Decompositions and asymptotic limit for bicontractions

by MAREK KOSIEK (Kraków) and LAURIAN SUCIU (Sibiu)

Abstract. The asymptotic limit of a bicontraction T (that is, a pair of commuting contractions) on a Hilbert space \mathcal{H} is used to describe a Nagy–Foiaş–Langer type decomposition of T. This decomposition is refined in the case when the asymptotic limit of T is an orthogonal projection. The case of a bicontraction T consisting of hyponormal (even quasinormal) contractions is also considered, where we have $S_{T^*} = S_{T^*}$.

1. Introduction. Let \mathcal{H} be a complex Hilbert space and $\mathcal{B}(\mathcal{H})$ be the Banach algebra of all bounded linear operators on \mathcal{H} with the identity element I. The range and the kernel of $T \in \mathcal{B}(\mathcal{H})$ are denoted by $\mathcal{R}(T)$ and $\mathcal{N}(T)$, respectively. Recall that T is hyponormal if $TT^* \leq T^*T$, and T is quasinormal if $T^*T^2 = TT^*$. Obviously, every quasinormal operator is hyponormal.

A (closed) subspace $M \subset \mathcal{H}$ is invariant for T if $TM \subset M$, and when M is invariant for T and T^* one says that M reduces (or M is reducing for) T. Also, P_M stands for the orthogonal projection in $\mathcal{B}(\mathcal{H})$ corresponding to M.

A bicontraction on \mathcal{H} is a pair $T = (T_0, T_1)$ of commuting contractions on \mathcal{H}, that is, a pair of operators satisfying $\|T_i\| \leq 1$ ($i = 0, 1$) and $T_0T_1 = T_1T_0$. If T_0 and T_1 are isometries then T is called a bi-isometry on \mathcal{H}.

Let $T = (T_0, T_1)$ be a bicontraction. It is known (see [D], [SNF], [K], [S1]) that the asymptotic limit of T_i is defined by

$$S_{T_i}h = \lim_{n \to \infty} T_i^n T_i^* T_i^n h \quad (h \in \mathcal{H})$$

and clearly, $0 \leq S_{T_i} \leq T_i^* T_i$, $T_i^* S_{T_i} T_i = S_{T_i}$, $i = 0, 1$ (the last condition means that T_i is an S_{T_i}-isometry [S1], [S2]). It follows that

$$T_0^m S_{T_1} T_0^m \leq T_0^m T_1^* T_1^0 T_0^m = T_1^* T_0^m T_0^m T_1^0$$

for any $m, n \in \mathbb{N}$, and letting $m \to \infty$ one obtains

$$0 \leq \lim_{m \to \infty} T_0^m S_{T_1} T_0^m \leq T_1^* S_{T_0} T_1^* \quad (n \in \mathbb{N}).$$

2010 Mathematics Subject Classification: Primary 47A99.
Key words and phrases: contraction, bicontraction, bi-isometry, Wold type decomposition.

DOI: 10.4064/ap105-1-5 [43] © Instytut Matematyczny PAN, 2012
Letting $n \to \infty$ we infer that

$$s\lim_{m \to \infty} T_0^m S_{T_1} T_0^m \leq s\lim_{n \to \infty} T_1^* S_{T_0} T_1^n,$$

and by symmetry equality holds in this relation. Thus, the asymptotic limit of T can be defined by

$$S_T h = \lim_{m \to \infty} T_0^m S_{T_1} T_0^m h = \lim_{n \to \infty} T_1^* S_{T_0} T_1^n h$$

$$= \lim_{n \to \infty} \lim_{m \to \infty} T_0^m T_1^* T_1 T_0^m h = \lim_{n \to \infty} \lim_{m \to \infty} T_0^m T_1^* T_1 T_0^m h$$

for any $h \in \mathcal{H}$. Note that $0 \leq S_T \leq S_{T_1}$ and $T_i^* S_{T_1} = S_T$ for $i = 0, 1$. In fact,

$$S_T = \max \{ A \in \mathcal{B}(\mathcal{H}) : 0 \leq A \leq I, T_i^* A T_i = A, i = 0, 1 \}.$$

We say that T is strongly stable if $\mathcal{N}(S_T) = \{0\}$, that is, $T_0^m T_1^n h \to 0$ $(m, n \to \infty)$ for $h \in \mathcal{H}$.

Our goal in this paper is to find some orthogonal decompositions of \mathcal{H} induced by bicontractions T for which S_T is an orthogonal projection. So, in Section 2 we get some conditions on T under which $S_T = S_{T_1}^2$. We describe in the language of asymptotic limits the Nagy–Foiaş–Langer type decomposition of T relative to a bicontraction T. The case when T consists of hyponormal or quasinormal contractions is considered here, where we show that $S_{T^*} = S_{T_1}^2$.

In Section 3 we use the operators S_T and S_{T_i} $(i = 0, 1)$ to refine the Nagy–Foiaş–Langer type decomposition for the bicontractions T with $S_T = S_{T_1}^2$ (and $S_{T^*} = S_{T_1}^2$). This decomposition is related to the general Wold type decomposition of a bi-isometry, obtained by D. Popovici [P] and recently, in a different way, by Bercovici–Douglas–Foiaş [BDF].

2. Invariant subspaces induced by the asymptotic limit. As in the case of a single contraction (see [K]), many interesting facts for bicontractions arise in the case when S_T is an orthogonal projection, that is, $S_T = S_{T_1}^2$, or equivalently $\mathcal{N}(S_T - S_{T_1}^2) = \mathcal{H}$. The following proposition, which extends Lemmas 1 and 2 of [KVP], gives interesting information for this case of bicontractions.

Proposition 2.1. For any bicontraction $T = (T_0, T_1)$ on \mathcal{H} we have:

(i) $\mathcal{N}(S_T - S_{T_1}^2) = \mathcal{N}(I - S_T) \oplus \mathcal{N}(S_T)$ is the maximum subspace of \mathcal{H} which is invariant for T_0 and T_1 and on which S_T commutes with T_0 and T_1.

(ii) $\mathcal{N}(I - S_T)$ and $\mathcal{N}(S_T)$ are the maximum invariant subspaces for T_0 and T_1 in \mathcal{H} such that T_0 and T_1 are isometries on $\mathcal{N}(I - S_T)$, and T is strongly stable on $\mathcal{N}(S_T)$. In addition,

$$\mathcal{N}(I - S_T) = \{ h \in \mathcal{H} : \| T_0^m T_1^n h \| = \| h \|, \forall m, n \in \mathbb{N} \}.$$
Moreover, if $N(I - S_{T_i})$ is invariant for T_{1-i} ($i = 0, 1$) then

(2.2) \[N(I - S_T) = N(I - S_{T_0}) \cap N(I - S_{T_1}). \]

Proof. Observe that $N(I - S_T)$ and $N(S_T)$ are contained in $N(S_T - S_T^2)$, and are orthogonal. So, $N(I - S_T) \oplus N(S_T) \subset N(S_T - S_T^2)$. Conversely, let $h \in N(S_T - S_T^2)$ be such that h is orthogonal to $N(I - S_T) \oplus N(S_T)$. Then $S_T h \in N(I - S_T)$ and therefore $\langle h, S_T h \rangle = 0$, which means that $S_T h = 0$ or $h \in N(S_T)$. Hence $h = 0$, since h is orthogonal to $N(S_T)$. Consequently,

\[N(S_T - S_T^2) = N(I - S_T) \oplus N(S_T). \]

Now recall that $T_i^* S_T T_i = S_T$, whence $N(S_T)$ is invariant for T_i ($i = 0, 1$). As we also have $(T_i$ is a contraction)

\[T_i^* (I - S_T) T_i \leq I - S_T, \]

it follows that $N(I - S_T)$ is invariant for T_i ($i = 0, 1$).

