
Φ > 0.

Moreover, since I is bounded,

(3.7) lim
‖u‖→∞

Φ(u) = 0.

From (3.5) and Lemma 3.1 applied to the functions f(u) = I(u)−I(0) and
g(u) = ‖u‖2, the functional Φ is sequentially weakly upper semicontinuous
on X, therefore together with (3.6), (3.7) and the reflexivity of X, we obtain
the existence of a function ū ∈ X \ {0} such that

(3.8) Φ(ū) = sup
X
Φ(u) > 0.

Let us check that (2.1) holds with µ = 1/(2Φ(ū)) = Ψ(ū)/(I(ū) − I(0)).
Indeed, by the definition of µ and (3.8), one has at once

Ψ(u)− µ(I(u)− I(0)) ≥ 0 for all u ∈ X,
and also

Ψ(ū)− µ(eI(ū)−I(0) − 1) = Ψ(ū)

[
1− eI(ū)−I(0) − 1

I(ū)− I(0)

]
< 0

(notice that I(ū) > I(0)), which is our claim.
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Moreover, the boundedness of I together with the coercivity of Ψ implies
at once (2.2) for every λ ∈ R. Thus Theorem 2.1 yields an open interval A and
a positive number ρ such that for each λ ∈ A the functional u 7→ Ψ(u)−λeI(u)

has at least three critical points whose norms are less than ρ. As critical
points are solutions of problem (Qλ) and the zero function is a solution
of (Qλ) for any λ, we thus get two nontrivial solutions for (Qλ). Moreover,
standard arguments show that any critical point of the above functional is
nonnegative and our theorem is proved.

Proof of Theorem 1.2. The proof is similar to the one of Theorem 1.1 and
we sketch only the differences. Notice that here we do not require the bound-
edness of F but a suitable growth assumption which ensures the coercivity
of the energy functional.

We are going to apply Corollary 2.2 with

J = I−p+1.

Clearly, J is of class C1 with compact derivative,

J(u) > 0 ∀u ∈ X,

and from (3.2),

sup J(u) > J(0).

Concerning inequality (2.3), we proceed as in Theorem 1.1.
Let Φ : X → R be defined by

Φ(u) =


max{ln(J(u)/J(0)), 0}

‖u‖2
if u 6= 0,

0 if u = 0,

Then Φ is well defined, and satisfies supX Φ > 0.
As f ∈ A, for N ≥ 2 there exists q > 1 such that

|F (s)| ≤ c(1 + |s|q) for every s ∈ R.

Then, for ‖u‖ large enough, J(u) ≤ c1‖u‖q(−p+1), and hence

0 ≤ Φ(u) ≤ c2 ln ‖u‖+ c3

‖u‖2

for some positive constants c2 and c3. When N = 1, due to the growth
assumption (jj), a similar estimate holds. Then

(3.9) lim
‖u‖→∞

Φ(u) = 0.
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From (3.5), one has

lim sup
‖u‖q→0

ln(J(u)/J(0))

‖u‖2
= (−p+ 1) lim sup

‖u‖q→0

ln(I(u)/I(0))

I(u)− I(0)

I(u)− I(0)

‖u‖2

= (−p+ 1) lim sup
‖u‖q→0

ln
( I(u)−I(0)

I(0) + 1
)

I(u)− I(0)

I(u)− I(0)

‖u‖2
≤ 0.

An application of Lemma 3.1 with f(u) = ln(J(u)/J(0)) and g(u) = ‖u‖2
shows that Φ is sequentially weakly upper semicontinuous on X.

Hence, there exists ū ∈ X \ {0} such that Φ(ū) = maxX Φ > 0 and
condition (2.3) of Corollary 2.2 holds with µ = 1/(2Φ(ū)). Condition (2.4)
is again a consequence of assumption (jj) as

Ψ(u)− λJ(u) =
1

2
‖u‖2 − λ

[ �
Ω

F (u) dx
]−p+1

≥ 1

2
‖u‖2−λ(c4‖u‖r(−p+1) + c5)

for some positive constants c4, c5.
The conclusion is analogous to the one of Theorem 1.1 and gives the

existence of an open interval A and of a positive number ρ such that for
each λ ∈ A the functional u 7→ Ψ(u) − λJ(u) has at least two nontrivial
critical points with norms less than ρ. Such critical points are solutions of
the problem  −∆u = λ(−p+ 1)

f(u)

(
	
Ω F (u) dx)p

in Ω,

u = 0 on ∂Ω,

and the conclusion follows at once by rescaling the parameter.

Proof of Theorem 1.3. This is analogous to the proofs of Theorems 1.1
and 1.2. Notice that in this case we do not need any growth assumption on
F when N ≥ 2. Indeed the latter was required in Theorem 1.2 in order to
guarantee the coercivity of the energy. In the present case, it is enough, for
our purposes, to assume f ∈ A and assumption (ll) when N = 1.

Remark 3.2. Assumption (1.1) implies that, for N ≥ 2,

(3.10) |F (s)| ≤ c(1 + sq) for s ≥ 0

where q > 1 if N = 2, and 1 < q < 2? if N > 2. In Theorem 1.2 we require
(even when N = 1) assumption (jj), which together with (j) gives

(3.11) |F (s)| ≤ c(1 + sr) for s ≥ 0

with r < 2/(1− p). When N > 2 the two exponents appearing in (3.10)
and (3.11), depending on different parameters, are not comparable while it
is clear that (3.10) is a consequence of (3.11) for N = 2. In Theorem 1.3
growth assumptions are not required when N ≥ 2.
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Remark 3.3. We notice that the case p > 1 in Theorem 1.2 cannot be
treated in the present setting. Indeed with the choice of J = −I−p+1, it is
not possible to apply Corollary 2.2.

Remark 3.4. We point out that in the previous theorems, the energy
functional associated to problem (Pλ) is sequentially weakly lower semicon-
tinuous and coercive. Thus, the existence of one solution (the global mini-
mum of the energy) is trivial.

Remark 3.5. The same results, with obvious modifications in the hy-
potheses, can be obtained for quasilinear elliptic problems, i.e. replacing the
Laplacian with the p-Laplacian.
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