Decompositions and asymptotic limit for bicontractions

by Marek Kosiek (Kraków) and Laurian Suciu (Sibiu)

Abstract

The asymptotic limit of a bicontraction T (that is, a pair of commuting contractions) on a Hilbert space \mathcal{H} is used to describe a Nagy-Foiaş-Langer type decomposition of T. This decomposition is refined in the case when the asymptotic limit of T is an orthogonal projection. The case of a bicontraction T consisting of hyponormal (even quasinormal) contractions is also considered, where we have $S_{T^{*}}=S_{T^{*}}^{2}$.

1. Introduction. Let \mathcal{H} be a complex Hilbert space and $\mathcal{B}(\mathcal{H})$ be the Banach algebra of all bounded linear operators on \mathcal{H} with the identity element I. The range and the kernel of $T \in \mathcal{B}(\mathcal{H})$ are denoted by $\mathcal{R}(T)$ and $\mathcal{N}(T)$, respectively. Recall that T is hyponormal if $T T^{*} \leq T^{*} T$, and T is quasinormal if $T^{*} T^{2}=T T^{*} T$. Obviously, every quasinormal operator is hyponormal.

A (closed) subspace $\mathcal{M} \subset \mathcal{H}$ is invariant for T if $T \mathcal{M} \subset \mathcal{M}$, and when \mathcal{M} is invariant for T and T^{*} one says that \mathcal{M} reduces (or \mathcal{M} is reducing for) T. Also, $P_{\mathcal{M}}$ stands for the orthogonal projection in $\mathcal{B}(\mathcal{H})$ corresponding to \mathcal{M}.

A bicontraction on \mathcal{H} is a pair $T=\left(T_{0}, T_{1}\right)$ of commuting contractions on \mathcal{H}, that is, a pair of operators satisfying $\left\|T_{i}\right\| \leq 1(i=0,1)$ and $T_{0} T_{1}=$ $T_{1} T_{0}$. If T_{0} and T_{1} are isometries then T is called a bi-isometry on \mathcal{H}.

Let $T=\left(T_{0}, T_{1}\right)$ be a bicontraction. It is known (see [D], [SNF, [K], S1]) that the asymptotic limit of T_{i} is defined by

$$
S_{T_{i}} h=\lim _{n \rightarrow \infty} T_{i}^{* n} T_{i}^{n} h \quad(h \in \mathcal{H})
$$

and clearly, $0 \leq S_{T_{i}} \leq T_{i}^{*} T_{i}, T_{i}^{*} S_{T_{i}} T_{i}=S_{T_{i}}, i=0,1$ (the last condition means that T_{i} is an $S_{T_{i}}$-isometry [S1], [S2]). It follows that

$$
T_{0}^{* m} S_{T_{1}} T_{0}^{m} \leq T_{0}^{* m} T_{1}^{* n} T_{1}^{n} T_{0}^{m}=T_{1}^{* n} T_{0}^{* m} T_{0}^{m} T_{1}^{n}
$$

for any $m, n \in \mathbb{N}$, and letting $m \rightarrow \infty$ one obtains

$$
0 \leq \underset{m \rightarrow \infty}{\mathrm{~s}-\lim _{0}} T_{0}^{* m} S_{T_{1}} T_{0}^{m} \leq T_{1}^{* n} S_{T_{0}} T_{1}^{n} \quad(n \in \mathbb{N})
$$

[^0]Key words and phrases: contraction, bicontraction, bi-isometry, Wold type decomposition.

Letting $n \rightarrow \infty$ we infer that

$$
\underset{m \rightarrow \infty}{\mathrm{~s}-\lim _{0}} T_{0}^{* m} S_{T_{1}} T_{0}^{m} \leq \underset{n \rightarrow \infty}{\mathrm{~s}-\lim _{n}} T_{1}^{* n} S_{T_{0}} T_{1}^{n}
$$

and by symmetry equality holds in this relation. Thus, the asymptotic limit of T can be defined by

$$
\begin{aligned}
S_{T} h & =\lim _{m \rightarrow \infty} T_{0}^{* m} S_{T_{1}} T_{0}^{m} h=\lim _{n \rightarrow \infty} T_{1}^{* n} S_{T_{0}} T_{1}^{n} h \\
& =\lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} T_{0}^{* m} T_{1}^{* n} T_{1}^{n} T_{0}^{m} h=\lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty} T_{0}^{* m} T_{1}^{* n} T_{1}^{n} T_{0}^{m} h
\end{aligned}
$$

for any $h \in \mathcal{H}$. Note that $0 \leq S_{T} \leq S_{T_{i}}$ and $T_{i}^{*} S_{T} T_{i}=S_{T}$ for $i=0,1$. In fact,

$$
S_{T}=\max \left\{A \in \mathcal{B}(\mathcal{H}): 0 \leq A \leq I, T_{i}^{*} A T_{i}=A, i=0,1\right\}
$$

We say that T is strongly stable if $\mathcal{N}\left(S_{T}\right)=\{0\}$, that is, $T_{0}^{m} T_{1}^{n} h \rightarrow 0$ $(m, n \rightarrow \infty)$ for $h \in \mathcal{H}$.

Our goal in this paper is to find some orthogonal decompositions of \mathcal{H} induced by bicontractions T for which S_{T} is an orthogonal projection. So, in Section 2 we get some conditions on T under which $S_{T}=S_{T}^{2}$. We describe in the language of asymptotic limits the Nagy-Foiaş-Langer type decomposition of T relative to a bicontraction T. The case when T consists of hyponormal or quasinormal contractions is considered here, where we show that $S_{T^{*}}=S_{T^{*}}^{2}$.

In Section 3 we use the operators S_{T} and $S_{T_{i}}(i=0,1)$ to refine the Nagy-Foiaş-Langer type decomposition for the bicontractions T with $S_{T}=S_{T}^{2}$ (and $S_{T^{*}}=S_{T^{*}}^{2}$). This decomposition is related to the general Wold type decomposition of a bi-isometry, obtained by D. Popovici $[\mathrm{P}$ and recently, in a different way, by Bercovici-Douglas-Foiaş BDF].
2. Invariant subspaces induced by the asymptotic limit. As in the case of a single contraction (see [K]), many interesting facts for bicontractions arise in the case when S_{T} is an orthogonal projection, that is, $S_{T}=S_{T}^{2}$, or equivalently $\mathcal{N}\left(S_{T}-S_{T}^{2}\right)=\mathcal{H}$. The following proposition, which extends Lemmas 1 and 2 of KVP , gives interesting information for this case of bicontractions.

Proposition 2.1. For any bicontraction $T=\left(T_{0}, T_{1}\right)$ on \mathcal{H} we have:
(i) $\mathcal{N}\left(S_{T}-S_{T}^{2}\right)=\mathcal{N}\left(I-S_{T}\right) \oplus \mathcal{N}\left(S_{T}\right)$ is the maximum subspace of \mathcal{H} which is invariant for T_{0} and T_{1} and on which S_{T} commutes with T_{0} and T_{1}.
(ii) $\mathcal{N}\left(I-S_{T}\right)$ and $\mathcal{N}\left(S_{T}\right)$ are the maximum invariant subspaces for T_{0} and T_{1} in \mathcal{H} such that T_{0} and T_{1} are isometries on $\mathcal{N}\left(I-S_{T}\right)$, and T is strongly stable on $\mathcal{N}\left(S_{T}\right)$. In addition,

$$
\begin{equation*}
\mathcal{N}\left(I-S_{T}\right)=\left\{h \in \mathcal{H}:\left\|T_{0}^{m} T_{1}^{n} h\right\|=\|h\|, \forall m, n \in \mathbb{N}\right\} \tag{2.1}
\end{equation*}
$$

Moreover, if $\mathcal{N}\left(I-S_{T_{i}}\right)$ is invariant for $T_{1-i}(i=0,1)$ then

$$
\begin{equation*}
\mathcal{N}\left(I-S_{T}\right)=\mathcal{N}\left(I-S_{T_{0}}\right) \cap \mathcal{N}\left(I-S_{T_{1}}\right) \tag{2.2}
\end{equation*}
$$

Proof. Observe that $\mathcal{N}\left(I-S_{T}\right)$ and $\mathcal{N}\left(S_{T}\right)$ are contained in $\mathcal{N}\left(S_{T}-S_{T}^{2}\right)$, and are orthogonal. So, $\mathcal{N}\left(I-S_{T}\right) \oplus \mathcal{N}\left(S_{T}\right) \subset \mathcal{N}\left(S_{T}-S_{T}^{2}\right)$. Conversely, let $h \in \mathcal{N}\left(S_{T}-S_{T}^{2}\right)$ be such that h is orthogonal to $\mathcal{N}\left(I-S_{T}\right) \oplus \mathcal{N}\left(S_{T}\right)$. Then $S_{T} h \in \mathcal{N}\left(I-S_{T}\right)$ and therefore $\left\langle h, S_{T} h\right\rangle=0$, which means that $S_{T} h=0$ or $h \in \mathcal{N}\left(S_{T}\right)$. Hence $h=0$, since h is orthogonal to $\mathcal{N}\left(S_{T}\right)$. Consequently,

$$
\mathcal{N}\left(S_{T}-S_{T}^{2}\right)=\mathcal{N}\left(I-S_{T}\right) \oplus \mathcal{N}\left(S_{T}\right)
$$

Now recall that $T_{i}^{*} S_{T} T_{i}=S_{T}$, whence $\mathcal{N}\left(S_{T}\right)$ is invariant for $T_{i}(i=0,1)$. As we also have (T_{i} is a contraction)

$$
T_{i}^{*}\left(I-S_{T}\right) T_{i} \leq I-S_{T}
$$

it follows that $\mathcal{N}\left(I-S_{T}\right)$ is invariant for $T_{i}(i=0,1)$.
Furthermore, for $m, n, p, q \in \mathbb{N}$ one has

$$
T_{0}^{*(m+p)} T_{1}^{*(n+q)} T_{1}^{n+q} T_{0}^{m+p} \leq T_{0}^{* m} T_{1}^{* n} T_{1}^{n} T_{0}^{m}
$$

and setting $p, q \rightarrow \infty$ we get $S_{T} \leq T_{0}^{* m} T_{1}^{* n} T_{1}^{n} T_{0}^{m}$, whence

$$
I-T_{0}^{* m} T_{1}^{* n} T_{1}^{n} T_{0}^{m} \leq I-S_{T}
$$

This gives on one hand,

$$
\mathcal{N}\left(I-S_{T}\right) \subset\left\{h \in \mathcal{H}:\left\|T_{0}^{m} T_{1}^{n} h\right\|=\|h\|, \forall m, n \in \mathbb{N}\right\}
$$

On the other hand, if $\left\|T_{0}^{m} T_{1}^{n} h\right\|=\|h\|$ for $m, n \in \mathbb{N}$ then letting $m, n \rightarrow \infty$ one obtains $\left\|S_{T} h\right\|=\|h\|$, and since $0 \leq S_{T} \leq I$ one infers $h=S_{T} h$, that is, $h \in \mathcal{N}\left(I-S_{T}\right)$. Hence the relation (2.1) holds.

Next, if $h \in \mathcal{N}\left(S_{T}-S_{T}^{2}\right)$ and $h=h_{1} \oplus h_{0}$ with $h_{1} \in \mathcal{N}\left(I-S_{T}\right)$, $h_{0} \in \mathcal{N}\left(S_{T}\right)$ then

$$
\left(S_{T} T_{i}-T_{i} S_{T}\right) h=T_{i} h_{1}-T_{i} h_{1}=0, \quad i=0,1
$$

therefore S_{T} commutes with T_{0} and T_{1} on $\mathcal{N}\left(S_{T}-S_{T}^{2}\right)$.
Let now $\mathcal{M} \subset \mathcal{H}$ be another subspace invariant for T_{0} and T_{1} such that $S_{T} T_{i} k=T_{i} S_{T} k$ for $k \in \mathcal{M}, i=0,1$. Then $S_{T} T_{0}^{m} T_{1}^{n} k=T_{0}^{m} T_{1}^{n} S_{T} k$ for any $m, n \in \mathbb{N}$, and this implies (T_{i} being an S_{T}-isometry)

$$
S_{T} k=T_{0}^{* m} T_{1}^{* n} S_{T} T_{0}^{m} T_{1}^{n} k=T_{0}^{* m} T_{1}^{* n} T_{0}^{m} T_{1}^{n} S_{T} k
$$

Letting $m, n \rightarrow \infty$ we get $S_{T} k=S_{T}^{2} k$, that is, $k \in \mathcal{N}\left(S_{T}-S_{T}^{2}\right)$. So $\mathcal{M} \subset$ $\mathcal{N}\left(S_{T}-S_{T}^{2}\right)$ and we conclude that $\mathcal{N}\left(S_{T}-S_{T}^{2}\right)$ is the maximum invariant subspace for T_{i} on which S_{T} commutes with $T_{i}, i=0,1$, which proves (i).

It is clear (by 2.1) that T_{i} is an isometry on $\mathcal{N}\left(I-S_{T}\right), i=0,1$, and (by the definition of S_{T}) we have $T_{0}^{m} T_{1}^{n} h \rightarrow 0(m, n \rightarrow \infty)$ for $h \in$ $\mathcal{N}\left(S_{T}\right)$, that is, T is strongly stable on $\mathcal{N}\left(S_{T}\right)$. In addition, it is obvious that $\mathcal{N}\left(I-S_{T}\right)$ and $\mathcal{N}\left(S_{T}\right)$ are the maximum subspaces with the above mentioned properties. This proves (ii).

Finally, if $\mathcal{N}\left(I-S_{T_{i}}\right)$ is invariant for T_{1-i} then $\mathcal{N}\left(I-S_{T_{0}}\right) \cap \mathcal{N}\left(I-S_{T_{1}}\right)$ is invariant for T_{0} and T_{1}, and clearly T_{i} is an isometry on this subspace for $i=0,1$. Since $\mathcal{N}\left(I-S_{T}\right) \subset \mathcal{N}\left(I-S_{T_{0}}\right) \cap \mathcal{N}\left(I-S_{T_{1}}\right)$ it follows that the two subspaces coincide (by the maximality of $\mathcal{N}\left(I-S_{T}\right)$ cited in (ii)).

Corollary 2.2. For a bicontraction $T=\left(T_{0}, T_{1}\right)$ on \mathcal{H} we have $S_{T}=$ S_{T}^{2} if and only if $S_{T} T_{i}=T_{i} S_{T}$ for $i=0,1$. Furthermore, if $S_{T}=S_{T^{*}}$ then $S_{T}=S_{T}^{2}$.