Furthermore, for $m, n, p, q \in \mathbb{N}$ one has

\[T_0^{*(m+p)} T_1^{*(n+q)} T_1^{m+q} T_0^{m+p} \leq T_0^{*m} T_1^{*n} T_1^{m} T_0^{m}, \]

and setting $p, q \to \infty$ we get $S_T \leq T_0^{*m} T_1^{*n} T_1^{m} T_0^{m}$, whence

\[I - T_0^{*m} T_1^{*n} T_1^{m} T_0^{m} \leq I - S_T. \]

This gives on one hand,

\[N(I - S_T) \subset \{ h \in \mathcal{H} : \| T_0^{m} T_1^{n} h \| = \| h \|, \forall m, n \in \mathbb{N} \}. \]

On the other hand, if $\| T_0^{m} T_1^{n} h \| = \| h \| \text{ for } m, n \in \mathbb{N}$ then letting $m, n \to \infty$ one obtains $\| S_T h \| = \| h \|$, and since $0 \leq S_T \leq I$ one infers $h = S_T h$, that is, $h \in N(I - S_T)$. Hence the relation (2.1) holds.

Next, if $h \in N(S_T - S_T^2)$ and $h = h_1 \oplus h_0$ with $h_1 \in N(I - S_T)$, $h_0 \in N(S_T)$ then

\[(S_T T_i - T_i S_T) h = T_i h_1 - T_i h_1 = 0, \quad i = 0, 1, \]

therefore S_T commutes with T_0 and T_1 on $N(S_T - S_T^2)$.

Let now $\mathcal{M} \subset \mathcal{H}$ be another subspace invariant for T_0 and T_1 such that $S_T T_i k = T_i S_T k$ for $k \in \mathcal{M}$, $i = 0, 1$. Then $S_T T_0^{m} T_1^{n} k = T_0^{m} T_1^{n} S_T k$ for any $m, n \in \mathbb{N}$, and this implies (T_i being an S_T-isometry)

\[S_T k = T_0^{*m} T_1^{*n} S_T T_0^{m} T_1^{n} k = T_0^{*m} T_1^{*n} T_0^{m} T_1^{n} S_T k. \]

Letting $m, n \to \infty$ we get $S_T k = S_T^2 k$, that is, $k \in N(S_T - S_T^2)$. So $\mathcal{M} \subset N(S_T - S_T^2)$ and we conclude that $N(S_T - S_T^2)$ is the maximum invariant subspace for T_i on which S_T commutes with T_i, $i = 0, 1$, which proves (i).

It is clear (by (2.1)) that T_i is an isometry on $N(I - S_T)$, $i = 0, 1$, and (by the definition of S_T) we have $T_0^{m} T_1^{n} h \to 0 (m, n \to \infty)$ for $h \in N(S_T)$, that is, T is strongly stable on $N(S_T)$. In addition, it is obvious that $N(I - S_T)$ and $N(S_T)$ are the maximum subspaces with the above mentioned properties. This proves (ii).
Finally, if \(N(I - S_{T_i}) \) is invariant for \(T_{1-i} \) then \(N(I - S_{T_0}) \cap N(I - S_{T_1}) \) is invariant for \(T_0 \) and \(T_1 \), and clearly \(T_i \) is an isometry on this subspace for \(i = 0, 1 \). Since \(N(I - S_T) \subset N(I - S_{T_0}) \cap N(I - S_{T_1}) \) it follows that the two subspaces coincide (by the maximality of \(N(I - S_T) \) cited in (ii)).

Corollary 2.2. For a bicontraction \(T = (T_0, T_1) \) on \(\mathcal{H} \) we have \(S_T = S_T^2 \) if and only if \(S_T \) is completely nonunitary, because in this case \(T_i \) is an isometry on this subspace for \(i = 0, 1 \). Since \(S_T \) reduces \(T_i \) and \(T_i \) is an isometry on this subspace for \(i = 0, 1 \), it follows that the two subspaces coincide (by the maximality of \(N(I - S_T) \) cited in (ii)).

Proof. If \(S_T = S_T^2 \), then \(N(S_T - S_T^2) = \mathcal{H} \), so \(S_T \) commutes with \(T_0 \) and \(T_1 \) on \(\mathcal{H} \) (by Proposition 2.1). Conversely, if \(S_T T_i = T_i S_T \) \((i = 0, 1)\) then necessarily \(N(S_T - S_T^2) = \mathcal{H} \) (by the maximality of \(N(S_T - S_T^2) \) in Proposition 2.1(i)), that is, \(S_T = S_T^2 \).

Assume now that \(S_T = S_T^2 \). For \(m, n \in \mathbb{N} \) and \(h \in \mathcal{H} \) one has

\[
S_T h = T_0^{m} T_1^{m} S_T T_0^{m} T_1^{m} h = T_0^{m} T_1^{m} S_T^2 T_0^{m} T_1^{m} h = T_0^{m} T_1^{m} T_0^{m} S_T T_0^{m} h \to S_T^3 h \quad (m, n \to \infty),
\]

hence \(S_T = S_T^3 \). It follows that \(S_T = S_T^2 \).

This corollary extends the corresponding assertions for contractions in Lemma 1 and Proposition 1 of \([KVP]\).

A special case of bicontractions for which their asymptotic limits are orthogonal projections is mentioned in the following theorem.

As usual, a bicontraction \(T = (T_0, T_1) \) on \(\mathcal{H} \) is called completely nonunitary if there is no nonzero subspaces of \(\mathcal{H} \) which reduce \(T_0 \) and \(T_1 \) to unitary operators. Clearly, every strongly stable bicontraction \(T \) is completely nonunitary, because in this case \(\mathcal{H} = N(S_T) \), therefore \(N(I - S_T) = \{0\} \) (by Proposition 2.1(i)).

Theorem 2.3. Let \(T = (T_0, T_1) \) be a bicontraction on \(\mathcal{H} \) with \(T_0 \) and \(T_1 \) hyponormal. Then \(S_T^* = S_T^{2*} \) and the maximum subspace of \(\mathcal{H} \) which reduces \(T_0 \) and \(T_1 \) to unitary operators is

\[
N(I - S_T^*) = \bigcap_{m, n \geq 0} T_0^{m} T_1^{n} [N(I - S_{T_0^*}) \cap N(I - S_{T_1^*})].
\]

Moreover, \(T^* \) is strongly stable if and only if \(T \) is completely nonunitary.