Proof. If $S_{T}=S_{T}^{2}$ then $\mathcal{N}\left(S_{T}-S_{T}^{2}\right)=\mathcal{H}$, so S_{T} commutes with T_{0} and T_{1} on \mathcal{H} (by Proposition 2.1). Conversely, if $S_{T} T_{i}=T_{i} S_{T}(i=0,1)$ then necessarily $\mathcal{N}\left(S_{T}-S_{T}^{2}\right)=\mathcal{H}$ (by the maximality of $\mathcal{N}\left(S_{T}-S_{T}^{2}\right)$ in Proposition 2.1(i)), that is, $S_{T}=S_{T}^{2}$.

Assume now that $S_{T}=S_{T^{*}}$. For $m, n \in \mathbb{N}$ and $h \in \mathcal{H}$ one has

$$
\begin{aligned}
S_{T} h & =T_{0}^{* m} T_{1}^{* n} S_{T} T_{1}^{n} T_{0}^{m} h=T_{0}^{* m} T_{1}^{* n} S_{T^{*}} T_{1}^{n} T_{0}^{m} h \\
& =T_{0}^{* m} T_{1}^{* n} T_{1}^{n} T_{0}^{m} S_{T^{*}} T_{0}^{* m} T_{1}^{* n} T_{1}^{n} T_{0}^{m} h \rightarrow S_{T}^{3} h \quad(m, n \rightarrow \infty)
\end{aligned}
$$

hence $S_{T}=S_{T}^{3}$. It follows that $S_{T}=S_{T}^{2}$.
This corollary extends the corresponding assertions for contractions in Lemma 1 and Proposition 1 of KVP.

A special case of bicontractions for which their asymptotic limits are orthogonal projections is mentioned in the following theorem.

As usual, a bicontraction $T=\left(T_{0}, T_{1}\right)$ on \mathcal{H} is called completely nonunitary if there is no nonzero subspaces of \mathcal{H} which reduce T_{0} and T_{1} to unitary operators. Clearly, every strongly stable bicontraction T is completely nonunitary, because in this case $\mathcal{H}=\mathcal{N}\left(S_{T}\right)$, therefore $\mathcal{N}\left(I-S_{T}\right)=\{0\}$ (by Proposition 2.1(i)).

THEOREM 2.3. Let $T=\left(T_{0}, T_{1}\right)$ be a bicontraction on \mathcal{H} with T_{0} and T_{1} hyponormal. Then $S_{T^{*}}=S_{T^{*}}^{2}$ and the maximum subspace of \mathcal{H} which reduces T_{0} and T_{1} to unitary operators is

$$
\begin{equation*}
\mathcal{N}\left(I-S_{T^{*}}\right)=\bigcap_{m, n \geq 0} T_{0}^{m} T_{1}^{n}\left[\mathcal{N}\left(I-S_{T_{0}^{*}}\right) \cap \mathcal{N}\left(I-S_{T_{1}^{*}}\right)\right] \tag{2.3}
\end{equation*}
$$

Moreover, T^{*} is strongly stable if and only if T is completely nonunitary.
Proof. Since T_{i} is hyponormal we know (see the proof of [K. Theorem 5.3]) that $S_{T_{i}^{*}}=S_{T_{i}^{*}}^{2}$ and $\mathcal{R}\left(S_{T_{i}^{*}}\right)=\mathcal{N}\left(I-S_{T_{i}^{*}}\right)$ reduces T_{i} to a unitary operator, for $i=0,1$. As $\mathcal{N}\left(S_{T^{*}}\right)$ is invariant for T_{0}^{*} and $T_{1}^{*}, \overline{\mathcal{R}\left(S_{T^{*}}\right)}$ will be invariant for T_{0} and T_{1}. In addition, because

$$
\overline{\mathcal{R}\left(S_{T^{*}}\right)} \subset \mathcal{R}\left(S_{T_{0}^{*}}\right) \cap \mathcal{R}\left(S_{T_{1}^{*}}\right)=\mathcal{N}\left(I-S_{T_{0}^{*}}\right) \cap \mathcal{N}\left(I-S_{T_{1}^{*}}\right)
$$

it follows that T_{0} and T_{1} are isometries on $\overline{\mathcal{R}\left(S_{T^{*}}\right)}$. So, we infer from Propo-
sition 2.1 that

$$
\overline{\mathcal{R}\left(S_{T^{*}}\right)} \subset \mathcal{N}\left(I-S_{T}\right)
$$

Take an arbitrary $h=h_{1} \oplus h_{0} \in \mathcal{H}$ with $h_{1} \in \overline{\mathcal{R}\left(S_{T^{*}}\right)}, h_{0} \in \mathcal{N}\left(S_{T^{*}}\right)$. We have (by the above inclusion)

$$
T_{0} S_{T^{*}} h=T_{0} S_{T^{*}} h_{1}=T_{0} S_{T^{*}} T_{0}^{*} T_{0} h_{1}=S_{T^{*}} T_{0} h_{1}
$$

But $T_{0}^{*} S_{T^{*}} T_{0} h_{0}=S_{T^{*}} h_{0}=0$, that is, $S_{T^{*}} T_{0} h_{0} \in \mathcal{N}\left(T_{0}^{*}\right) \subset \mathcal{N}\left(S_{T^{*}}\right)$, hence $S_{T^{*}} T_{0} h_{0}=0$. Thus, we obtain $T_{0} S_{T^{*}} h=S_{T^{*}} T_{0} h$, and by symmetry one has $T_{1} S_{T^{*}} h=S_{T^{*}} T_{1} h$. This means that $S_{T^{*}}$ commute with T_{0} and T_{1}, and by Corollary 2.2 we have $S_{T^{*}}=S_{T^{*}}^{2}$.

Now it follows that $\mathcal{N}\left(I-S_{T^{*}}\right)$ is the maximum subspace of \mathcal{H} which reduces T_{0}^{*} and T_{1}^{*} to isometries. In fact, by the above remark, $\mathcal{N}\left(I-S_{T^{*}}\right)=$ $\mathcal{R}\left(S_{T^{*}}\right)$ is the maximum subspace which reduces T_{0} and T_{1} to unitary operators. Obviously, this subspace is contained in the right side of 2.3 , briefly denoted by \mathcal{N}_{T}.

Let $h \in \mathcal{N}_{T}$ be orthogonal to $\mathcal{N}\left(I-S_{T^{*}}\right)$. So $h \in \mathcal{N}\left(S_{T^{*}}\right)$, that is, $T_{0}^{* m} T_{1}^{* n} h \rightarrow 0(m, n \rightarrow \infty)$. Since $h \in \mathcal{N}_{T}$, for any $m, n \in \mathbb{N}$ there exist $h_{m, n} \in \mathcal{N}\left(I-S_{T_{0}^{*}}\right) \cap \mathcal{N}\left(I-S_{T_{1}^{*}}\right)$ such that $h=T_{0}^{m} T_{1}^{n} h_{m, n}$. As $\mathcal{N}\left(I-S_{T_{0}^{*}}\right) \cap$ $\mathcal{N}\left(I-S_{T_{1}^{*}}\right)$ is invariant for T_{0} and T_{1}, while T_{0}, T_{1} are isometries on this subspace, we get

$$
h_{m, n}=T_{0}^{* m} T_{1}^{* n} T_{1}^{n} T_{0}^{m} h_{m, n}=T_{0}^{* m} T_{1}^{* n} h \rightarrow 0, \quad m, n \rightarrow \infty
$$

This yields $\|h\|=\left\|h_{m, n}\right\| \rightarrow 0(m, n \rightarrow \infty)$, hence $h=0$. Thus, (2.3) holds.
Finally, it is clear that $\mathcal{N}\left(I-S_{T^{*}}\right)=\{0\}$ implies $\mathcal{H}=\mathcal{N}\left(S_{T^{*}}\right)$, therefore T^{*} is strongly stable if (and only if, by the above remark) T is completely nonunitary.

Remark 2.4. W. Mlak proved in [M] that the "unitary part" in \mathcal{H} of a hyponormal contraction T_{0} is $\bigcap_{n \geq 0} T_{0}^{n} \mathcal{N}\left(I-T_{0} T_{0}^{*}\right)$, by using the minimal unitary dilation of T_{0}. This fact was recovered in [S2] without using dilation, by an argument as above involving the asymptotic limit. In the present context we cannot use $\mathcal{N}\left(I-T_{0} T_{0}^{*}\right) \cap \mathcal{N}\left(I-T_{1} T_{1}^{*}\right)$ in 2.3) instead of $\mathcal{N}\left(I-S_{T_{0}^{*}}\right) \cap \mathcal{N}\left(I-S_{T_{1}^{*}}\right)$, because the former subspace is not invariant for T_{0} and T_{1}, in general.

We say that a bicontraction $T=\left(T_{0}, T_{1}\right)$ on \mathcal{H} is unitary if T_{0} and T_{1} are unitary operators. We now give the "asymptotic" version of the Nagy-Foiaş-Langer decomposition for bicontractions.

Theorem 2.5. For every bicontraction T on \mathcal{H} there exists a unique decomposition of \mathcal{H} of the form

$$
\begin{equation*}
\mathcal{H}=\mathcal{H}_{u} \oplus \mathcal{H}_{u}^{\perp} \tag{2.4}
\end{equation*}
$$

such that \mathcal{H}_{u} reduces T to a unitary bicontraction and \mathcal{H}_{u}^{\perp} reduces T to a completely nonunitary bicontraction. In addition,

$$
\begin{align*}
\mathcal{H}_{u} & =\mathcal{N}\left(I-S_{T}\right) \cap \mathcal{N}\left(I-S_{T^{*}}\right)=\mathcal{N}\left(I-S_{T} S_{T^{*}}\right)=\mathcal{N}\left(I-S_{T^{*}} S_{T}\right) \tag{2.5}\\
& =\mathcal{N}\left(I-S_{T}^{1 / 2} S_{T^{*}} S_{T}^{1 / 2}\right)=\mathcal{N}\left(I-S_{T^{*}}^{1 / 2} S_{T} S_{T^{*}}^{1 / 2}\right)
\end{align*}
$$

Proof. If $h \in \mathcal{N}\left(I-S_{T}\right) \cap \mathcal{N}\left(I-S_{T^{*}}\right)$ then $h=S_{T} h=S_{T^{*}} h=S_{T} S_{T *} h=$ $S_{T^{*}} S_{T} h$, so $\mathcal{N}\left(I-S_{T}\right) \cap \mathcal{N}\left(I-S_{T^{*}}\right) \subset \mathcal{N}\left(I-S_{T} S_{T^{*}}\right) \cap \mathcal{N}\left(I-S_{T^{*}} S_{T}\right)$. Conversely, let $h \in \mathcal{N}\left(I-S_{T} S_{T^{*}}\right)$, that is, $h=S_{T} S_{T^{*}} h$. We have

$$
\|h\|^{2}=\left\langle S_{T^{*}} h, S_{T} h\right\rangle \leq\left\|S_{T^{*}}^{1 / 2} h\right\|\left\|S_{T}^{1 / 2} h\right\| \leq\left\|S_{T}^{1 / 2} h\right\|\|h\|
$$

whence $\|h\|=\left\|S_{T}^{1 / 2}\right\|$, or equivalently $\left(I-S_{T}\right) h=0\left(\right.$ as $\left.0 \leq S_{T} \leq I\right)$. Similarly, one has $\|h\|=\left\|S_{T^{*}}^{1 / 2} h\right\|$, that is, $\left(I-S_{T^{*}}\right) h=0$, and so

$$
\mathcal{N}\left(I-S_{T}\right) \cap \mathcal{N}\left(I-S_{T^{*}}\right)=\mathcal{N}\left(I-S_{T} S_{T^{*}}\right)=\mathcal{N}\left(I-S_{T^{*}} S_{T}\right)
$$

Now, if $h=S_{T} S_{T^{*}} h$ then as above $\|h\|=\left\|S_{T}^{1 / 4} h\right\|=\left\|S_{T^{*}}^{1 / 4} h\right\|$, therefore $h=S_{T}^{1 / 2} h=S_{T^{*}}^{1 / 2} h=S_{T} h=S_{T^{*}} h=S_{T}^{1 / 2} S_{T^{*}} S_{T}^{1 / 2} h=S_{T^{*}}^{1 / 2} S_{T} S_{T^{*}}^{1 / 2} h$. This shows that $\mathcal{N}\left(I-S_{T} S_{T^{*}}\right) \subset \mathcal{N}\left(I-S_{T}^{1 / 2} S_{T^{*}} S_{T}^{1 / 2}\right) \cap \mathcal{N}\left(I-S_{T^{*}}^{1 / 2} S_{T} S_{T^{*}}^{1 / 2}\right)$. Conversely, $h=S_{T}^{1 / 2} S_{T^{*}} S_{T}^{1 / 2} h$ gives

$$
\|h\|^{2}=\left\|S_{T^{*}}^{1 / 2} S_{T}^{1 / 2} h\right\|^{2} \leq\left\|S_{T}^{1 / 2} h\right\|^{2} \leq\left\|S_{T}^{1 / 4} h\right\|^{2} \leq\|h\|^{2},
$$

whence $\|h\|^{2}=\left\|S_{T}^{1 / 2} h\right\|^{2}=\left\|S_{T}^{1 / 4} h\right\|^{2}$. Hence $h=S_{T} h=S_{T}^{1 / 2} h$ and therefore $\left\|S_{T^{*}}^{1 / 2} h\right\|=\left\|S_{T^{*}}^{1 / 2} S_{T}^{1 / 2} h\right\|=\|h\|$ (the last equality follows from our assumption), which yields $h=S_{T^{*}} h$. So, $\mathcal{N}\left(I-S_{T}^{1 / 2} S_{T^{*}} S_{T}^{1 / 2}\right.$) and (by symmetry) $\mathcal{N}\left(I-S_{T^{*}}^{1 / 2} S_{T} S_{T^{*}}^{1 / 2}\right)$ are contained in $\mathcal{N}\left(I-S_{T}\right) \cap \mathcal{N}\left(I-S_{T^{*}}\right)$. Thus, the above equalities between subspaces are completed with the last two from 2.5).

Next, by (2.1) for T and T^{*} we see immediately that the subspace $\mathcal{H}_{u}:=$ $\mathcal{N}\left(I-S_{T}\right) \cap \mathcal{N}\left(I-S_{T^{*}}\right)$ reduces T_{0} and T_{1} to unitary operators. In addition, if $\mathcal{M} \subset \mathcal{H}$ is another such subspace, then $\mathcal{M} \subset \mathcal{H}_{u}$ by Proposition 2.1(ii). Hence \mathcal{H}_{u} is the maximum subspace with the property above, and finally, the reducing decomposition (2.4) for T is unique with T is unitary on \mathcal{H}_{u}, and completely nonunitary on \mathcal{H}_{u}^{\perp}.

Corollary 2.6. For every bi-isometry $T=\left(T_{0}, T_{1}\right)$ on \mathcal{H} we have $S_{T^{*}}=S_{T_{0}^{*} T_{1}^{*}}$, hence $\mathcal{H}_{u}=\mathcal{N}\left(I-S_{T_{0}^{*} T_{1}^{*}}\right)$ and $\mathcal{H}_{u}^{\perp}=\mathcal{N}\left(S_{T_{0}^{*} T_{1}^{*}}\right)$ in 2.4). Moreover, T is completely nonunitary if and only if $T_{0} T_{1}$ is a (unilateral) shift on \mathcal{H}.

Proof. Since $T_{0} T_{1}$ is an isometry, by Theorem 2.3 the maximum subspace of \mathcal{H} which reduces $T_{0} T_{1}$ to a unitary operator is $\mathcal{N}\left(I-S_{T_{0}^{*} T_{1}^{*}}\right)$. So, by Theorem 2.5 one obtains $\mathcal{N}\left(I-S_{T^{*}}\right) \subset \mathcal{N}\left(I-S_{T_{0}^{*} T_{1}^{*}}\right)$. On the other hand,
since

$$
\mathcal{N}\left(I-S_{T_{0}^{*} T_{1}^{*}}\right)=\mathcal{N}\left(I-S_{\left(T_{0}, T_{1}\right)^{*}}\right)=\bigcap_{n \geq 0} T_{0}^{n} T_{1}^{n} \mathcal{H}
$$

it follows immediately that $\mathcal{N}\left(I-S_{T_{0}^{*} T_{1}^{*}}\right)$ reduces T_{0} and T_{1} to unitary operators, hence $\mathcal{N}\left(I-S_{T_{0}^{*} T_{1}^{*}}\right) \subset \mathcal{N}\left(I-S_{T^{*}}\right)$ by Theorem 2.5. Thus $\mathcal{N}\left(I-S_{T^{*}}\right)$ $=\mathcal{N}\left(I-S_{\left.T_{0}^{*} T_{1}^{*}\right)}\right.$, and since $S_{T^{*}}, S_{T_{0}^{*} T_{1}^{*}}=S_{\left(T_{0}, T_{1}\right)^{*}}$ are orthogonal projections, also $\mathcal{N}\left(S_{T^{*}}\right)=\mathcal{N}\left(S_{T_{0}^{*} T_{1}^{*}}\right)$. We conclude that $S_{T^{*}}=S_{T_{0}^{*} T_{1}^{*}}$, and the remaining assertions of the corollary follow from Theorems 2.3 and 2.5.

Another interesting particular case of Theorem 2.3 is considered below. Notice that the case of a single quasinormal contraction was considered in [KVP, Example 3].

Proposition 2.7. For every bicontraction $T=\left(T_{0}, T_{1}\right)$ on \mathcal{H} with T_{0} and T_{1} quasinormal one has $S_{T^{*}}=S_{T^{*}}^{2}$. Moreover, $S_{T}=S_{T}^{2}$ if and only if either $\left.T_{0}^{*}\right|_{\overline{R\left(S_{T}\right)}}$ or $\left.T_{1}^{*}\right|_{\overline{R\left(S_{T}\right)}}$ is a coisometry.

In addition, $S_{T}=S_{T^{*}}$ if and only if $\left.T_{i}^{*}\right|_{\overline{R\left(S_{T}\right)}}$ is normal and $\overline{R\left(S_{T}\right)}$ is invariant for $T_{i} T_{i}^{*}(i=0,1)$. In this case $\mathcal{N}\left(I-S_{T}\right)=\mathcal{N}\left(I-S_{T_{0}^{*}}\right) \cap \mathcal{N}\left(I-S_{T_{1}^{*}}\right)$.

Proof. Clearly, $S_{T^{*}}=S_{T^{*}}^{2}$ by Theorem 2.3. Furthermore, because T_{i} is quasinormal, we have (see [S1], or Lemma 2.8 below) $S_{T_{i}}=S_{T_{i}}^{2}$ so $\mathcal{R}\left(S_{T_{i}}\right)=$ $\mathcal{N}\left(I-S_{T_{i}}\right)$ and $\overline{R\left(S_{T}\right)} \subset \mathcal{N}\left(I-S_{T_{i}}\right), i=0,1$. So, if $S_{T}=S_{T}^{2}$ then $\mathcal{R}\left(S_{T}\right)$ reduces T_{0}^{*} and T_{1}^{*} to coisometries.

Conversely, assume that, say, $\left.T_{0}^{*}\right|_{\overline{R\left(S_{T}\right)}}$ is a coisometry $\left(\overline{R\left(S_{T}\right)}\right.$ being invariant for T_{0}^{*} and T_{1}^{*}. Put $T_{0 *}=\left.T_{0}^{*}\right|_{\overline{R\left(S_{T}\right)}}$. Then $T_{0 *}^{*}=\left.P_{\overline{R\left(S_{T}\right)}} T_{0}\right|_{\overline{R\left(S_{T}\right)}}$ is an isometry on $\overline{R\left(S_{T}\right)}$. Hence for $h \in \mathcal{H}$ we obtain

$$
\left\|S_{T} h\right\|=\left\|P_{\overline{R\left(S_{T}\right)}} T_{0} S_{T} h\right\| \leq\left\|T_{0} S_{T} h\right\| \leq\left\|S_{T} h\right\|,
$$

whence $T_{0} S_{T} h=P_{\overline{R\left(S_{T}\right)}} T_{0} S_{T} h$. We infer that $\overline{R\left(S_{T}\right)}$ reduces T_{0}, and since $\mathcal{R}\left(S_{T}\right) \subset \mathcal{N}\left(I-S_{T_{1}}\right)$ we have for $m, n \in \mathbb{N}$ and $h \in \mathcal{H}$,

$$
S_{T} h=T_{0}^{* m} T_{0}^{m} S_{T} h=T_{0}^{* m} T_{1}^{* n} T_{1}^{n} T_{0}^{m} S_{T} h
$$

Letting $m, n \rightarrow \infty$ we infer that $S_{T}=S_{T}^{2}$.
Obviously, if $S_{T}=S_{T^{*}}$ then $R\left(S_{T}\right)$ reduces T_{i} to unitary operators, $i=0,1$. Conversely, suppose that $\left.T_{i}^{*}\right|_{\overline{R\left(S_{T}\right)}}$ are normal operators for $i=0,1$. Then for $h \in \mathcal{H}$ we have

$$
T_{0}^{*} P_{\overline{R\left(S_{T}\right)}} T_{0} S_{T} h=P_{\overline{R\left(S_{T}\right)}} T_{0} T_{0}^{*} S_{T} h=T_{0} T_{0}^{*} S_{T} h
$$

since $P_{\mathcal{N}\left(S_{T}\right)} T_{0} T_{0}^{*} S_{T} h=0$ by the assumption that $\overline{R\left(S_{T}\right)}$ is invariant for $T_{0} T_{0}^{*}$. It follows that $T_{0}^{*} P_{\mathcal{N}\left(S_{T}\right)} T_{0} S_{T} h=0$, which gives $P_{\mathcal{N}\left(S_{T}\right)} T_{0} S_{T} h=0$, that is, $T_{0} S_{T} h=P_{\overline{R\left(S_{T}\right)}} T_{0} S_{T} h$. Hence $\overline{R\left(S_{T}\right)}$ reduces T_{0}, and so $T_{0} T_{0}^{*} S_{T} h=$
 $\overline{R\left(S_{T}\right)}$ also reduces T_{1} to a unitary operator, and by Theorem 2.3 we get

$$
\overline{R\left(S_{T}\right)}=\mathcal{N}\left(I-S_{T^{*}}\right)=\mathcal{N}\left(I-S_{T}\right)
$$

Finally, this leads to $S_{T}=S_{T^{*}}$. In this case

$$
\mathcal{N}\left(I-S_{T}\right) \subset \mathcal{N}\left(I-S_{T_{0}^{*}}\right) \cap \mathcal{N}\left(I-S_{T_{1}^{*}}\right) \subset \mathcal{N}\left(I-S_{T_{0}}\right) \cap \mathcal{N}\left(I-S_{T_{1}}\right)
$$

and since $\mathcal{N}\left(I-S_{T_{0}^{*}}\right) \cap \mathcal{N}\left(I-S_{T_{1}^{*}}\right)$ is invariant for T_{0} and T_{1} it follows (from the second inclusion) that T_{0} and T_{1} are isometries on this subspace. Thus $\mathcal{N}\left(I-S_{T}\right)=\mathcal{N}\left(I-S_{T_{0}^{*}}\right) \cap \mathcal{N}\left(I-S_{T_{1}^{*}}\right)$, by the maximality of $\mathcal{N}\left(I-S_{T}\right)$ given in Proposition 2.1(ii).

Let us remark that if $T=\left(T_{0}, T_{1}\right)$ consists of quasinormal commuting contractions and either $T_{0} S_{T_{1}}=S_{T_{1}} T_{0}$ or $T_{1} S_{T_{0}}=S_{T_{0}} T_{1}$ then $S_{T}=$ $S_{T_{0}} S_{T_{1}}=S_{T_{1}} S_{T_{0}}$, hence $S_{T}=S_{T}^{2}$. We see in the example below that the condition $S_{T}=S_{T}^{2}$ does not ensure the commutativity of T_{1-i} with $S_{T_{i}}$, $i=0,1$. We first give

LEMMA 2.8. For every quasinormal contraction T_{0} on \mathcal{H} one has $S_{T_{0}}=$ $S_{T_{0}^{*} T_{0}}=S_{T_{0}}^{2}$.

Proof. Since T_{0} is quasinormal we have (by induction) $\left(T_{0}^{*} T_{0}\right)^{n}=T_{0}^{* n} T_{0}^{n}$ for any $n \in \mathbb{N}$. Then

$$
S_{T_{0}} h=\lim _{n \rightarrow \infty} T_{0}^{* 2 n} T_{0}^{2 n} h=\lim _{n \rightarrow \infty}\left(T_{0}^{*} T_{0}\right)^{2 n} h=S_{T_{0}^{*} T_{0}} h=S_{T_{0}}^{2} h
$$

for $h \in \mathcal{H}$. Moreover, the above operator is an orthogonal projection because $T_{0}^{*} T_{0}$ is positive.

Example 2.9. Let S be the canonical shift on l_{+}^{2} and $\mathcal{K}=\mathcal{R}(S) \oplus l_{+}^{2}$. Put $S_{0}=\left.S\right|_{\mathcal{R}(S)}$ and let $S_{1}: l_{+}^{2} \rightarrow \mathcal{R}(S)$ be given by $S_{1}=S P_{\mathcal{N}\left(S^{*}\right)}$. Consider $T_{0}, T_{1} \in \mathcal{B}(\mathcal{K})$ defined by the operator matrices

$$
T_{0}=\left(\begin{array}{cc}
S_{0} & S_{1} \\
0 & 0
\end{array}\right), \quad T_{1}=\left(\begin{array}{cc}
0 & 0 \\
0 & S
\end{array}\right)
$$

relative to the above decomposition of \mathcal{K}. We have

$$
T_{0}^{*} T_{0}=I_{\mathcal{R}(S)} \oplus P_{\mathcal{N}\left(S^{*}\right)}, \quad T_{0}^{*} T_{0}^{2}=T_{0}=T_{0} T_{0}^{*} T_{0}
$$

hence T_{0}, and also T_{1}, are quasinormal contractions on \mathcal{K}. In addition $T_{0} T_{1}=$ $T_{1} T_{0}=0$, so $T=\left(T_{0}, T_{1}\right)$ is a bicontraction on \mathcal{K}, and clearly, by the above commutativity condition for T_{0} and T_{1} we have $S_{T}=0$.

On the other hand, (by Lemma 2.8) $S_{T_{0}}=S_{T_{0}^{*} T_{0}}=T_{0}^{*} T_{0}$ and

$$
T_{1} S_{T_{0}}=0 \oplus S P_{\mathcal{N}\left(S^{*}\right)}=0 \oplus S_{1} \neq 0=0 \oplus P_{\mathcal{N}\left(S^{*}\right)} S=S_{T_{0}} T_{1}
$$

Similarly, since $S_{T_{1}}=0 \oplus I_{l_{+}^{2}}$ we get

$$
T_{0} S_{T_{1}}=\left(\begin{array}{cc}
0 & S_{1} \\
0 & 0
\end{array}\right) \neq 0=S_{T_{1}} T_{0} .
$$

We conclude that $S_{T}=S_{T}^{2}$ but $T_{1-i} S_{T_{i}} \neq S_{T_{i}} T_{1-i}$, or equivalently $T_{1-i}\left|T_{i}\right| \neq\left|T_{i}\right| T_{1-i}$ because $\left|T_{i}\right|=S_{T_{i}}$ in this case, for $i=0,1$. This also shows that the conditions $T_{1-i}\left|T_{i}\right|=\left|T_{i}\right| T_{1-i}(i=0,1)$ are not necessary to ensure $S_{T}=S_{T}^{2}$, when T_{0} and T_{1} are quasinormal.
3. Decompositions in the case $S_{T}=S_{T}^{2}$. The asymptotic limits can be used to refine the Nagy-Foiass-Langer decomposition for bicontractions when S_{T} is an orthogonal projection. This decomposition (to be given below) generalizes the Wold type decompositions for bi-isometries which appear in [P] and BDF. Recall that a similar result for contractions can be found in K.

We say (briefly) that a subspace $\mathcal{M} \subset \mathcal{H}$ is invariant (resp. reducing) for a bicontraction $T=\left(T_{0}, T_{1}\right)$ on \mathcal{H} if \mathcal{M} is invariant (resp. reducing) for T_{0} and T_{1}. Also, we say that T is coisometric on \mathcal{H} if both T_{i} are coisometries.

The statements of Theorem 3.1 and Corollary 3.2 below extend Theorem 1 and Corollary 1 of KVP obtained for a single contraction.