Proof. Since \(T_i \) is hyponormal we know (see the proof of \([K] \text{ Theorem 5.3}\)) that \(S_{T_i^*} = S_{T_i^{2*}} \) and \(\mathcal{R}(S_{T_{i}^*}) = N(I - S_{T_{i}^*}) \) reduces \(T_i \) to a unitary operator, for \(i = 0, 1 \). As \(N(S_{T_{i}^*}) \) is invariant for \(T_{0}^* \) and \(T_{1}^* \), \(\mathcal{R}(S_{T_{i}^*}) \) will be invariant for \(T_0 \) and \(T_1 \). In addition, because

\[
\mathcal{R}(S_{T_{i}^*}) \subset \mathcal{R}(S_{T_{0}^*}) \cap \mathcal{R}(S_{T_{1}^*}) = N(I - S_{T_{0}^*}) \cap N(I - S_{T_{1}^*})
\]

it follows that \(T_0 \) and \(T_1 \) are isometries on \(\mathcal{R}(S_{T_{i}^*}) \). So, we infer from Propo-
Decompositions for bicontractions

Proposition 2.1 that
\[\mathcal{R}(S_{T^*}) \subset \mathcal{N}(I - S_T). \]

Take an arbitrary \(h = h_1 \oplus h_0 \in \mathcal{H} \) with \(h_1 \in \mathcal{R}(S_{T^*}), h_0 \in \mathcal{N}(S_{T^*}) \). We have (by the above inclusion)
\[T_0 S_{T^*} h = T_0 S_{T^*} T_0^* T_0 h_1 = S_{T^*} T_0 h_1. \]

But \(T_0^* S_{T^*} T_0 h_0 = S_{T^*} h_0 = 0 \), that is, \(S_{T^*} T_0 h_0 \in \mathcal{N}(T_0^*) \subset \mathcal{N}(S_{T^*}) \), hence \(S_{T^*} T_0 h_0 = 0 \). Thus, we obtain \(T_0 S_{T^*} h = S_{T^*} T_0 h \), and by symmetry one has \(T_1 S_{T^*} h = S_{T^*} T_1 h \). This means that \(S_{T^*} \) commute with \(T_0 \) and \(T_1 \), and by Corollary 2.2 we have \(S_{T^*} = S_{T^*}. \)

Now it follows that \(\mathcal{N}(I - S_{T^*}) \) is the maximum subspace of \(\mathcal{H} \) which reduces \(T_0^* \) and \(T_1^* \) to isometries. In fact, by the above remark, \(\mathcal{N}(I - S_{T^*}) = \mathcal{R}(S_{T^*}) \) is the maximum subspace which reduces \(T_0 \) and \(T_1 \) to unitary operators. Obviously, this subspace is contained in the right side of (2.3), briefly denoted by \(\mathcal{N}_T. \)

Let \(h \in \mathcal{N}_T \) be orthogonal to \(\mathcal{N}(I - S_{T^*}) \). So \(h \in \mathcal{N}(S_{T^*}) \), that is, \(T_0^* T_1^* h = 0 \) \((m, n \to \infty)\). Since \(h \in \mathcal{N}_T \), for any \(m, n \in \mathbb{N} \) there exist \(h_{m,n} \in \mathcal{N}(I - S_{T_0^*}) \cap \mathcal{N}(I - S_{T_1^*}) \) such that \(h = T_0^* T_1^* h_{m,n} \). As \(\mathcal{N}(I - S_{T_0^*}) \cap \mathcal{N}(I - S_{T_1^*}) \) is invariant for \(T_0 \) and \(T_1 \), while \(T_0 \), \(T_1 \) are isometries on this subspace, we get
\[h_{m,n} = T_0^* T_1^* h_{m,n} = T_0^* T_1^* h \to 0, \quad m, n \to \infty. \]
This yields \(\|h\| = \|h_{m,n}\| \to 0 \) \((m, n \to \infty)\), hence \(h = 0 \). Thus, (2.3) holds.

Finally, it is clear that \(\mathcal{N}(I - S_{T^*}) = \{0\} \) implies \(\mathcal{H} = \mathcal{N}(S_{T^*}) \), therefore \(T^* \) is strongly stable if (and only if, by the above remark) \(T \) is completely nonunitary. ■

Remark 2.4. W. Mlak proved in [M] that the “unitary part” in \(\mathcal{H} \) of a hyponormal contraction \(T_0 \) is \(\bigcap_{n \geq 0} T_0^n \mathcal{N}(I - T_0 T_0^*) \), by using the minimal unitary dilation of \(T_0 \). This fact was recovered in [S2] without using dilation, by an argument as above involving the asymptotic limit. In the present context we cannot use \(\mathcal{N}(I - T_0 T_0^*) \cap \mathcal{N}(I - T_1 T_1^*) \) in (2.3) instead of \(\mathcal{N}(I - S_{T_0^*}) \cap \mathcal{N}(I - S_{T_1^*}) \), because the former subspace is not invariant for \(T_0 \) and \(T_1 \), in general.

We say that a bicontraction \(T = (T_0, T_1) \) on \(\mathcal{H} \) is unitary if \(T_0 \) and \(T_1 \) are unitary operators. We now give the “asymptotic” version of the Nagy–Foiaș–Langer decomposition for bicontractions.

Theorem 2.5. For every bicontraction \(T \) on \(\mathcal{H} \) there exists a unique decomposition of \(\mathcal{H} \) of the form
\[\mathcal{H} = \mathcal{H}_u \oplus \mathcal{H}_u^\perp \]
(2.4)
such that \mathcal{H}_u reduces T to a unitary bicontraction and \mathcal{H}^u_+ reduces T to a completely nonunitary bicontraction. In addition,

$$
(2.5) \quad \mathcal{H}_u = \mathcal{N}(I - S_T) \cap \mathcal{N}(I - S_{T^*}) = \mathcal{N}(I - S_T S_{T^*}) = \mathcal{N}(I - S_{T^*} S_T) = \mathcal{N}(I - S_{T^*}^1 S_T^1) = \mathcal{N}(I - S_T^1 S_{T^*}^1).
$$

Proof. If $h \in \mathcal{N}(I - S_T) \cap \mathcal{N}(I - S_{T^*})$ then $h = S_T h = S_{T^*} h = S_T S_{T^*} h = S_{T^*} S_T h$, so $\mathcal{N}(I - S_T) \cap \mathcal{N}(I - S_{T^*}) \subset \mathcal{N}(I - S_{T^*}) \cap \mathcal{N}(I - S_{T^*} S_T)$. Conversely, let $h \in \mathcal{N}(I - S_{T^*} S_T)$, that is, $h = S_{T^*} S_T h$. We have

$$
\|h\|^2 = \langle S_{T^*} h, S_T h \rangle \leq \|S_{T^*}^1 h\| \|S_T^1 h\| \leq \|S_{T^*}^1 h\| \|h\|,
$$
whence $\|h\| = \|S_{T^*}^1 h\|$, or equivalently $(I - S_T) h = 0$ (as $0 \leq S_T \leq I$).

Similarly, one has $\|h\| = \|S_T^1 h\|$, that is, $(I - S_{T^*}) h = 0$, and so

$$
\mathcal{N}(I - S_T) \cap \mathcal{N}(I - S_{T^*}) = \mathcal{N}(I - S_T S_{T^*}) = \mathcal{N}(I - S_{T^*} S_T).
$$

Now, if $h = S_{T^*} S_T h$ then as above $\|h\| = \|S_{T^*}^1 h\| = \|S_{T^*}^1 h\|$, therefore $h = S_{T^*}^1 h = S_{T^*} h = S_{T^*} h = S_{T^*}^1 S_T S_{T^*}^1 h = S_{T^*}^1 S_T S_{T^*}^1 h$. This shows that $\mathcal{N}(I - S_{T^*} S_T) \subset \mathcal{N}(I - S_{T^*}^1 S_T S_{T^*}^1) \cap \mathcal{N}(I - S_{T^*} S_T S_{T^*}^1 S_T^1)$. Conversely, $h = S_{T^*}^1 S_T S_{T^*}^1 h$ gives

$$
\|h\|^2 = \|S_{T^*}^1 S_T S_{T^*}^1 h\|^2 \leq \|S_{T^*}^1 S_T h\|^2 \leq \|S_{T^*}^1 h\|^2 \leq \|h\|^2,
$$
whence $\|h\|^2 = \|S_{T^*}^1 S_T S_{T^*}^1 h\|^2 = \|S_{T^*}^1 h\|^2$. Hence $h = S_{T^*} h = S_{T^*}^1 h$ and there fore $\|S_{T^*}^1 h\| = \|S_{T^*} S_{T^*}^1 h\| = \|h\|$ (the last equality follows from our assumption), which yields $h = S_{T^*} h$. So, $\mathcal{N}(I - S_{T^*} S_T S_{T^*}^1 S_T^1)$ and (by symmetry) $\mathcal{N}(I - S_{T^*}^1 S_T S_{T^*}^1)$ are contained in $\mathcal{N}(I - S_T) \cap \mathcal{N}(I - S_{T^*})$. Thus, the above equalities between subspaces are completed with the last two from (2.5).