Theorem 3.1. Let $T=\left(T_{0}, T_{1}\right)$ be a bicontraction on \mathcal{H} with $S_{T}=S_{T}^{2}$. Then \mathcal{H} admits the decomposition

$$
\begin{equation*}
\mathcal{H}=\mathcal{N}\left(I-S_{T}\right) \cap \mathcal{N}\left(I-S_{T^{*}}\right) \oplus \mathcal{N}\left(I-S_{T}\right) \cap \mathcal{N}\left(S_{T^{*}}\right) \oplus \mathcal{N}\left(S_{T}\right) \tag{3.1}
\end{equation*}
$$

where all the three summands reduce T in such a way that T is unitary on $\mathcal{N}\left(I-S_{T}\right) \cap \mathcal{N}\left(I-S_{T^{*}}\right), T^{*}$ is coisometric and strongly stable on $\mathcal{N}(I-$ $\left.S_{T}\right) \cap \mathcal{N}\left(S_{T^{*}}\right)$, and T is strongly stable on $\mathcal{N}\left(S_{T}\right)$.

Moreover, if $\mathcal{N}\left(S_{T}\right) \neq\{0\}$ and $S_{T^{*}}=S_{T^{*}}^{2}$ then $\mathcal{N}\left(S_{T}\right)$ admits the decomposition

$$
\begin{equation*}
\mathcal{N}\left(S_{T}\right)=\mathcal{N}\left(I-S_{T^{*}}\right) \cap \mathcal{N}\left(S_{T}\right) \oplus \mathcal{N}\left(S_{T^{*}}\right) \cap \mathcal{N}\left(S_{T}\right) \tag{3.2}
\end{equation*}
$$

where the two summands reduce T, and T is coisometric and strongly stable on $\mathcal{N}\left(I-S_{T^{*}}\right) \cap \mathcal{N}\left(S_{T}\right)$, while T and T^{*} are strongly stable on $\mathcal{N}\left(S_{T}\right) \cap$ $\mathcal{N}\left(S_{T^{*}}\right)$.

Proof. Since $S_{T}=S_{T}^{2}$ one has $\mathcal{H}=\mathcal{N}\left(I-S_{T}\right) \oplus \mathcal{N}\left(S_{T}\right)$ where $\mathcal{N}\left(I-S_{T}\right)$ reduces T to a bi-isometry and T is strongly stable on $\mathcal{N}\left(S_{T}\right)$.

Let $W=\left(W_{0}, W_{1}\right)$ where $W_{i}=\left.T_{i}\right|_{\mathcal{N}\left(I-S_{T}\right)}, i=0,1$. By (2.5), the maximum subspace which reduces T to a unitary bicontraction is

$$
\mathcal{H}_{u}=\mathcal{N}\left(I-S_{T}\right) \cap \mathcal{N}\left(I-S_{T^{*}}\right) .
$$

Now since W_{i} is an isometry on $\mathcal{N}\left(I-S_{T}\right)$ it follows that $S_{W_{i}^{*}}=S_{W_{i}^{*}}^{2}$ for $i=0,1$, and by Corollary 2.6 we obtain $S_{W^{*}}=S_{W^{*}}^{2}$. Therefore

$$
\mathcal{N}\left(I-S_{T}\right)=\mathcal{N}\left(I-S_{W^{*}}\right) \oplus \mathcal{N}\left(S_{W^{*}}\right)
$$

where the summands reduce W_{i}, and so $T_{i}, i=0,1$. We also have

$$
\begin{aligned}
\mathcal{N}\left(I-S_{W^{*}}\right) & =\mathcal{N}\left(I-S_{T}\right) \cap \mathcal{N}\left(I-S_{T^{*}}\right)=\mathcal{H}_{u} \\
\mathcal{N}\left(S_{W^{*}}\right) & =\mathcal{N}\left(I-S_{T}\right) \cap \mathcal{N}\left(S_{T^{*}}\right)
\end{aligned}
$$

hence $T_{0}^{* m} T_{1}^{* n} h \rightarrow 0(m, n \rightarrow \infty)$ for $h \in \mathcal{N}\left(S_{W^{*}}\right)$, that is, T^{*} is co-isometric and strongly stable on $\mathcal{N}\left(S_{W^{*}}\right)$.

Next suppose $\mathcal{N}\left(S_{T}\right) \neq\{0\}$ and let $W^{\prime}=\left(W_{0}^{\prime}, W_{1}^{\prime}\right)$ where $W_{i}^{\prime}=\left.T_{i}\right|_{\mathcal{N}\left(S_{T}\right)}$, $i=0,1$. Then relative to the decomposition

$$
\mathcal{H}=\mathcal{H}_{u} \oplus \mathcal{N}\left(S_{W^{*}}\right) \oplus \mathcal{N}\left(S_{T}\right)
$$

we have $S_{T^{*}}=I \oplus 0 \oplus S_{W^{\prime *}}$, whence

$$
\mathcal{N}\left(S_{T^{*}}\right)=\mathcal{N}\left(S_{W^{*}}\right) \oplus \mathcal{N}\left(S_{W^{\prime *}}\right) \subset \mathcal{N}\left(S_{W^{*}}\right) \oplus \mathcal{N}\left(S_{T}\right)
$$

Since $\mathcal{N}\left(S_{W^{*}}\right) \subset \mathcal{N}\left(I-S_{T}\right)=\mathcal{H} \ominus \mathcal{N}\left(S_{T}\right)$ we infer that

$$
\mathcal{N}\left(S_{W^{\prime *}}\right)=\mathcal{N}\left(S_{T^{*}}\right) \cap \mathcal{N}\left(S_{T}\right)
$$

On the other hand, since $I-S_{T^{*}}=0 \oplus I \oplus\left(I-S_{W^{\prime *}}\right)$ we have

$$
\mathcal{N}\left(I-S_{T^{*}}\right)=\mathcal{H}_{u} \oplus \mathcal{N}\left(I-S_{W^{\prime *}}\right) \subset \mathcal{H}_{u} \oplus \mathcal{N}\left(S_{T}\right)
$$

whence

$$
\mathcal{N}\left(I-S_{W^{\prime *}}\right)=\mathcal{N}\left(I-S_{T^{*}}\right) \cap \mathcal{N}\left(S_{T}\right)
$$

Assume $S_{T}=S_{T}^{2}$ and $S_{T^{*}}=S_{T^{*}}^{2}$. Clearly, the second condition is equivalent to $S_{W^{\prime *}}=S_{W^{\prime *}}^{2}$, which also means

$$
\mathcal{N}\left(S_{T}\right)=\mathcal{N}\left(I-S_{W^{\prime *}}\right) \oplus \mathcal{N}\left(S_{W^{\prime *}}\right)
$$

Thus, the summands, reducing for W^{\prime}, also reduce T in such a way that T^{*} is a bi-isometry and T is strongly stable on $\mathcal{N}\left(I-S_{W^{\prime *}}\right)$, and T, T^{*} are strongly stable bicontractions on $\mathcal{N}\left(S_{W^{\prime *}}\right)$.

Corollary 3.2. For a bicontraction $T=\left(T_{0}, T_{1}\right)$ on \mathcal{H} one has $S_{T}=$ $S_{T^{*}}$ if and only if $T_{i}=U_{i} \oplus S_{i}(i=0,1)$ relative to a decomposition $\mathcal{H}=$ $\mathcal{M} \oplus \mathcal{M}^{\perp}$, where \mathcal{M} reduces T so that $U=\left(U_{0}, U_{1}\right)$ is unitary on \mathcal{M}, while $S=\left(S_{0}, S_{1}\right)$ and S^{*} are strongly stable on \mathcal{M}^{\perp}.

Proof. Suppose $S_{T}=S_{T^{*}}$. Then for $m, n \geq 1$ we have

$$
S_{T}=T_{0}^{* m} T_{1}^{* n} S_{T^{*}} T_{1}^{n} T_{0}^{m}=T_{0}^{* m} T_{1}^{* n} T_{1}^{n} T_{0}^{m} S_{T^{*}} T_{0}^{* m} T_{1}^{* n} T_{1}^{n} T_{0}^{m}
$$

and letting $m, n \rightarrow \infty$ we get $S_{T}=S_{T} S_{T^{*}} S_{T}=S_{T}^{3}$. It follows that $S_{T}^{2}=S_{T}^{4}$ and so $S_{T}=S_{T}^{2}$. By our assumption, $\mathcal{N}\left(I-S_{T}\right) \cap \mathcal{N}\left(S_{T^{*}}\right)=\{0\}$ and $\mathcal{N}\left(I-S_{T^{*}}\right) \cap \mathcal{N}\left(S_{T}\right)=\{0\}$, so we infer from (3.1) and 3.2) that $\mathcal{H}=\mathcal{N}\left(I-S_{T}\right) \cap \mathcal{N}\left(I-S_{T^{*}}\right) \oplus \mathcal{N}\left(S_{T}\right) \cap \mathcal{N}\left(S_{T^{*}}\right)=\mathcal{N}\left(I-S_{T}\right) \oplus \mathcal{N}\left(S_{T}\right)$.
Thus T is unitary on $\mathcal{M}=\mathcal{N}\left(I-S_{T}\right)$, while T and T^{*} are strongly stable on $\mathcal{M}^{\perp}=\mathcal{N}\left(S_{T}\right)$, and $T_{i}=\left.\left.T_{i}\right|_{\mathcal{M}} \oplus T_{i}\right|_{\mathcal{M}^{\perp}}, i=0,1$.

Conversely, if $T_{i}=U_{i} \oplus S_{i}$ on $\mathcal{H}=\mathcal{M} \oplus \mathcal{M}^{\perp}$ and \mathcal{M} reduces T and U_{i} is unitary on \mathcal{M} for $i=0,1$, while $S=\left(S_{0}, S_{1}\right)$ and S^{*} are strongly stable on \mathcal{M}^{\perp}, then $S_{T}=I \oplus 0=S_{T^{*}}$.

The decomposition (3.1) can be refined by the general Wold type decomposition of a bi-isometry which was obtained in [P] and recently in [BDF. So, the following result holds.

Theorem 3.3. Let $T=\left(T_{0}, T_{1}\right)$ be a bicontraction on \mathcal{H} with $S_{T}=S_{T}^{2}$. Then \mathcal{H} admits a unique decomposition of the form

$$
\begin{equation*}
\mathcal{H}=\mathcal{H}_{u} \oplus \mathcal{H}_{u s} \oplus \mathcal{H}_{s u} \oplus \mathcal{H}_{s} \oplus \mathcal{H}_{1} \oplus \mathcal{H}_{0} \tag{3.3}
\end{equation*}
$$

where all the summands reduce T, and where $\left.T_{0}\right|_{\mathcal{H}_{u} \oplus \mathcal{H}_{u s}}$ and $\left.T_{1}\right|_{\mathcal{H}_{u} \oplus \mathcal{H}_{s u}}$ are unitary, $\left.T_{0}\right|_{\mathcal{H}_{s u}}$ and $\left.T_{1}\right|_{\mathcal{H}_{u s}}$ are shift operators, T is a bi-shift on \mathcal{H}_{s}, T is strongly stable on \mathcal{H}_{0}, while T is a bi-isometry on \mathcal{H}_{1} and there is no nonzero reducing subspace for T of \mathcal{H}_{1} on which either T is a bi-shift, or T_{0} is unitary or T_{1} is unitary. Moreover, $T_{0} T_{1}$ is a shift on \mathcal{H}_{1}.

Proof. Clearly, $\mathcal{H}_{u}=\mathcal{N}\left(I-S_{T}\right) \cap \mathcal{N}\left(I-S_{T^{*}}\right)$ and $\mathcal{H}_{0}=\mathcal{N}\left(S_{T}\right)$ by Theorem 3.1. Denote $W=\left(W_{0}, W_{1}\right), W_{i}=\left.T_{i}\right|_{\mathcal{N}\left(I-S_{T}\right)}, i=0,1$. Since W is an isometry we have (by Corollary 2.6)

$$
\mathcal{N}\left(I-S_{T}\right)=\mathcal{N}\left(I-S_{W^{*}}\right) \oplus \mathcal{N}\left(S_{W^{*}}\right)=\mathcal{H}_{u} \oplus \mathcal{N}\left(S_{W_{0}^{*} W_{1}^{*}}\right)
$$

So, we infer from (3.1) that

$$
\begin{aligned}
& \mathcal{N}\left(I-S_{T}\right) \cap \mathcal{N}\left(S_{T^{*}}\right)=\mathcal{N}\left(S_{W_{0}^{*} W_{1}^{*}}\right)=\bigoplus_{n \geq 0} W_{0}^{n} W_{1}^{n} \mathcal{N}\left(W_{0}^{*} W_{1}^{*}\right) \\
& \quad \supset \bigoplus_{n \geq 0} W_{1}^{n} \bigcap_{m \geq 0} W_{0}^{m} \mathcal{N}\left(W_{1}^{*}\right) \supset \bigoplus_{n \geq 0} W_{1}^{n} \bigcap_{m \geq 0} W_{0}^{m} \bigoplus_{j \geq 0} \mathcal{N}\left(W_{1}^{*} W_{0}^{j}\right)=: \mathcal{H}_{u s} .
\end{aligned}
$$

Observe that the subspace

$$
\mathcal{H}_{0 *}:=\bigcap_{j \geq 0} \mathcal{N}\left(W_{1}^{*} W_{0}^{j}\right) \subset \mathcal{N}\left(W_{1}^{*}\right)
$$

is invariant for W_{0}, so for T_{0}, and the subspace

$$
\bigcap_{m \geq 0} W_{0}^{m} \mathcal{H}_{0 *}=\mathcal{N}\left(I-S_{\left.\left(T_{0} \mid \mathcal{H}_{0 *}\right)^{*}\right)}\right) \subset \mathcal{N}\left(W_{1}^{*}\right)
$$

is wandering for W_{1} and it reduces $\left.T_{0}\right|_{\mathcal{H}_{0 *}}$ to a unitary operator. Hence the subspace

$$
\mathcal{H}_{u s}=\bigoplus_{n \geq 0} W_{1}^{n} \mathcal{N}\left(I-S_{\left(T_{0} \mid \mathcal{H}_{0 *}\right)^{*}}\right)=W_{0} \bigoplus_{n \geq 0} W_{1}^{n}\left(W_{0} \mid \mathcal{H}_{0 *}\right)^{*} \mathcal{N}\left(I-S_{\left(T_{0} \mid \mathcal{H}_{0^{*}}\right)^{*}}\right)
$$

reduces W_{1} to a shift, and from the second equality we get $\mathcal{H}_{u s}=W_{0} \mathcal{H}_{u s}$, so $\mathcal{H}_{u s}$ also reduces W_{0}. This implies that $\mathcal{H}_{u s}$ reduces T_{1} to a shift and T_{0} to a unitary operator.

Similarly，if $\mathcal{H}_{1 *}:=\bigcap_{j \geq 0} \mathcal{N}\left(W_{0}^{*} W_{1}^{j}\right)$ then

$$
\mathcal{H}_{s u}:=\bigoplus_{m \geq 0} W_{0}^{m} \mathcal{N}\left(I-S_{\left(T_{1} \mid \mathcal{H}_{1_{*}}\right)^{*}}\right) \subset \mathcal{N}\left(I-S_{T}\right) \cap \mathcal{N}\left(S_{T^{*}}\right)
$$

reduces T_{0} to a shift and T_{1} to a unitary operator．Since $S_{W_{i}^{*}}=S_{W_{i}^{*}}^{2}, i=0,1$ ， and we have

$$
\begin{aligned}
& \mathcal{H}_{u s} \subset \mathcal{N}\left(I-S_{W_{0}^{*}}\right) \cap \mathcal{N}\left(S_{W_{1}^{*}}\right) \\
& \mathcal{H}_{s u} \subset \mathcal{N}\left(I-S_{W_{1}^{*}}\right) \cap \mathcal{N}\left(S_{W_{0}^{*}}\right),
\end{aligned}
$$

it follows that the subspaces $\mathcal{H}_{u}, \mathcal{H}_{u s}$ and $\mathcal{H}_{s u}$ are pairwise orthogonal in $\mathcal{N}\left(I-S_{T}\right) \cap \mathcal{N}\left(S_{T^{*}}\right)$ ．

Now，the subspace $\mathcal{H}_{0 *} \cap \mathcal{H}_{1 *} \subset \mathcal{N}\left(W_{0}^{*}\right) \cap \mathcal{N}\left(W_{1}^{*}\right)$ is wandering for the bi－isometry $W=\left(W_{0}, W_{1}\right)$ ，and the subspace

$$
\mathcal{H}_{s}:=\bigoplus_{m, n \geq 0} W_{0}^{m} W_{1}^{n}\left(\mathcal{H}_{0}^{*} \cap \mathcal{H}_{1}^{*}\right)
$$

is invariant for W ，and also for T ．In fact，

$$
W_{0} \mathcal{H}_{s}=\bigoplus_{m \geq 1, n \geq 0} W_{0}^{m} W_{1}^{n}\left(\mathcal{H}_{0}^{*} \cap \mathcal{H}_{1}^{*}\right)=\mathcal{H}_{s} \ominus \bigoplus_{n \geq 0} W_{1}^{n}\left(\mathcal{H}_{0}^{*} \cap \mathcal{H}_{1}^{*}\right)
$$

whence（as $\left.W_{0}^{*} W_{1}^{n} \mathcal{H}_{1 *}=\{0\}, n \geq 0\right)$

$$
W_{0}^{*} \mathcal{H}_{s}=\mathcal{H}_{s}+W_{0}^{*}\left(\bigoplus_{n \geq 0} W_{1}^{n}\left(\mathcal{H}_{0}^{*} \cap \mathcal{H}_{1}^{*}\right)\right)=\mathcal{H}_{s}
$$

Similarly，$W_{1}^{*} \mathcal{H}_{s}=\mathcal{H}_{s}$ ，and therefore \mathcal{H}_{s} reduces W ，and so T ，to a bi－shift．Since $\mathcal{H}_{s} \subset \mathcal{N}\left(S_{W_{0}^{*}}\right) \cap \mathcal{N}\left(S_{W_{1}^{*}}\right)$ ，we have
$\mathcal{N}\left(I-S_{T}\right) \cap \mathcal{N}\left(S_{T^{*}}\right) \ominus \mathcal{H}_{s} \supset \mathcal{N}\left(I-S_{W_{0}^{*}}\right) \vee \mathcal{N}\left(I-S_{W_{1}^{*}}\right) \supset \mathcal{H}_{u} \oplus \mathcal{H}_{u s} \oplus \mathcal{H}_{s u}$, whence the subspace

$$
\mathcal{H}_{1}:=\mathcal{N}\left(I-S_{T}\right) \cap \mathcal{N}\left(S_{T^{*}}\right) \ominus\left(\mathcal{H}_{u} \oplus \mathcal{H}_{u s} \oplus \mathcal{H}_{s u}\right)
$$

is also reducing for T ．In addition it is easy to see（as in［⿴囗 ）that the subspaces $\mathcal{H}_{u s}, \mathcal{H}_{s u}$ and \mathcal{H}_{s} are maximal with the properties quoted above． This implies that \mathcal{H}_{1} contains no nonzero reducing subspace for T on which either T is a bi－shift，or T_{0} is unitary，or T_{1} is unitary．

Finally，since $\mathcal{H}_{1} \subset \mathcal{N}\left(S_{T^{*}}\right),\left.T^{*}\right|_{\mathcal{H}_{1}}$ is strongly stable，that is，$\left.T_{0} T_{1}\right|_{\mathcal{H}_{1}}$ is a shift，by Corollary 2．6．

Remark 3．4．The structure of the subspaces $\mathcal{H}_{u s}, \mathcal{H}_{s u}$ and \mathcal{H}_{s} for a bi－isometry V was obtained by D．Popovici［⿴囗 ．Here we describe these sub－ spaces as well as the other from decomposition（3．3）using the context of asymptotic limits of a bicontraction $T=\left(T_{0}, T_{1}\right)$ ．

Corollary 3.5. Let $T=\left(T_{0}, T_{1}\right)$ be a bicontraction on \mathcal{H} with $S_{T}=S_{T}^{2}$, $S_{T^{*}}=S_{T^{*}}^{2}$ and $\mathcal{N}\left(S_{T}\right) \neq\{0\}$. Then \mathcal{H} admits a unique decomposition of the form

$$
\begin{equation*}
\mathcal{H}=\mathcal{H}_{u} \oplus \mathcal{H}_{u s} \oplus \mathcal{H}_{s u} \oplus \mathcal{H}_{s} \oplus \mathcal{H}_{u c} \oplus \mathcal{H}_{c u} \oplus \mathcal{H}_{c} \oplus \mathcal{H}_{11} \oplus \mathcal{H}_{00} \tag{3.4}
\end{equation*}
$$

where all summands reduce T and where $\left.T_{0}\right|_{\mathcal{H}_{u} \oplus \mathcal{H}_{u s} \oplus \mathcal{H}_{u c}}$ and $\left.T_{1}\right|_{\mathcal{H}_{u} \oplus \mathcal{H}_{s u} \oplus \mathcal{H}_{c u}}$ are unitary, $\left.T_{0}\right|_{\mathcal{H}_{s u}}$ and $\left.T_{1}\right|_{\mathcal{H}_{u s}}$ are shifts, $\left.T_{0}\right|_{\mathcal{H}_{c u}}$ and $\left.T_{1}\right|_{\mathcal{H}_{u c}}$ are coshifts, T and T^{*} are strongly stable on \mathcal{H}_{00}, and there is no nonzero reducing subspace for T of \mathcal{H}_{11} on which either T_{0} or T_{1} is unitary, or T or T^{*} is a bi-shift.

In addition, $\left.T_{i}\right|_{\mathcal{H}_{11}}=Z_{i} \oplus Z_{i}^{\prime}$ on $\mathcal{H}_{11}=\mathcal{H}_{1} \oplus \mathcal{H}_{1}^{\prime}$ where Z_{i} are isometries and $Z_{0} Z_{1}$ is a shift on \mathcal{H}_{1}, while Z_{i}^{\prime} are coisometries, and $Z_{0}^{\prime} Z_{1}^{\prime}$ is a co-shift on \mathcal{H}_{1}^{\prime}, for $i=0,1$.

Proof. By Theorem 3.3 for the bi-isometry W and the bicontraction W^{\prime} (W, W^{\prime} as in the proof of Theorem 3.1) we have

$$
\mathcal{N}\left(I-S_{T}\right)=\mathcal{H}_{u} \oplus \mathcal{H}_{u s} \oplus \mathcal{H}_{s u} \oplus \mathcal{H}_{s} \oplus \mathcal{H}_{1}
$$

and respectively

$$
\mathcal{N}\left(S_{T}\right)=\mathcal{H}_{0}=\mathcal{H}_{u c} \oplus \mathcal{H}_{c u} \oplus \mathcal{H}_{c} \oplus \mathcal{H}_{1}^{\prime} \oplus \mathcal{H}_{00}
$$

Here $\mathcal{H}_{00}=\mathcal{N}\left(S_{T}\right) \cap \mathcal{N}\left(S_{T^{*}}\right)$, \mathcal{H}_{1}^{\prime} contains no nonzero reducing subspaces for T on which either T^{*} is a bi-shift, or the coisometries T_{0} or T_{1} are unitary, and in addition, T is strongly stable, that is, $T_{0} T_{1}$ is a co-shift on \mathcal{H}_{1}^{\prime}. Clearly, the other subspaces of $\mathcal{N}\left(S_{T}\right)$ have the meaning from (3.4) for the bi-isometry T^{*}. So, putting $\mathcal{H}_{11}=\mathcal{H}_{1} \oplus \mathcal{H}_{1}^{\prime}$ we get the decomposition (3.4) of $\mathcal{H}=\mathcal{N}\left(I-S_{T}\right) \oplus \mathcal{N}\left(S_{T}\right)$, in view of (3.1) and 3.2).

Since $\mathcal{H}_{u s} \oplus \mathcal{H}_{s u} \oplus \mathcal{H}_{s} \subset \mathcal{N}\left(I-S_{T}\right) \cap \mathcal{N}\left(S_{T^{*}}\right)$ we have necessarily

$$
\begin{align*}
\mathcal{H}_{u s} & \subset \mathcal{N}\left(I-S_{T_{0}^{*}}\right) \cap \mathcal{N}\left(I-S_{T}\right) \cap \mathcal{N}\left(S_{T_{1}^{*}}\right) \tag{3.5}\\
& =\mathcal{N}\left(I-S_{T_{0}^{*}}\right) \cap \mathcal{N}\left(I-S_{T}\right) \cap \mathcal{N}\left(S_{T}\right), \\
\mathcal{H}_{s u} & \subset \mathcal{N}\left(I-S_{T_{1}^{*}}\right) \cap \mathcal{N}\left(I-S_{T}\right) \cap \mathcal{N}\left(S_{T_{0}^{*}}\right) \tag{3.6}\\
& =\mathcal{N}\left(I-S_{T_{1}^{*}}\right) \cap \mathcal{N}\left(I-S_{T}\right) \cap \mathcal{N}\left(S_{T}\right),
\end{align*}
$$

and

$$
\begin{equation*}
\mathcal{H}_{s} \subset \mathcal{N}\left(I-S_{T}\right) \cap \mathcal{N}\left(S_{T_{0}^{*}}\right) \cap \mathcal{N}\left(S_{T_{1}^{*}}\right) \tag{3.7}
\end{equation*}
$$

but the inclusions may be strict, as in Remark 3.9 below.
By Theorem 3.1 of KO we also get the following
Corollary 3.6. Let $T=\left(T_{0}, T_{1}\right)$ be a bicontraction on \mathcal{H}. Then there exist a unique minimal Hilbert space $\mathcal{K} \supset \mathcal{H}$ and a bicontraction $\tilde{T}=\left(\tilde{T}_{0}, \tilde{T}_{1}\right)$ on \mathcal{K} extending T (i.e. such that $\left.\tilde{T}\right|_{\mathcal{H}}=T$) and admitting a unique decomposition of the form given in Theorem 3.3.

We find now when these inclusions become equalities. Clearly, we can reduce this problem to the case of a bi-isometry (by (3.3)).

Proposition 3.7. Let $T=\left(T_{0}, T_{1}\right)$ be a bi-isometry on \mathcal{H}. Then
(i) $\mathcal{H}_{u s}=\mathcal{N}\left(I-S_{T_{0}^{*}}\right) \cap \mathcal{N}\left(S_{T_{1}^{*}}\right)$ and $\mathcal{H}_{s u}=\mathcal{N}\left(I-S_{T_{1}^{*}}\right) \cap \mathcal{N}\left(S_{T_{0}^{*}}\right)$ if and only if $\mathcal{H}_{s} \oplus \mathcal{H}_{1}=\mathcal{N}\left(S_{T_{0}^{*}}\right) \cap \mathcal{N}\left(S_{T_{1}^{*}}\right)$, where \mathcal{H}_{1} is the subspace appearing in decomposition (3.3). In this case, $\mathcal{H}_{s} \oplus \mathcal{H}_{1}$ is the maximum subspace which reduces $T_{i}(i=0,1)$ to a shift.
(ii) $\mathcal{H}_{s}=\mathcal{N}\left(S_{T_{0}^{*}}\right) \cap \mathcal{N}\left(S_{T_{1}^{*}}\right)$ and $\mathcal{H}_{1}=\{0\}$ if and only if T_{0} and T_{1} doubly commute.
Proof. Suppose we have equalities in (3.5) and (3.6), where $\mathcal{N}\left(I-S_{T}\right)$ $=\mathcal{H}$. Since T_{0} is a shift on $\mathcal{H}_{s u}$, that is, $T_{0}^{* n} h \rightarrow 0(n \rightarrow \infty)$ for $h \in \mathcal{H}_{s u}$, we have $\mathcal{H}_{s u} \subset \mathcal{N}\left(S_{T_{0}^{*}}\right)$. Thus, since $S_{T_{0}^{*}}=S_{T_{0}^{*}}^{2}$ and $S_{T^{*}}=S_{T^{*}}^{2}(T$ is a bi-isometry), we get the decompositions

$$
\begin{aligned}
\mathcal{H} & =\mathcal{N}\left(I-S_{T_{0}^{*}}\right) \oplus \mathcal{N}\left(S_{T_{0}^{*}}\right) \\
& =\mathcal{N}\left(I-S_{T^{*}}\right) \oplus\left[\mathcal{N}\left(I-S_{T_{0}^{*}}\right) \ominus \mathcal{N}\left(I-S_{T^{*}}\right)\right] \oplus \mathcal{H}_{s u} \oplus\left[\mathcal{N}\left(S_{T_{0}^{*}}\right) \ominus \mathcal{H}_{s u}\right] \\
& =\mathcal{H}_{u} \oplus \mathcal{H}_{u s} \oplus \mathcal{H}_{s u} \oplus\left[\mathcal{N}\left(S_{T_{0}^{*}}\right) \ominus \mathcal{H}_{s u}\right]
\end{aligned}
$$