Next, by (2.1) for T and T^* we see immediately that the subspace $\mathcal{H}_u := \mathcal{N}(I - S_T) \cap \mathcal{N}(I - S_{T^*})$ reduces T_0 and T_1 to unitary operators. In addition, if $\mathcal{M} \subset \mathcal{H}$ is another such subs pace, then $\mathcal{M} \subset \mathcal{H}_u$ by Proposition 2.1(ii). Hence \mathcal{H}_u is the maximum subspace with the property above, and finally, the reducing decomposition (2.4) for T is unique with T is unitary on \mathcal{H}_u, and completely nonunitary on \mathcal{H}^u_+.

Corollary 2.6. For every bi-isometry $T = (T_0, T_1)$ on \mathcal{H} we have $S_{T^*} = S_{T_0^* T_1^*}$, hence $\mathcal{H}_u = \mathcal{N}(I - S_{T_0^* T_1^*})$ and $\mathcal{H}^u_+ = \mathcal{N}(S_{T_0^* T_1^*})$ in (2.4). Moreover, T is completely nonunitary if and only if $T_0 T_1$ is a (unilateral) shift on \mathcal{H}.

Proof. Since $T_0 T_1$ is an isometry, by Theorem 2.3 the maximum subspace of \mathcal{H} which reduces $T_0 T_1$ to a unitary operator is $\mathcal{N}(I - S_{T_0^* T_1^*})$. So, by Theorem 2.5 one obtains $\mathcal{N}(I - S_{T^*}) \subset \mathcal{N}(I - S_{T_0^* T_1^*})$. On the other hand,
\[\mathcal{N}(I - S_{T_0^*T_1^*}) = \mathcal{N}(I - S_{(T_0, T_1)}) = \bigcap_{n \geq 0} T_0^n T_1^n \mathcal{H}, \]

it follows immediately that \(\mathcal{N}(I - S_{T_0^*T_1^*}) \) reduces \(T_0 \) and \(T_1 \) to unitary operators, hence \(\mathcal{N}(I - S_{T_0^*T_1^*}) \subset \mathcal{N}(I - T_{i}^*) \) by Theorem 2.5. Thus \(\mathcal{N}(I - T_{i}^*) = \mathcal{N}(I - S_{T_{i}^*}) \), and since \(S_{T_i^*} \), \(S_{T_0^*T_1^*} = S_{(T_0, T_1)}^* \) are orthogonal projections, also \(\mathcal{N}(S_{T_i^*}) = \mathcal{N}(S_{T_0^*T_1^*}) \). We conclude that \(S_{T_i^*} = S_{T_0^*T_1^*} \), and the remaining assertions of the corollary follow from Theorems 2.3 and 2.5. \(\Box \)

Another interesting particular case of Theorem 2.3 is considered below. Notice that the case of a single quasinormal contraction was considered in [KVP1 Example 3].

Proposition 2.7. For every bicontraction \(T = (T_0, T_1) \) on \(\mathcal{H} \) with \(T_0 \) and \(T_1 \) quasinormal one has \(S_{T_i^*} = S_{T_i}^2 \). Moreover, \(S_T = S_T^2 \) if and only if either \(T_0^* \mid_{\mathcal{R}(S_T)} \) or \(T_1^* \mid_{\mathcal{R}(S_T)} \) is a coisometry.

In addition, \(S_T = S_{T_i^*} \) if and only if \(T_i^* \mid_{\mathcal{R}(S_T)} \) is normal and \(\mathcal{R}(S_T) \) is invariant for \(T_i T_i^* \) (\(i = 0, 1 \)). In this case \(\mathcal{N}(I - S_T) = \mathcal{N}(I - S_{T_i^*}) \cap \mathcal{N}(I - S_{T_i^*}) \).

Proof. Clearly, \(S_{T_i^*} = S_{T_i}^2 \) by Theorem 2.3. Furthermore, because \(T_i \) is quasinormal, we have (see [31], or Lemma 2.8 below) \(S_{T_i} = S_{T_i}^2 \), so \(\mathcal{R}(S_{T_i}) = \mathcal{N}(I - S_{T_i}) \) and \(\mathcal{R}(S_T) \subset \mathcal{N}(I - S_{T_i}) \), \(i = 0, 1 \). So, if \(S_T = S_T^2 \) then \(\mathcal{R}(S_T) \) reduces \(T_0^* \) and \(T_1^* \) to coisometries.

Conversely, assume that, say, \(T_0^* \mid_{\mathcal{R}(S_T)} \) is a coisometry (\(\mathcal{R}(S_T) \) being invariant for \(T_0^* \) and \(T_1^* \)). Put \(T_0 = T_0^* \mid_{\mathcal{R}(S_T)} \). Then \(T_0 = P_{\mathcal{R}(S_T)} T_0 \mid_{\mathcal{R}(S_T)} \) is an isometry on \(\mathcal{R}(S_T) \). Hence for \(h \in \mathcal{H} \) we obtain

\[\| S_{T} h \| = \| P_{\mathcal{R}(S_T)} T_0 S_{T} h \| \leq \| T_0 S_{T} h \| \leq \| S_{T} h \|, \]

whence \(T_0 S_{T} h = P_{\mathcal{R}(S_T)} T_0 S_{T} h \). We infer that \(\mathcal{R}(S_{T_i}) \) reduces \(T_i \), and since \(\mathcal{R}(S_{T_i}) \subset \mathcal{N}(I - S_{T_i}) \) we have for \(m, n \in \mathbb{N} \) and \(h \in \mathcal{H} \),

\[S_{T} h = T_0^m T_1^m S_{T} h = T_0^m T_1^m T_1^m T_1^m S_{T} h. \]

Letting \(m, n \to \infty \) we infer that \(S_{T} = S_{T_i}^2 \).

Obviously, if \(S_T = S_{T_i^*} \) then \(\mathcal{R}(S_{T_i}) \) reduces \(T_i \) to unitary operators, \(i = 0, 1 \). Conversely, suppose that \(T_i^* \mid_{\mathcal{R}(S_T)} \) are normal operators for \(i = 0, 1 \). Then for \(h \in \mathcal{H} \) we have

\[T_i^* P_{\mathcal{R}(S_T)} T_0 S_{T} h = P_{\mathcal{R}(S_T)} T_0 T_i^* S_{T} h = T_0 T_i^* S_{T} h, \]

since \(P_{\mathcal{R}(S_T)} T_0 T_i^* S_{T} h = 0 \) by the assumption that \(\mathcal{R}(S_T) \) is invariant for \(T_0 T_i^* \). It follows that \(T_i^* P_{\mathcal{N}(S_{T_i})} T_0 S_{T} h = 0 \), which gives \(P_{\mathcal{N}(S_{T_i})} T_0 S_{T} h = 0 \), that is, \(T_0 S_{T} h = P_{\mathcal{R}(S_T)} T_0 S_{T} h \). Hence \(\mathcal{R}(S_T) \) reduces \(T_0 \), and so \(T_0 T_i^* S_{T} h = \)
\(T_0^* T_0 S_T h = S_T h\) which means that \(T_0\) is unitary on \(R(S_T)\). By symmetry, \(R(S_T)\) also reduces \(T_1\) to a unitary operator, and by Theorem 2.3 we get

\[
R(S_T) = \mathcal{N}(I - S_{T^*}) = \mathcal{N}(I - S_T).
\]

Finally, this leads to \(S_T = S_{T^*}\). In this case

\[
\mathcal{N}(I - S_T) \subset \mathcal{N}(I - S_{T_0^*}) \cap \mathcal{N}(I - S_{T_1^*}) \subset \mathcal{N}(I - S_{T_0}) \cap \mathcal{N}(I - S_{T_1}),
\]

and since \(\mathcal{N}(I - S_{T_0^*}) \cap \mathcal{N}(I - S_{T_1^*})\) is invariant for \(T_0\) and \(T_1\) it follows (from the second inclusion) that \(T_0\) and \(T_1\) are isometries on this subspace. Thus \(\mathcal{N}(I - S_T) = \mathcal{N}(I - S_{T_0^*}) \cap \mathcal{N}(I - S_{T_1^*})\), by the maximality of \(\mathcal{N}(I - S_T)\) given in Proposition 2.1(ii).}

Let us remark that if \(T = (T_0, T_1)\) consists of quasinormal commuting contractions and either \(T_0 S_{T_1} = S_{T_1} T_0\) or \(T_1 S_{T_0} = S_{T_0} T_1\) then \(S_T = S_{T_0} S_{T_1} = S_{T_1} S_{T_0}\), hence \(S_T = S_T^2\). We see in the example below that the condition \(S_T = S_T^2\) does not ensure the commutativity of \(T_{1-i}\) with \(S_{T_i}\), \(i = 0, 1\). We first give

Lemma 2.8. For every quasinormal contraction \(T_0\) on \(\mathcal{H}\) one has \(S_{T_0} = S_{T_0^*} T_0 = S_{T_0}^2\).

Proof. Since \(T_0\) is quasinormal we have (by induction) \((T_0^* T_0)^n = T_0^* T_0^n\) for any \(n \in \mathbb{N}\). Then

\[
S_{T_0} h = \lim_{n \to \infty} T_0^{2n} T_0^2 h = \lim_{n \to \infty} (T_0^* T_0)^{2n} h = S_{T_0^*} T_0 h = S_{T_0}^2 h
\]

for \(h \in \mathcal{H}\). Moreover, the above operator is an orthogonal projection because \(T_0^* T_0\) is positive. ■

Example 2.9. Let \(S\) be the canonical shift on \(l^2_+\) and \(\mathcal{K} = R(S) \oplus l^2_+\). Put \(S_0 = S|_{R(S)}\) and let \(S_1 : l^2_+ \to R(S)\) be given by \(S_1 = S P_{N(S^*)}\). Consider \(T_0, T_1 \in \mathcal{B}(\mathcal{K})\) defined by the operator matrices

\[
T_0 = \begin{pmatrix} S_0 & S_1 \\ 0 & 0 \end{pmatrix}, \quad T_1 = \begin{pmatrix} 0 & 0 \\ 0 & S \end{pmatrix}
\]

relative to the above decomposition of \(\mathcal{K}\). We have

\[
T_0^* T_0 = I_{R(S)} \oplus P_{N(S^*)}, \quad T_0^* T_0^2 = T_0 = T_0 T_0^* T_0,
\]

hence \(T_0\), and also \(T_1\), are quasinormal contractions on \(\mathcal{K}\). In addition \(T_0 T_1 = T_1 T_0 = 0\), so \(T = (T_0, T_1)\) is a bicontraction on \(\mathcal{K}\), and clearly, by the above commutativity condition for \(T_0\) and \(T_1\) we have \(S_T = 0\).

On the other hand, (by Lemma 2.8) \(S_{T_0} = S_{T_0^*} T_0 = T_0^* T_0\) and

\[
T_1 S_{T_0} = 0 \oplus S P_{N(S^*)} = 0 \oplus S_1 \neq 0 = 0 \oplus P_{N(S^*)} S = S_{T_0 T_1}.
\]
Similarly, since $S_{T_1} = 0 \oplus I^2_{T_1}$ we get

$$T_0S_{T_1} = \begin{pmatrix} 0 & S_1 \\ 0 & 0 \end{pmatrix} \neq 0 = S_{T_1}T_0.$$

We conclude that $S_T = S^2_T$ but $T_{1-i}S_{T_1} \neq S_{T_1}T_{1-i}$, or equivalently $T_{1-i}|T_i| \neq |T_i|T_{1-i}$ because $|T_i| = S^*_T$ in this case, for $i = 0, 1$. This also shows that the conditions $T_{1-i}|T_i| = |T_i|T_{1-i}$ ($i = 0, 1$) are not necessary to ensure $S_T = S^2_T$, when T_0 and T_1 are quasinormal.

3. **Decompositions in the case $S_T = S^2_T$.** The asymptotic limits can be used to refine the Nagy–Foiaş–Langer decomposition for bicontractions when S_T is an orthogonal projection. This decomposition (to be given below) generalizes the Wold type decompositions for bi-isometries which appear in [P] and [BDF]. Recall that a similar result for contractions can be found in [K].

We say (briefly) that a subspace $\mathcal{M} \subset \mathcal{H}$ is in\textit{variant} (resp. reducing) for a bicontraction $T = (T_0, T_1)$ on \mathcal{H} if \mathcal{M} is invariant (resp. reducing) for T_0 and T_1. Also, we say that T is coisometric on \mathcal{H} if both T_i are coisometries.

The statements of Theorem 3.1 and Corollary 3.2 below extend Theorem 1 and Corollary 1 of [KVP] obtained for a single contraction.

Theorem 3.1. Let $T = (T_0, T_1)$ be a bicontraction on \mathcal{H} with $S_T = S^2_T$. Then \mathcal{H} admits the decomposition

$$\mathcal{H} = \mathcal{N}(I - S_T) \cap \mathcal{N}(I - S^*_T) \oplus \mathcal{N}(I - S_T) \cap \mathcal{N}(S^*_T) \oplus \mathcal{N}(S_T) \quad (3.1)$$

where all the three summands reduce T in such a way that T is unitary on $\mathcal{N}(I - S_T) \cap \mathcal{N}(I - S^*_T)$, T^* is coisometric and strongly stable on $\mathcal{N}(I - S_T) \cap \mathcal{N}(S^*_T)$, and T is strongly stable on $\mathcal{N}(S_T)$.