Then from (3.3) we infer (as $\mathcal{H}_{0}=\mathcal{N}\left(S_{T}\right)=\{0\}$ in this case) that $\mathcal{H}_{s} \oplus \mathcal{H}_{1}=$ $\mathcal{N}\left(S_{T_{0}^{*}}\right) \ominus \mathcal{H}_{s u}$, or $\mathcal{N}\left(S_{T_{0}^{*}}\right)=\mathcal{H}_{s u} \oplus \mathcal{H}_{s} \oplus \mathcal{H}_{1}$. By symmetry we also have $\mathcal{N}\left(S_{T_{1}^{*}}\right)=\mathcal{H}_{u s} \oplus \mathcal{H}_{s} \oplus \mathcal{H}_{1}$, and so

$$
\mathcal{H}_{s} \oplus \mathcal{H}_{1} \subset \mathcal{N}\left(S_{T_{0}^{*}}\right) \cap \mathcal{N}\left(S_{T_{1}^{*}}\right)=: \mathcal{H}_{s s}
$$

Now if $h \in \mathcal{H}_{s s}$ and we write $h=h_{1} \oplus h_{0}=h_{2} \oplus h_{0}^{\prime}$ with $h_{1} \in \mathcal{H}_{u s}$, $h_{2} \in \mathcal{H}_{s u}$ and $h_{0}, h_{0}^{\prime} \in \mathcal{H}_{s} \oplus \mathcal{H}_{1}$, then $h_{1} \oplus\left(-h_{2}\right) \oplus\left(h_{0}-h_{0}^{\prime}\right)=0$, hence $h_{1}=h_{2}=0$ and $h_{0}=h_{0}^{\prime}$. This implies $h=h_{0} \in \mathcal{H}_{s} \oplus \mathcal{H}_{1}$, and we conclude that $\mathcal{H}_{s} \oplus \mathcal{H}_{1}=\mathcal{H}_{s s}$. Clearly, in this case the subspace $\mathcal{H}_{s s}$ reduces T_{i} $(i=0,1)$ to a shift, and it contains any other subspace of \mathcal{H} with this property.

Conversely, assume that $\mathcal{H}_{s} \oplus \mathcal{H}_{1}=\mathcal{N}\left(S_{T_{0}^{*}}\right) \cap \mathcal{N}\left(S_{T_{1}^{*}}\right)$. Then as above we get the decomposition
$\mathcal{H}=\mathcal{H}_{u} \oplus\left[\mathcal{N}\left(I-S_{T_{0}^{*}}\right) \ominus \mathcal{N}\left(I-S_{T^{*}}\right)\right] \oplus\left[\mathcal{N}\left(S_{T_{0}^{*}}\right) \ominus \mathcal{N}\left(S_{T_{0}^{*}}\right) \cap \mathcal{N}\left(S_{T_{1}^{*}}\right)\right] \oplus \mathcal{H}_{s} \oplus \mathcal{H}_{1}$, and from (3.3) we infer that

$$
\mathcal{H}_{u s} \oplus \mathcal{H}_{s u}=\mathcal{N}\left(I-S_{T_{0}^{*}}\right) \cap \mathcal{N}\left(S_{T_{1}^{*}}\right) \oplus \mathcal{N}\left(S_{T_{0}^{*}}\right) \cap\left[\mathcal{N}\left(S_{T_{0}^{*}}\right) \cap \mathcal{N}\left(S_{T_{1}^{*}}\right)\right]^{\perp}
$$

Since $\mathcal{H}_{u s} \subset \mathcal{N}\left(I-S_{T_{0}^{*}}\right) \cap \mathcal{N}\left(S_{T^{*}}\right)$ and $\mathcal{H}_{s u} \subset \mathcal{N}\left(I-S_{T_{1}^{*}}\right) \cap \mathcal{N}\left(S_{T_{0}^{*}}\right)$ (by (3.3)), the preceding equality leads to $\mathcal{H}_{u s}=\mathcal{N}\left(I-S_{T_{0}^{*}}\right) \cap \mathcal{N}\left(S_{T_{1}^{*}}\right)$ and also (because $S_{T_{1}^{*}}=S_{T_{1}^{*}}^{2}$)

$$
\mathcal{H}_{s u}=\mathcal{N}\left(S_{T_{0}^{*}}\right) \cap\left[\mathcal{N}\left(S_{T_{0}^{*}}\right) \cap \mathcal{N}\left(S_{T_{1}^{*}}\right)\right]^{\perp} \supset \mathcal{N}\left(S_{T_{0}^{*}}\right) \cap \mathcal{N}\left(I-S_{T_{1}^{*}}\right),
$$

hence $\mathcal{H}_{s u}=\mathcal{N}\left(I-S_{T_{1}^{*}}\right) \cap \mathcal{N}\left(S_{T_{0}^{*}}\right)$. This completes the proof of (i).

For (ii) it is clear that if $\mathcal{H}_{s}=\mathcal{N}\left(S_{T_{0}^{*}}\right) \cap \mathcal{N}\left(S_{T_{1}^{*}}\right)$ and $\mathcal{H}_{1}=\{0\}$ then T_{0} and T_{1} doubly commute on \mathcal{H}_{s}, and finally, they doubly commute on $\mathcal{H}=\mathcal{H}_{u} \oplus \mathcal{H}_{u s} \oplus \mathcal{H}_{s u} \oplus \mathcal{H}_{s}$ (T being a bi-isometry) .

Conversely, if $T_{0} T_{1}^{*}=T_{1}^{*} T_{0}$ then $\mathcal{N}\left(I-S_{T_{i}^{*}}\right)$ and $\mathcal{N}\left(S_{T_{i}^{*}}\right)$ reduce T_{1-i}, and so $\mathcal{N}\left(I-S_{T_{i}^{*}}\right) \cap \mathcal{N}\left(S_{T_{1-i}^{*}}\right)$ reduces T_{i} (resp. $\left.T_{1-i}\right)$ to a unitary (resp. shift) operator, for $i=0,1$. Thus, it is needed that $\mathcal{H}_{u s}=\mathcal{N}\left(I-S_{T_{0}^{*}}\right) \cap \mathcal{N}\left(S_{T_{1}^{*}}\right)$ and $\mathcal{H}_{s u}=\mathcal{N}\left(I-S_{T_{1}^{*}}\right) \cap \mathcal{N}\left(S_{T_{0}^{*}}\right)$, which gives $\mathcal{H}_{s} \oplus \mathcal{H}_{1}=\mathcal{N}\left(S_{T_{0}^{*}}\right) \cap \mathcal{N}\left(S_{T_{1}^{*}}\right)$. But, in this case we have $\mathcal{H}_{s}=\mathcal{N}\left(S_{T_{0}^{*}}\right) \cap \mathcal{N}\left(S_{T_{1}^{*}}\right)$ because T_{0} and T_{1} doubly commute on $\mathcal{H}_{s} \oplus \mathcal{H}_{1}$, hence $\mathcal{H}_{1}=\{0\}$. This ends the proof. ■

REMARK 3.8. In fact, this proposition shows that a bi-isometry $T=$ $\left(T_{0}, T_{1}\right)$ on \mathcal{H} induces an orthogonal decomposition

$$
\begin{equation*}
\mathcal{H}=\mathcal{H}_{u} \oplus \mathcal{H}_{u s} \oplus \mathcal{H}_{s u} \oplus \mathcal{H}_{s s} \tag{3.8}
\end{equation*}
$$

where the subspaces have the above meaning, if and only if $\mathcal{H}_{u s}=\mathcal{N}\left(I-S_{T_{0}^{*}}\right)$ $\cap \mathcal{N}\left(S_{T_{1}^{*}}\right)$ and $\mathcal{H}_{s u}=\mathcal{N}\left(I-S_{T_{1}^{*}}\right) \cap \mathcal{N}\left(S_{T_{0}^{*}}\right)$, while in this case $\mathcal{H}_{s s}=$ $\mathcal{N}\left(S_{T_{0}^{*}}\right) \cap \mathcal{N}\left(S_{T_{1}^{*}}\right)$. Hence $\mathcal{H}_{s s}$ reduces T_{0} and T_{1} to shift operators and it is the maximum subspace with this property.

Recall that the decomposition (3.8) is known as the Słocinski decomposition (see [S]). Moreover in (3.8) we have $\mathcal{H}_{s s}=\mathcal{H}_{s}$ if and only if T_{0} and T_{1} doubly commute.

Remark 3.9. In Example 1 of [GS] a bi-isometry T was given for which $\mathcal{H}_{u s}=\mathcal{N}\left(I-S_{T_{0}^{*}}\right) \subsetneq \mathcal{N}\left(S_{T_{1}^{*}}\right)$ and $\mathcal{H}_{s u} \oplus \mathcal{H}_{1}=\mathcal{N}\left(S_{T_{0}^{*}}\right)$ with $\mathcal{N}\left(S_{T_{0}^{*}}\right) \cap$ $\mathcal{N}\left(S_{T_{1}^{*}}\right)=\{0\}=\mathcal{H}_{u}$. In view of the above strict inclusion, $\mathcal{N}\left(I-S_{T_{1}^{*}}\right) \subset$ $\mathcal{H}_{s u} \oplus \mathcal{H}_{1}$ and also $\mathcal{H}_{1} \neq\{0\}$ because otherwise we get $\mathcal{H}_{s u}=\mathcal{N}\left(I-S_{T_{1}^{*}}\right)$, a contradiction. So $\mathcal{H}_{s u} \subsetneq \mathcal{N}\left(I-S_{T_{1}^{*}}\right)=\mathcal{N}\left(I-S_{T_{1}^{*}}\right) \cap \mathcal{N}\left(S_{T_{0}^{*}}\right)$, even if $\mathcal{H}_{u s}=\mathcal{N}\left(I-S_{T_{0}^{*}}\right) \cap \mathcal{N}\left(S_{T_{1}^{*}}\right)$, hence T does not have a Słociński decomposition (3.8).

Remark 3.10. Consider the bicontraction $T=\left(T_{0}, T_{1}\right)$ on \mathcal{K} from Example 2.9. Since $S_{T}=0, T$ is strongly stable on \mathcal{K}. On the other hand, as T_{0}, T_{1} are quasinormal, by Theorem 2.3 we have $S_{T^{*}}=S_{T^{*}}^{2}$ and $\mathcal{R}\left(S_{T^{*}}\right) \subset$ $\mathcal{R}\left(S_{T}\right)=\{0\}$, that is, $S_{T^{*}}=\{0\}$. Hence T^{*} is strongly stable on \mathcal{K} and we have $\mathcal{K}=\mathcal{N}\left(S_{T}\right)=\mathcal{N}\left(S_{T^{*}}\right)=\mathcal{K}_{00}$ in the corresponding decomposition (3.4).
4. Remarks on invariant subspaces for bicontractions. To every bicontraction $T=\left(T_{0}, T_{1}\right)$ on \mathcal{H} one can associate a bi-isometry $V=\left(V_{0}, V_{1}\right)$ on $\overline{\mathcal{R}\left(S_{T}\right)}$ such that

$$
\begin{equation*}
V_{i} S_{T}^{1 / 2} h=S_{T}^{1 / 2} T_{i} h \quad(h \in \mathcal{H}, i=0,1) \tag{4.1}
\end{equation*}
$$

Clearly, V_{i} is an isometry (T_{i} being an S_{T}-isometry), and $V_{0} V_{1}=V_{1} V_{0}$ because $T_{0} T_{1}=T_{1} T_{0}$. Since $\mathcal{N}\left(S_{T}\right)$ is invariant for $S_{T}^{1 / 2} T_{i}, \overline{\mathcal{R}\left(S_{T}\right)}$ is invariant
for $T_{i}^{*} S_{T}^{1 / 2}$, and the above definition of V_{i} implies

$$
\begin{equation*}
S_{T}^{1 / 2} V_{i}^{*} k=T_{i}^{*} S_{T}^{1 / 2} k \quad\left(k \in \overline{\mathcal{R}\left(S_{T}\right)}, i=0,1\right) \tag{4.2}
\end{equation*}
$$

This relation gives $V_{i} S_{T} V_{i}^{*} \leq S_{T}$ on $\overline{\mathcal{R}\left(S_{T}\right)}$, hence V_{i}^{*} is an $\widehat{S_{T} \text {-contrac- }}$ tion $(i=0,1)$, where $\widehat{S_{T}}=\left.S_{T}\right|_{\overline{\mathcal{R}\left(S_{T}\right)}}$. Other properties of V are summarized in

Proposition 4.1. Let $T=\left(T_{0}, T_{1}\right)$ be a bicontraction on \mathcal{H} and $V=$ $\left(V_{0}, V_{1}\right)$ be the bi-isometry on $\overline{\mathcal{R}\left(S_{T}\right)}$ associated to T as in 4.1). Then

$$
\begin{equation*}
\lim _{m, n \rightarrow \infty} V_{0}^{* m} V_{1}^{* n} \widehat{S_{T}} V_{1}^{n} V_{0}^{m} k=\lim _{m, n \rightarrow \infty} V_{0}^{* m} V_{1}^{* n}{\widehat{S_{T}}}^{1 / 2} V_{1}^{n} V_{0}^{m} k=k \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{m, n \rightarrow \infty} V_{0}^{m} V_{1}^{n} \widehat{S_{T}} V_{1}^{* n} V_{0}^{* m} k=\lim _{n \rightarrow \infty} V_{1-i}^{n} S_{T}^{1 / 2} S_{T_{i}^{*}} S_{T}^{1 / 2} V_{1-i}^{* n} k=S_{T}^{1 / 2} S_{T^{*}} S_{T}^{1 / 2} k \tag{4.4}
\end{equation*}
$$

for every $k \in \overline{\mathcal{R}\left(S_{T}\right)}$ and $i=0,1$, where the operator limit in 4.4 is considered as acting on $\overline{\mathcal{R}\left(S_{T}\right)}$. Moreover, the operator $S_{T}^{1 / 2} S_{T^{*}} S_{T}^{1 / 2}$ commutes with V_{0} and V_{1} and $\overline{\mathcal{R}\left(S_{T}^{1 / 2} S_{T^{*}} S_{T}^{1 / 2}\right)}$, as a subspace of $\overline{\mathcal{R}\left(S_{T}\right)}$, reduces V_{0} and V_{1} to unitary operators.