Moreover, if $\mathcal{N}(S_T) \neq \{0\}$ and $S^*_T = S^2_{T^*}$ then $\mathcal{N}(S_T)$ admits the decomposition

$$\mathcal{N}(S_T) = \mathcal{N}(I - S^*_T) \cap \mathcal{N}(S_T) \oplus \mathcal{N}(S^*_T) \cap \mathcal{N}(S^*_T), \quad (3.2)$$

where the two summands reduce T, and T is coisometric and strongly stable on $\mathcal{N}(I - S^*_T) \cap \mathcal{N}(S_T)$, while T and T^* are strongly stable on $\mathcal{N}(S_T) \cap \mathcal{N}(S^*_T)$.

Proof. Since $S_T = S^2_T$ one has $\mathcal{H} = \mathcal{N}(I - S_T) \oplus \mathcal{N}(S_T)$ where $\mathcal{N}(I - S_T)$ reduces T to a bi-isometry and T is strongly stable on $\mathcal{N}(S_T)$.

Let $W = (W_0, W_1)$ where $W_i = T_i|\mathcal{N}(I - S_T)$, $i = 0, 1$. By (2.5), the maximum subspace which reduces T to a unitary bicontraction is

$$\mathcal{H}_u = \mathcal{N}(I - S_T) \cap \mathcal{N}(I - S^*_T).$$

Now since W_i is an isometry on $\mathcal{N}(I - S_T)$ it follows that $S_{W^*_i} = S^2_{W^*_i}$ for $i = 0, 1$, and by Corollary 2.6 we obtain $S_{W^*_i} = S^2_{W^*_i}$. Therefore
\(\mathcal{N}(I - S_T) = \mathcal{N}(I - S_{W^*}) \oplus \mathcal{N}(S_{W^*}) \)

where the summands reduce \(W_i \), and so \(T_i, i = 0, 1 \). We also have

\[
\mathcal{N}(I - S_{W^*}) = \mathcal{N}(I - S_T) \cap \mathcal{N}(I - S_{T^*}) = \mathcal{H}_u,
\]

\[
\mathcal{N}(S_{W^*}) = \mathcal{N}(I - S_T) \cap \mathcal{N}(S_{T^*}),
\]

hence \(T_i^m T_1^n h \to 0 \ (m, n \to \infty) \) for \(h \in \mathcal{N}(S_{W^*}) \), that is, \(T^* \) is co-isometric and strongly stable on \(\mathcal{N}(S_{W^*}) \).

Next suppose \(\mathcal{N}(S_T) \neq \{0\} \) and let \(W' = (W'_0, W'_1) \) where \(W'_i = T_i |_{\mathcal{N}(S_T)} \), \(i = 0, 1 \). Then relative to the decomposition

\[
\mathcal{H} = \mathcal{H}_u \oplus \mathcal{N}(S_{W^*}) \oplus \mathcal{N}(S_T)
\]

we have \(S_{T^*} = I \oplus 0 \oplus S_{W^*} \), whence

\[
\mathcal{N}(S_{T^*}) = \mathcal{N}(S_{W^*}) \oplus \mathcal{N}(S_{W^*}) \subset \mathcal{N}(S_{W^*}) \oplus \mathcal{N}(S_T).
\]

Since \(\mathcal{N}(S_{W^*}) \subset \mathcal{N}(I - S_T) = \mathcal{H} \cap \mathcal{N}(S_T) \) we infer that

\[
\mathcal{N}(S_{W^*}) = \mathcal{N}(S_T) \cap \mathcal{N}(S_{T^*}).
\]

On the other hand, since \(I - S_{T^*} = 0 \oplus I \oplus (I - S_{W^*}) \) we have

\[
\mathcal{N}(I - S_{T^*}) = \mathcal{H}_u \oplus \mathcal{N}(I - S_{W^*}) \subset \mathcal{H}_u \oplus \mathcal{N}(S_T),
\]

whence

\[
\mathcal{N}(I - S_{W^*}) = \mathcal{N}(I - S_{T^*}) \cap \mathcal{N}(S_T).
\]

Assume \(S_T = S_T^2 \) and \(S_{T^*} = S_{T^*}^2 \). Clearly, the second condition is equivalent to \(S_{W^*} = S_{W^*}^2 \), which also means

\[
\mathcal{N}(S_T) = \mathcal{N}(I - S_{W^*}) \oplus \mathcal{N}(S_{W^*}).
\]

Thus, the summands, reducing for \(W' \), also reduce \(T \) in such a way that \(T^* \) is a bi-isometry and \(T \) is strongly stable on \(\mathcal{N}(I - S_{W^*}) \), and \(T, T^* \) are strongly stable bicontractions on \(\mathcal{N}(S_{W^*}) \). \(\blacksquare \)

Corollary 3.2. For a bicontraction \(T = (T_0, T_1) \) on \(\mathcal{H} \) one has \(S_T = S_{T^*} \) if and only if \(T_i = U_i \oplus S_i \ (i = 0, 1) \) relative to a decomposition \(\mathcal{H} = \mathcal{M} \oplus \mathcal{M}^\perp \), where \(\mathcal{M} \) reduces \(T \) so that \(U = (U_0, U_1) \) is unitary on \(\mathcal{M} \), while \(S = (S_0, S_1) \) and \(S^* \) are strongly stable on \(\mathcal{M}^\perp \).

Proof. Suppose \(S_T = S_{T^*} \). Then for \(m, n \geq 1 \) we have

\[
S_T = T_0^m T_1^n S_T T_1^n T_0^m = T_0^m T_1^n T_0^m T_1^n T_0^m T_1^n T_0^m S_T T_1^n T_0^m T_1^n T_0^m,
\]

and letting \(m, n \to \infty \) we get \(S_T = S_T S_T S_T S_T = S_T^3 \). It follows that \(S_T^2 = S_T^4 \) and so \(S_T = S_T^2 \). By our assumption, \(\mathcal{N}(I - S_T) \cap \mathcal{N}(S_{T^*}) = \{0\} \) and \(\mathcal{N}(I - S_{T^*}) \cap \mathcal{N}(S_T) = \{0\} \), so we infer from (3.3) and (3.2) that

\[
\mathcal{H} = \mathcal{N}(I - S_T) \cap \mathcal{N}(I - S_{T^*}) \oplus \mathcal{N}(S_T) \cap \mathcal{N}(S_{T^*}) = \mathcal{N}(I - S_T) \oplus \mathcal{N}(S_T).
\]

Thus \(T \) is unitary on \(\mathcal{M} = \mathcal{N}(I - S_T) \), while \(T \) and \(T^* \) are strongly stable on \(\mathcal{M}^\perp = \mathcal{N}(S_T) \), and \(T_i = T_i |_{\mathcal{M}} \oplus T_i |_{\mathcal{M}^\perp} \), \(i = 0, 1 \).
Conversely, if $T_i = U_i \oplus S_i$ on $\mathcal{H} = \mathcal{M} \oplus \mathcal{M}^\perp$ and \mathcal{M} reduces T and U_i is unitary on \mathcal{M} for $i = 0, 1$, while $S = (S_0, S_1)$ and S^* are strongly stable on \mathcal{M}^\perp, then $S_T = I \oplus 0 = S_T^*$. ■

The decomposition (3.1) can be refined by the general Wold type decomposition of a bi-isometry which was obtained in [P] and recently in [BDF]. So, the following result holds.

Theorem 3.3. Let $T = (T_0, T_1)$ be a bicontraction on \mathcal{H} with $S_T = S_T^2$. Then \mathcal{H} admits a unique decomposition of the form

\[(3.3) \quad \mathcal{H} = \mathcal{H}_u \oplus \mathcal{H}_{us} \oplus \mathcal{H}_{su} \oplus \mathcal{H}_s \oplus \mathcal{H}_1 \oplus \mathcal{H}_0,\]

where all the summands reduce T, and where $T_0|_{\mathcal{H}_u \oplus \mathcal{H}_{us}}$ and $T_1|_{\mathcal{H}_u \oplus \mathcal{H}_{su}}$ are unitary, $T_0|_{\mathcal{H}_{su}}$ and $T_1|_{\mathcal{H}_{us}}$ are shift operators, T is a bi-shift on \mathcal{H}_s, T is strongly stable on \mathcal{H}_0, while T is a bi-isometry on \mathcal{H}_1 and there is no nonzero reducing subspace for T of \mathcal{H}_1 on which either T is a bi-shift, or T_0 is unitary or T_1 is unitary. Moreover, T_0T_1 is a shift on \mathcal{H}_1.

Proof. Clearly, $\mathcal{H}_u = \mathcal{N}(I - S_T) \cap \mathcal{N}(I - S_T^*)$ and $\mathcal{H}_0 = \mathcal{N}(S_T)$ by Theorem 3.1. Denote $W = (W_0, W_1)$, $W_i = T_i|_{\mathcal{N}(I - S_T)}$, $i = 0, 1$. Since W is an isometry we have (by Corollary 2.6)

\[\mathcal{N}(I - S_T) = \mathcal{N}(I - S_{W^*}) \oplus \mathcal{N}(S_{W^*}) = \mathcal{H}_u \oplus \mathcal{N}(S_{W_0^*}W_1^*).\]

So, we infer from (3.1) that

\[\mathcal{N}(I - S_T) \cap \mathcal{N}(S_T^*) = \mathcal{N}(S_{W_0^*}W_1^*) = \bigoplus_{n \geq 0} W_0^n W_1^n \mathcal{N}(W_0^*W_1^*)\]

\[\supset \bigoplus_{n \geq 0} W_1^n \bigcap_{m \geq 0} W_0^m \mathcal{N}(W_1^*) \supset \bigoplus_{n \geq 0} W_1^n \bigcap_{m \geq 0} W_0^m \bigoplus_{j \geq 0} \mathcal{N}(W_1^*W_0^j) =: \mathcal{H}_{us}.\]

Observe that the subspace

\[\mathcal{H}_{0*} := \bigcap_{j \geq 0} \mathcal{N}(W_1^*W_0^j) \subset \mathcal{N}(W_1^*)\]

is invariant for W_0, so for T_0, and the subspace

\[\bigcap_{m \geq 0} W_0^m \mathcal{H}_{0*} = \mathcal{N}(I - S_{(T_0|_{\mathcal{H}_{0*}})^*}) \subset \mathcal{N}(W_1^*)\]

is wandering for W_1 and it reduces $T_0|_{\mathcal{H}_{0*}}$ to a unitary operator. Hence the subspace

\[\mathcal{H}_{us} = \bigoplus_{n \geq 0} W_1^n \mathcal{N}(I - S_{(T_0|_{\mathcal{H}_{0*}})^*}) = W_0 \bigoplus_{n \geq 0} W_1^n (W_0|_{\mathcal{H}_{0*}})^* \mathcal{N}(I - S_{(T_0|_{\mathcal{H}_{0*}})^*})\]

reduces W_1 to a shift, and from the second equality we get $\mathcal{H}_{us} = W_0 \mathcal{H}_{us}$, so \mathcal{H}_{us} also reduces W_0. This implies that \mathcal{H}_{us} reduces T_1 to a shift and T_0 to a unitary operator.
Similarly, if \(\mathcal{H}_{1*} := \bigcap_{j \geq 0} \mathcal{N}(W_0^*W_1^j) \) then
\[
\mathcal{H}_{su} := \bigoplus_{m \geq 0} W_0^m \mathcal{N}(I - S_{(T_1|_{\mathcal{H}_{1*}})^*}) \subset \mathcal{N}(I - S_T) \cap \mathcal{N}(S_{T^*})
\]
reduces \(T_0 \) to a shift and \(T_1 \) to a unitary operator. Since \(S_{W_i^*} = S_{W_i^*}^2 \), \(i = 0, 1 \), and we have
\[
\mathcal{H}_{us} \subset \mathcal{N}(I - S_{W_0^*}) \cap \mathcal{N}(S_{W_1^*}),
\]
\[
\mathcal{H}_{su} \subset \mathcal{N}(I - S_{W_1^*}) \cap \mathcal{N}(S_{W_0^*}),
\]
it follows that the subspaces \(\mathcal{H}_u, \mathcal{H}_{us} \) and \(\mathcal{H}_{su} \) are pairwise orthogonal in \(\mathcal{N}(I - S_T) \cap \mathcal{N}(S_{T^*}) \).

Now, the subspace \(\mathcal{H}_{0*} \cap \mathcal{H}_{1*} \subset \mathcal{N}(W_0^*) \cap \mathcal{N}(W_1^*) \) is wandering for the bi-isometry \(W = (W_0, W_1) \), and the subspace
\[
\mathcal{H}_s := \bigoplus_{m, n \geq 0} W_0^m W_1^n (\mathcal{H}_0^* \cap \mathcal{H}_1^*)
\]
is invariant for \(W \), and also for \(T \). In fact,
\[
W_0 \mathcal{H}_s = \bigoplus_{m \geq 1, n \geq 0} W_0^m W_1^n (\mathcal{H}_0^* \cap \mathcal{H}_1^*) = \mathcal{H}_s \bigoplus \bigoplus_{n \geq 0} W_1^n (\mathcal{H}_0^* \cap \mathcal{H}_1^*)
\]
whence (as \(W_0^* W_1^n \mathcal{H}_{1*} = \{0\} \), \(n \geq 0 \))
\[
W_0^* \mathcal{H}_s = \mathcal{H}_s + W_0^* \left(\bigoplus_{n \geq 0} W_1^n (\mathcal{H}_0^* \cap \mathcal{H}_1^*) \right) = \mathcal{H}_s.
\]

Similarly, \(W_1^* \mathcal{H}_s = \mathcal{H}_s \), and therefore \(\mathcal{H}_s \) reduces \(W \), and so \(T \), to a bi-shift. Since \(\mathcal{H}_s \subset \mathcal{N}(S_{W_0^*}) \cap \mathcal{N}(S_{W_1^*}) \), we have
\[
\mathcal{N}(I - S_T) \cap \mathcal{N}(S_{T^*}) \ominus \mathcal{H}_s \supset \mathcal{N}(I - S_{W_0^*}) \cup \mathcal{N}(I - S_{W_1^*}) \supset \mathcal{H}_u \oplus \mathcal{H}_{us} \oplus \mathcal{H}_{su},
\]
whence the subspace
\[
\mathcal{H}_1 := \mathcal{N}(I - S_T) \cap \mathcal{N}(S_{T^*}) \ominus (\mathcal{H}_u \oplus \mathcal{H}_{us} \oplus \mathcal{H}_{su})
\]
is also reducing for \(T \). In addition it is easy to see (as in [P]) that the subspaces \(\mathcal{H}_{us}, \mathcal{H}_{su} \) and \(\mathcal{H}_s \) are maximal with the properties quoted above. This implies that \(\mathcal{H}_1 \) contains no nonzero reducing subspace for \(T \) on which either \(T \) is a bi-shift, or \(T_0 \) is unitary, or \(T_1 \) is unitary.