Proof. For every $k \in S_{T}^{1 / 2} h$ with $h \in \mathcal{H}$ and any integers $m, n \geq 1$,

$$
\begin{aligned}
& \left\|I-V_{0}^{* m} V_{1}^{* n} \widehat{S_{T}} V_{1}^{n} V_{0}^{m} k\right\|^{2}=\left\|V_{0}^{* m} V_{1}^{* n} S_{T}^{1 / 2}\left(I-S_{T}\right) T_{0}^{m} T_{1}^{n} h\right\|^{2} \\
& \quad \leq\left\|\left(I-S_{T}\right)^{1 / 2} T_{0}^{m} T_{1}^{n} h\right\|^{2}=\left\|T_{0}^{m} T_{1}^{n} h\right\|^{2}-\left\|S_{T}^{1 / 2} T_{0}^{m} T_{1}^{n} h\right\|^{2} \rightarrow 0
\end{aligned}
$$

as $m, n \rightarrow \infty$. Since $0 \leq I-S_{T}^{1 / 2} \leq I-S_{T}$ we get as above

$$
\begin{aligned}
\left\|I-V_{0}^{* m} V_{1}^{* n}{\widehat{S_{T}}}^{1 / 2} V_{1}^{n} V_{0}^{m} k\right\|^{2} & \leq\left\|\left(I-S_{T}^{1 / 2}\right)^{1 / 2} T_{0}^{m} T_{1}^{n} h\right\|^{2} \\
& \leq\left\|\left(I-S_{T}\right)^{1 / 2} T_{0}^{m} T_{1}^{n} h\right\|^{2} \rightarrow 0
\end{aligned}
$$

as $m, n \rightarrow \infty$. So, the first equality of 4.3 holds for every $k \in \overline{\mathcal{R}\left(S_{T}\right)}$ (the corresponding sequences are bounded).

Now from (4.1) and (4.2) we obtain

$$
V_{0}^{m} V_{1}^{n} \widehat{S_{T} V_{1}^{* n} V_{0}^{* m} k=S_{T}^{1 / 2} T_{0}^{m} T_{1}^{n} T_{1}^{* n} T_{0}^{* m} S_{T}^{1 / 2} k \rightarrow S_{T}^{1 / 2} S_{T^{*}} S_{T}^{1 / 2} k .}
$$

as $m, n \rightarrow \infty$, for any $k \in \overline{\mathcal{R}\left(S_{T}\right)}$, which proves the second equality of 4.4. Obviously, $\overline{\mathcal{R}\left(S_{T}\right)}$ reduces the operator $S_{T}^{1 / 2} S_{T^{*}} S_{T}^{1 / 2}$ (which is self-adjoint), so this operator can be considered in $\mathcal{B}\left(\overline{\mathcal{R}\left(S_{T}\right)}\right)$. On the other hand, since

$$
V_{i}^{m} \widehat{S_{T}} V_{i}^{* m} k=S_{T}^{1 / 2} T_{i}^{m} T_{i}^{* m} S_{T}^{1 / 2} k \rightarrow S_{T}^{1 / 2} S_{T_{i}^{*}} S_{T}^{1 / 2} k
$$

as $m \rightarrow \infty$, we have (by the previous remark)

$$
S_{T}^{1 / 2} S_{T^{*}} S_{T}^{1 / 2} k=\lim _{n \rightarrow \infty} V_{1-i}^{n} S_{T}^{1 / 2} S_{T_{i}^{*}} S_{T}^{1 / 2} V_{1-i}^{* n} k
$$

for $k \in \overline{\mathcal{R}\left(S_{T}\right)}$ and $i=0,1$. So, the first equality of 4.4 holds true.

For the last assertion notice that by 4.1) and 4.2), V_{i}^{*} is a $S_{T}^{1 / 2} S_{T^{*}} S_{T}^{1 / 2}$ isometry, that is, $V_{i} S_{T}^{1 / 2} S_{T^{*}} S_{T}^{1 / 2} V_{i}^{*}=S_{T}^{1 / 2} S_{T^{*}} S_{T}^{1 / 2}$, because T_{i}^{*} is an $S_{T^{*-}}$ isometry, $i=0,1$. This also implies

$$
S_{T}^{1 / 2} S_{T^{*}} S_{T}^{1 / 2} V_{i}^{*}=V_{i}^{*} S_{T}^{1 / 2} T_{i} S_{T^{*}} T_{i}^{*} S_{T}^{1 / 2}=V_{i}^{*} S_{T}^{1 / 2} S_{T^{*}} S_{T}^{1 / 2}
$$

which means that $S_{T}^{1 / 2} S_{T^{*}} S_{T}^{1 / 2}$ commutes with V_{i} for $i=0,1$. This ensures that the range

$$
\overline{\mathcal{R}\left(S_{T}^{1 / 2} S_{T^{*}} S_{T}^{1 / 2}\right)}=\overline{S_{T}^{1 / 2} S_{T^{*}} S_{T}^{1 / 2} \mathcal{R}\left(S_{T}^{1 / 2}\right)}=\overline{\mathcal{R}\left(S_{T}^{1 / 2} S_{T^{*}} S_{T}\right)}
$$

as a subspace of $\overline{\mathcal{R}\left(S_{T}\right)}$ reduces V_{0} and V_{1}. Since from the second equality of (4.4) it follows that

$$
\overline{\mathcal{R}\left(S_{T}^{1 / 2} S_{T^{*}} S_{T}^{1 / 2}\right)} \subset \bigcap_{m \geq 0} \mathcal{R}\left(V_{0}^{m}\right) \cap \bigcap_{n \geq 0} \mathcal{R}\left(V_{1}^{n}\right)=\mathcal{N}\left(I-S_{V_{0}^{*}}\right) \cap \mathcal{N}\left(I-S_{V_{1}^{*}}\right)
$$

we infer that V_{0} and V_{1} are unitary on $\overline{\mathcal{R}\left(S_{T}^{1 / 2} S_{T^{*}} S_{T}^{1 / 2}\right)}$.
REMARK 4.2. From 4.1 one can get the polar decomposition of $S_{T}^{1 / 2} T_{i}$ $(i=0,1)$. Note $\left|S_{T}^{1 / 2} T_{i}\right|=S_{T}^{1 / 2}$, and put $\tilde{V}_{i}=J V_{i} P$ where P is the projection of \mathcal{H} onto $\overline{\mathcal{R}\left(S_{T}\right)}$ and $J=P^{*}$ is the canonical embedding of $\overline{\mathcal{R}\left(S_{T}\right)}$ into \mathcal{H}. Clearly, \widetilde{V}_{i} isometrically maps $\overline{\mathcal{R}\left(S_{T}\right)}=\mathcal{N}\left(S_{T}\right)^{\perp}=\mathcal{N}\left(S_{T}^{1 / 2} T_{i}\right)^{\perp}$ onto $\mathcal{R}\left(\widetilde{V}_{i}\right) \subset \overline{\mathcal{R}\left(S_{T}^{1 / 2} T_{i}\right)} \subset \overline{\mathcal{R}\left(S_{T}\right)}$, and

$$
\mathcal{N}\left(\tilde{V}_{i}\right)=\mathcal{N}(P)=\mathcal{N}\left(S_{T}\right)=\mathcal{N}\left(S_{T}^{1 / 2} T_{i}\right)
$$

Hence \widetilde{V}_{i} is a partial isometry in $\mathcal{B}(\mathcal{H})$, and the polar decomposition of $S_{T}^{1 / 2} T_{i}$ is $S_{T}^{1 / 2} T_{i}=\widetilde{V}_{i} S_{T}^{1 / 2}$, while \widetilde{V}_{i} is even an extension of V_{i}, for $i=0,1$.

Observe also that for a bicontraction $T^{*}=\left(T_{0}^{*}, T_{1}^{*}\right)$ there are isometries $V_{* 0}, V_{* 1} \in \mathcal{B}\left(\overline{\mathcal{R}\left(S_{T^{*}}\right)}\right)$ which satisfy

$$
\begin{equation*}
V_{* i} S_{T^{*}}^{1 / 2} k=S_{T^{*}}^{1 / 2} T_{i}^{*} k \quad\left(k \in \overline{\mathcal{R}\left(S_{T^{*}}\right)}, i=0,1\right) \tag{4.5}
\end{equation*}
$$

Recall that two bicontractions $T=\left(T_{0}, T_{1}\right)$ on \mathcal{H} and $S=\left(S_{0}, S_{1}\right)$ on \mathcal{K} are similar if there exists an invertible operator $A \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ satisfying $A T_{i}=S_{i} A, i=0,1$. If A belonging to $\mathcal{B}(\mathcal{H}, \mathcal{K})$ is only densely defined, i.e. $\overline{\mathcal{R}(A)}=\mathcal{K}$ with $\mathcal{N}(A)=\{0\}$ and A intertwines T_{i} with $S_{i}(i=0,1)$, one says that T is a quasiaffine transform of S. Finally, T is quasisimilar to S if T and S are quasiaffine transforms of each other.

As in the case of a single contraction (see [K]), we can characterize these concepts using the asymptotic limit operators S_{T} and $S_{T^{*}}$.

We first give the following

Lemma 4.3. Let $T=\left(T_{0}, T_{1}\right)$ be a bicontraction on \mathcal{H} such that $\mathcal{N}\left(S_{T}\right)=$ $\mathcal{N}\left(S_{T^{*}}\right)=\{0\}$. Then for $i=0,1$ we have

$$
\begin{align*}
V_{i} S_{T}^{1 / 2} S_{T^{*}}^{1 / 2} & =S_{T}^{1 / 2} S_{T^{*}}^{1 / 2} V_{* i}^{*} \tag{4.6}\\
S_{T^{*}}^{1 / 2} S_{T}^{1 / 2} V_{i} & =V_{* i}^{*} S_{T^{*}}^{1 / 2} S_{T}^{1 / 2} \tag{4.7}\\
S_{T^{*}} S_{T}^{1 / 2} V_{i} & =T_{i} S_{T^{*}} S_{T}^{1 / 2} \tag{4.8}\\
S_{T^{*}} S_{T} T_{i} & =T_{i} S_{T^{*}} S_{T} \tag{4.9}
\end{align*}
$$

Proof. The hypothesis implies $\mathcal{H}=\overline{\mathcal{R}\left(S_{T}\right)}=\overline{\mathcal{R}\left(S_{T^{*}}\right)}$, so V_{i} and $V_{* i}$ are isometries on \mathcal{H}. Then by (4.1) and (4.5) we get

$$
V_{i} S_{T}^{1 / 2} S_{T^{*}}^{1 / 2}=S_{T}^{1 / 2} T_{i} S_{T^{*}}^{1 / 2}=S_{T}^{1 / 2} S_{T^{*}}^{1 / 2} V_{* i}^{*},
$$

that is, (4.6). By duality we have $V_{* i} S_{T^{*}}^{1 / 2} S_{T}^{1 / 2}=S_{T^{*}}^{1 / 2} S_{T}^{1 / 2} V_{i}^{*}$, whence one obtains 4.7). Now from 4.7) it follows that

$$
S_{T^{*}} S_{T}^{1 / 2} V_{i}=S_{T^{*}}^{1 / 2} V_{* i}^{*} S_{T^{*}}^{1 / 2} S_{T}^{1 / 2}=\left(V_{* i} S_{T^{*}}^{1 / 2}\right)^{*} S_{T^{*}}^{1 / 2} S_{T}^{1 / 2}=T_{i} S_{T^{*}} S_{T}^{1 / 2}
$$

that is, 4.8), while (4.9) is immediate from 4.8.
Theorem 4.4. If T is a bicontraction on \mathcal{H} then:
(i) T is similar to a bi-isometry if and only if S_{T} is invertible.
(ii) T is similar to a unitary bicontraction if and only if S_{T} and $S_{T^{*}}$ are invertible.
(iii) T is quasisimilar to a unitary bicontraction if and only if

$$
\mathcal{N}\left(S_{T}\right)=\mathcal{N}\left(S_{T^{*}}\right)=\{0\} .
$$

Proof. (i) If S_{T} is invertible then T is similar via S_{T} to the bi-isometry $V=\left(V_{0}, V_{1}\right)$ given in 4.1). Conversely, suppose that T is similar to a biisometry $S=\left(S_{0}, S_{1}\right)$ on \mathcal{K} via an invertible operator A from \mathcal{H} onto \mathcal{K}. Let $A=Q|A|$ be the polar decomposition of A, with Q unitary and $|A|$ invertible. Since $A T_{i}=S_{i} A$ we get $S_{i}=Q|A| T_{i}|A|^{-1} Q^{*}$, whence $|A| T_{i}=$ $Q^{*} S_{i} Q|A|=W_{i}|A|$ where $W_{i}=Q^{*} S_{i} Q$ is an isometry, $i=0,1$. It follows that $|A|=W_{i}^{*}|A| T_{i}$, and also $W_{i}=|A| T_{i}|A|^{-1}$, and both give $A^{*} A=|A|^{2}=$ $T_{i}^{*} A^{*} A T_{i}$, for $i=0,1$. This forces that $A^{*} A \leq S_{T}$, hence S_{T} is invertible.
(ii) The previous remark implies that if T is similar to a unitary bicontraction then S_{T} and $S_{T^{*}}$ are invertible.

Conversely, assume that S_{T} and $S_{T^{*}}$ are invertible, so $A T_{i}=S_{i} A$ as above, and $B T_{i}^{*}=S_{* i} B$ where $S_{* i}$ are isometries on \mathcal{G} and $B \in \mathcal{B}(\mathcal{H}, \mathcal{G})$ is invertible. Since $T_{i}=B^{*} S_{* i}^{*}\left(B^{*}\right)^{-1}$ we get $S_{i} A=A B^{*} S_{* i}^{*}\left(B^{*}\right)^{-1}$ where $S_{* i}^{*}$ is a coisometry, therefore it is surjective. This yields $\mathcal{R}\left(S_{i}\right)=\mathcal{K}$, that is, S_{i} is unitary, $i=0,1$. Hence T is similar to the unitary bicontraction S.
(iii) Suppose that T is quasisimilar to $U=\left(U_{0}, U_{1}\right)$ where U_{i} are unitary operators on $\mathcal{K}, i=0$, 1. If $A \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ is such that $\overline{\mathcal{R}(A)}=\mathcal{H}, \mathcal{N}(A)=\{0\}$
and $A T_{i}=U_{i} A(i=0,1)$ then $A T_{0}^{m} T_{1}^{n}=U_{0}^{m} U_{1}^{n} A$ for $m, n \in \mathbb{N}$. So, for $h \in \mathcal{N}\left(S_{T}\right)$ we have $T_{0}^{m} T_{1}^{n} h \rightarrow 0(m, n \rightarrow \infty)$, hence $U_{0}^{m} U_{1}^{n} A h \rightarrow 0$ $(m, n \rightarrow \infty)$, which gives $A h=0$ and $h=0$, too. Thus $\mathcal{N}\left(S_{T}\right)=\{0\}$, and similarly, since U is a quasiaffine transform of $T, \mathcal{N}\left(S_{T^{*}}\right)=\{0\}$.

Conversely, assume that $\mathcal{N}\left(S_{T}\right)=\mathcal{N}\left(S_{T^{*}}\right)=\{0\}$, therefore $\overline{\mathcal{R}\left(S_{T}\right)}=$ $\overline{\mathcal{R}\left(S_{T^{*}}\right)}=\mathcal{H}$. We infer that $\mathcal{N}\left(S_{T^{*}} S_{T}^{1 / 2}\right)=\{0\}$ and also $\overline{\mathcal{R}\left(S_{T^{*}} S_{T}^{1 / 2}\right)}=\mathcal{H}$. By (4.1) and (4.8) and the previous remarks we conclude that T is quasisimilar to $\left(V_{0}, V_{1}\right)$, and it remains to see that V_{0} and V_{1} are unitary. Indeed, since $\mathcal{N}\left(T_{i}^{*}\right) \subset \mathcal{N}\left(S_{T^{*}}\right)=\{0\}$ one has $\mathcal{N}\left(T_{i}^{*}\right)=\{0\}$. But by 4.2 we have $S_{T}^{1 / 2} \mathcal{N}\left(V_{i}^{*}\right) \subset \mathcal{N}\left(T_{i}^{*}\right)$, hence $\mathcal{N}\left(V_{i}^{*}\right)=\{0\}$, which means that V_{i} is unitary, $i=0,1$.

As in the case of a single contraction, the above results can be used to make some remarks on the invariant subspaces of a bicontraction $T=$ $\left(T_{0}, T_{1}\right)$ on \mathcal{H}. Obviously, an invariant subspace of T means a jointly invariant subspace of T_{0} and T_{1}.

ThEOREM 4.5. The following statements hold for every bicontraction $T=\left(T_{0}, T_{1}\right)$ on $\mathcal{H}:$
(i) If $\mathcal{N}\left(S_{T}\right)=\mathcal{N}\left(S_{T^{*}}\right)=\{0\}$ then either T_{0} and T_{1} are unitary scalar, or T has nontrivial invariant subspaces which are hyperinvariant for T_{0} or T_{1}.
(ii) If $S_{T} \neq 0$ and $S_{T^{*}} \neq 0$ then either T_{0} and T_{1} are unitary scalar, or T has nontrivial invariant subspaces which are invariant for any operator which commutes with T_{0} and T_{1}.

Proof. (i) The assumption of (i) ensures, by Theorem 4.4, that T is quasisimilar to a bicontraction $U=\left(U_{0}, U_{1}\right)$ with U_{i} unitary. If U_{0} (or U_{1}) is nonscalar then $U_{0}\left(\right.$ resp. $\left.U_{1}\right)$ has nontrivial hyperinvariant subspaces, and by [K, Corollary 4.8] it follows that T_{0} (resp. T_{1}) has nontrivial hyperinvariant subspaces. Hence T has nontrivial invariant subspaces, as in the case considered before. In the other case, one has $U_{i}=\lambda_{i} I$ with $\left|\lambda_{i}\right|=1$, and since T_{i} is a quasiaffine transform of U_{i} by an injective operator, we infer $T_{i}=\lambda_{i} I$, $i=0,1$. Clearly, when $\operatorname{dim} \mathcal{H}>1$, any nontrivial subspace of \mathcal{H} is invariant for T.

Note also that $\mathcal{N}\left(S_{T_{i}}\right)=\mathcal{N}\left(S_{T_{i}^{*}}\right)=\{0\}$ for $i=0,1$ by the hypothesis of (i). Thus, one can directly apply [K, Corollary 4.11] for $T_{i}(i=0,1)$ to obtain the conclusion of (i).
(ii) The assumption of (ii) gives $\mathcal{H} \neq \mathcal{N}\left(S_{T}\right)$ and $\mathcal{H} \neq \mathcal{N}\left(S_{T^{*}}\right)$. So, if $\mathcal{N}\left(S_{T}\right) \neq\{0\}$ then $\mathcal{N}\left(S_{T}\right)$ is a nontrivial invariant subspace for T. Since $h \in \mathcal{N}\left(S_{T}\right)$ iff $T_{0}^{m} T_{1}^{n} h \rightarrow 0(m, n \rightarrow \infty)$, it follows that $\mathcal{N}\left(S_{T}\right)$ is also invariant for any operator which commutes with T_{0} and T_{1}.

If $\mathcal{N}\left(S_{T^{*}}\right) \neq\{0\}$ then, as above, $\mathcal{N}\left(S_{T^{*}}\right)$ is a nontrivial invariant subspace for T^{*} and, also, for any operator that commutes with T_{0}^{*} and T_{1}^{*}. In this case, $\overline{\mathcal{R}\left(S_{T^{*}}\right)}$ is a nontrivial invariant subspace for T, which remains invariant for any commutant of T_{0} and T_{1}.

The other case, namely $\mathcal{N}\left(S_{T}\right)=\mathcal{N}\left(S_{T^{*}}\right)=\{0\}$, was discussed in (i).
Corollary 4.6. Let T be a bicontraction on \mathcal{H} which has no nontrivial invariant subspace. Then either T or T^{*} is strongly stable on \mathcal{H}. More precisely, either T and T^{*} are strongly stable, or T is strongly stable and $0<\left\|S_{T^{*}} h\right\|<\|h\|$ for all nonzero $h \in \mathcal{H}$, or T^{*} is strongly stable and $0<\left\|S_{T} h\right\|<\|h\|$ for all nonzero $h \in \mathcal{H}$.

Proof. By the previous theorem, T has no nontrivial invariant subspaces iff $S_{T}=0$ or $S_{T^{*}}=0$, equivalently $\mathcal{N}\left(S_{T}\right)=\mathcal{H}$ or $\mathcal{N}\left(S_{T^{*}}\right)=\mathcal{H}$. When this happens, we also have $\mathcal{H}=\mathcal{N}\left(I-S_{T}\right) \oplus \mathcal{N}\left(S_{T}\right)$ or $\mathcal{H}=\mathcal{N}\left(I-S_{T^{*}}\right) \oplus \mathcal{N}\left(S_{T^{*}}\right)$, that is, $\mathcal{N}\left(I-S_{T}\right)=\{0\}$ or $\mathcal{N}\left(I-S_{T^{*}}\right)=\{0\}$. Hence only the following cases are admissible:
(a) $\mathcal{H}=\mathcal{N}\left(S_{T}\right)=\mathcal{N}\left(S_{T^{*}}\right)$ which means that T and T^{*} are strongly stable,
(b) $\mathcal{H}=\mathcal{N}\left(S_{T}\right)$ and $\mathcal{N}\left(S_{T^{*}}\right)=\mathcal{N}\left(I-S_{T^{*}}\right)=\{0\}$, so T is strongly stable and $0<\left\|S_{T^{*}} h\right\|<\|h\|$ for $0 \neq h \in \mathcal{H}$,
(c) $\mathcal{H}=\mathcal{N}\left(S_{T^{*}}\right)$ and $\mathcal{N}\left(S_{T}\right)=\mathcal{N}\left(I-S_{T}\right)=\{0\}$, meaning that T^{*} is strongly stable and $0<\left\|S_{T} h\right\|<\|h\|$ for $0 \neq h \in \mathcal{H}$.
In the usual terminology (which also appears in [KO]), a bicontraction T belongs to the class C_{0}. (resp. C_{1}.) if $\mathcal{N}\left(S_{T}\right)=\mathcal{H}\left(\right.$ resp. $\left.\mathcal{N}\left(S_{T}\right)=\{0\}\right)$. Also, T belongs to $C_{.0}\left(\right.$ resp. $\left.C_{.1}\right)$ if T^{*} belongs to C_{0}. (resp. C_{1}.). For $\alpha, \beta \in\{0,1\}$, the class $C_{\alpha \beta}$ is defined as $C_{\alpha} \cap C_{\cdot \beta}$. Thus, Theorem 4.5 shows that any bicontraction of class C_{11} has nontrivial invariant subspaces, while Corollary 4.6 implies that every bicontraction without nontrivial invariant subspaces belongs to C_{01} or C_{10}. Concerning these latter classes, the following fact can also be proved.

Theorem 4.7. Every bicontraction that does not belong to the class C_{00} has nontrivial invariant subspaces if and only if every bicontraction which is a quasiaffine transform of a unitary bicontraction has nontrivial invariant subspaces.

Proof. Let $T=\left(T_{0}, T_{1}\right)$ be a bicontraction such that either T or T^{*} is not strongly stable, that is, $S_{T} \neq 0$ or $S_{T^{*}} \neq 0$. Suppose that T has no nontrivial invariant subspace, and firstly that $S_{T} \neq 0$. This forces $\mathcal{N}\left(S_{T}\right)=\{0\}$ and hence $\mathcal{N}\left(T_{i}\right)=\{0\}$, so $T_{i} \neq 0$ for $i=0$, 1 . Since $\left(I-V_{i} V_{i}^{*}\right) S_{T}^{1 / 2} T_{i}=0, V_{i}$ being given by 4.1 , the assumption on T implies $\left(I-V_{i} V_{i}^{*}\right) S_{T}^{1 / 2}=0, i=0,1$ (otherwise, $\overline{\mathcal{R}\left(T_{i}\right)}$ is a nontrivial invariant subspace of T). As $\overline{\mathcal{R}\left(S_{T}\right)}=\mathcal{H}$ it
follows that V_{i} is unitary for $i=0,1$, hence T is a quasiaffine transform by (4.1) of the unitary bicontraction $V=\left(V_{0}, V_{1}\right)$. By duality, in the case $S_{T^{*}} \neq 0$ it follows that T^{*} is a quasiaffine transform of the unitary bicontraction $V_{*}=\left(V_{* 0}, V_{* 1}\right)$ given in 4.5). We proved that, under the cited assumption on T, there exist bicontractions (either T or T^{*}) without nontrivial invariant subspaces, that are quasiaffine transforms of unitary bicontractions.

Conversely, let T be a bicontraction on \mathcal{H} which is a quasiaffine transform of a unitary bicontraction $U=\left(U_{0}, U_{1}\right)$ on \mathcal{K} by an operator $A \in \mathcal{B}(\mathcal{H}, \mathcal{K})$, such that T has no nontrivial invariant subspaces. Assuming that T is strongly stable, that is, $\mathcal{N}\left(S_{T}\right)=\mathcal{H}$, we get, for $0 \neq h \in \mathcal{H}$,

$$
\|A h\|=\left\|U_{0}^{m} U_{1}^{n} A h\right\|=\left\|A T_{0}^{m} T_{1}^{n} h\right\| \rightarrow 0 \quad(m, n \rightarrow \infty)
$$

which yields $h=0$ (A being injective), a contradiction. Hence T is not strongly stable, in particular, T is not in the class C_{00}.

Note that Corollary 4.6 and Theorem 4.7 are direct extensions of [K, Corollary 5.9 and Theorem 4.14].

Finally, notice that some of the above facts concerning invariant subspaces for bicontractions are known (even for multicontractions) and obtained by a different method (see e.g. [KO, Theorems 2.2 and 2.3]). Here we pointed out the role of asymptotic limit operators in the above problems, which is similar to the case of a single contraction (see K$]$).

Acknowledgements. The first author was supported by the Polish Ministry of Science and Higher Education (grant NN201 546438).

References

[BDF] H. Bercovici, R. G. Douglas and C. Foiaş, Canonical models for bi-isometries, in: A Panorama of Modern Operator Theory and Related Topics, Oper. Theory Adv. Appl. 218, Birkhäuser, 2012, 177-205.
[D] R. G. Douglas, On the operator equation $S^{*} X T=X$ and related topics, Acta Sci. Math. (Szeged) 30 (1969), 19-32.
[GS] D. Gaşpar and N. Suciu, Intertwining properties of isometric semigroups and Wold type decompositions, in: Operator in Indefinite Metric Spaces, Scattering Theory and Other Topics, Birkhäuser, 1987, 183-193.
[KO] M. Kosiek and A. Octavio, Wold-type extensions for N-tuples of commuting contractions, Studia Math. 137 (1999), 81-91.
[K] C. S. Kubrusly, An introduction to models and decompositions in operator theory, Birkhäuser, Boston, 1997.
[KVP] C. S. Kubrusly, P. C. M. Vieira and D. O. Pinto, A decomposition for a class of contractions, Adv. Math. Sci. Appl. 6 (1996), 523-530.
[M] W. Mlak, Hyponormal contractions, Colloq. Math. 18 (1967), 137-142.
[P] D. Popovici, A Wold-type decomposition for commuting isometric pairs, Proc. Amer. Math. Soc. 132 (2004), 2303-2314.
[Sl] M. Słociński, On Wold type decomposition of a pair of commuting isometries, Ann. Polon. Math. 37 (1980), 255-262.
[S1] L. Suciu, Some invariant subspaces for A-contractions and applications, Extracta Math. 21 (2006), 221-247.
[S2] L. Suciu, Maximum A-isometric part of an A-contraction and applications, Israel J. Math. 174 (2009), 419-442.
[SNF] B. Sz.-Nagy and C. Foiaş, Harmonic Analysis of Operators on Hilbert Space, North-Holland, Budapest, 1970.

Marek Kosiek
Wydział Matematyki i Informatyki
Uniwersytet Jagielloński
Łojasiewicza 6
30-348 Kraków, Poland
E-mail: Marek.Kosiek@im.uj.edu.pl

Laurian Suciu
Department of Mathematics
"Lucian Blaga" University of Sibiu
Dr. Ion Ratiu 5-7
Sibiu 550012, Romania
E-mail: laurians2002@yahoo.com

Received 20.7.2011
and in final form 22.9.2011

[^0]: 2010 Mathematics Subject Classification: Primary 47A99.