Finally, since \(\mathcal{H}_1 \subset \mathcal{N}(S_{T^*}) \), \(T^*|_{\mathcal{H}_1} \) is strongly stable, that is, \(T_0 T_1|_{\mathcal{H}_1} \) is a shift, by Corollary 2.6.

Remark 3.4. The structure of the subspaces \(\mathcal{H}_{us}, \mathcal{H}_{su} \) and \(\mathcal{H}_s \) for a bi-isometry \(V \) was obtained by D. Popovici [P]. Here we describe these subspaces as well as the other from decomposition (3.3) using the context of asymptotic limits of a bicontraction \(T = (T_0, T_1) \).
COROLLARY 3.5. Let \(T = (T_0, T_1) \) be a bicontraction on \(\mathcal{H} \) with \(S_T = S_T^2 \), \(S_{T^*} = S_{T^*}^2 \) and \(\mathcal{N}(S_T) \neq \{0\} \). Then \(\mathcal{H} \) admits a unique decomposition of the form

\[
\mathcal{H} = \mathcal{H}_u \oplus \mathcal{H}_{us} \oplus \mathcal{H}_{su} \oplus \mathcal{H}_s \oplus \mathcal{H}_{uc} \oplus \mathcal{H}_{cu} \oplus \mathcal{H}_c \oplus \mathcal{H}_{11} \oplus \mathcal{H}_{00},
\]

where all summands reduce \(T \) and where \(T_0|_{\mathcal{H}_u} \oplus \mathcal{H}_{us} \oplus \mathcal{H}_{uc} \) and \(T_1|_{\mathcal{H}_u} \oplus \mathcal{H}_{su} \oplus \mathcal{H}_{cu} \) are unitary, \(T_0|_{\mathcal{H}_{su}} \) and \(T_1|_{\mathcal{H}_{us}} \) are shifts, \(T_0|_{\mathcal{H}_{uc}} \) and \(T_1|_{\mathcal{H}_{cu}} \) are coisometries, \(T \) and \(T^* \) are strongly stable on \(\mathcal{H}_{00} \), and there is no nonzero reducing subspace for \(\mathcal{H}_{11} \) on which either \(T_0 \) or \(T_1 \) is unitary, or \(T \) or \(T^* \) is a bi-shift.

In addition, \(T_i|_{\mathcal{H}_{11}} = Z_i \oplus Z_i' \) on \(\mathcal{H}_{11} = \mathcal{H}_1 \oplus \mathcal{H}_1' \) where \(Z_i \) are isometries and \(Z_0 Z_1 \) is a shift on \(\mathcal{H}_1 \), while \(Z_i' \) are coisometries, and \(Z_0' Z_1' \) is a co-shift on \(\mathcal{H}_1' \) for \(i = 0, 1 \).

Proof. By Theorem 3.3 for the bi-isometry \(W \) and the bicontraction \(W' \) (\(W, W' \) as in the proof of Theorem 3.1) we have

\[
\mathcal{N}(I - S_T) = \mathcal{H}_u \oplus \mathcal{H}_{us} \oplus \mathcal{H}_{su} \oplus \mathcal{H}_s \oplus \mathcal{H}_1,
\]

and respectively

\[
\mathcal{N}(S_T) = \mathcal{H}_0 = \mathcal{H}_{uc} \oplus \mathcal{H}_{cu} \oplus \mathcal{H}_c \oplus \mathcal{H}_1' \oplus \mathcal{H}_{00}.
\]

Here \(\mathcal{H}_{00} = \mathcal{N}(S_T) \cap \mathcal{N}(S_{T^*}) \), \(\mathcal{H}_1' \) contains no nonzero reducing subspaces for \(T \) on which either \(T^* \) is a bi-shift, or the coisometries \(T_0 \) or \(T_1 \) are unitary, and in addition, \(T \) is strongly stable, that is, \(T_0 T_1 \) is a co-shift on \(\mathcal{H}_1' \). Clearly, the other subspaces of \(\mathcal{N}(S_T) \) have the meaning from (3.4) for the bi-isometry \(T^* \). So, putting \(\mathcal{H}_{11} = \mathcal{H}_1 \oplus \mathcal{H}_1' \) we get the decomposition (3.4) of \(\mathcal{H} = \mathcal{N}(I - S_T) \oplus \mathcal{N}(S_T) \), in view of (3.1) and (3.2).

Since \(\mathcal{H}_{us} \oplus \mathcal{H}_{su} \oplus \mathcal{H}_s \subset \mathcal{N}(I - S_T) \cap \mathcal{N}(S_{T^*}) \) we have necessarily

\[
\mathcal{H}_{us} \subset \mathcal{N}(I - S_{T_0^*}) \cap \mathcal{N}(I - S_T) \cap \mathcal{N}(S_{T_1^*})
= \mathcal{N}(I - S_{T_0^*}) \cap \mathcal{N}(I - S_T) \cap \mathcal{N}(S_T),
\]

(3.5)

\[
\mathcal{H}_{su} \subset \mathcal{N}(I - S_{T_1^*}) \cap \mathcal{N}(I - S_T) \cap \mathcal{N}(S_{T_0^*})
= \mathcal{N}(I - S_{T_1^*}) \cap \mathcal{N}(I - S_T) \cap \mathcal{N}(S_T),
\]

(3.6)

\[
\mathcal{H}_s \subset \mathcal{N}(I - S_T) \cap \mathcal{N}(S_{T_0^*}) \cap \mathcal{N}(S_{T_1^*}),
\]

(3.7)

but the inclusions may be strict, as in Remark 3.9 below.

By Theorem 3.1 of [KO] we also get the following

COROLLARY 3.6. Let \(T = (T_0, T_1) \) be a bicontraction on \(\mathcal{H} \). Then there exist a unique minimal Hilbert space \(\mathcal{K} \supset \mathcal{H} \) and a bicontraction \(\bar{T} = (\bar{T}_0, \bar{T}_1) \) on \(\mathcal{K} \) extending \(T \) (i.e. such that \(T|_{\mathcal{H}} = T \)) and admitting a unique decomposition of the form given in Theorem 3.3.
We find now when these inclusions become equalities. Clearly, we can reduce this problem to the case of a bi-isometry (by \((3.3)\)).

Proposition 3.7. Let \(T = (T_0, T_1)\) be a bi-isometry on \(H\). Then

(i) \(H_{us} = \mathcal{N}(I - S_{T_0^*}) \cap \mathcal{N}(S_{T_1^*})\) and \(H_{su} = \mathcal{N}(I - S_{T_1^*}) \cap \mathcal{N}(S_{T_0^*})\) if and only if \(H_s \oplus H_1 = \mathcal{N}(S_{T_0^*}) \cap \mathcal{N}(S_{T_1^*})\), where \(H_1\) is the subspace appearing in decomposition \((3.3)\). In this case, \(H_s \oplus H_1\) is the maximum subspace which reduces \(T_i\) \((i = 0, 1)\) to a shift.

(ii) \(H_s = \mathcal{N}(S_{T_0^*}) \cap \mathcal{N}(S_{T_1^*})\) and \(H_1 = \{0\}\) if and only if \(T_0\) and \(T_1\) doubly commute.

Proof. Suppose we have equalities in \((3.5)\) and \((3.6)\), where \(\mathcal{N}(I - S_T) = \mathcal{H}\). Since \(T_0\) is a shift on \(H_{su}\), that is, \(T_0^* h \to 0\) \((n \to \infty)\) for \(h \in H_{su}\), we have \(H_{su} \subset \mathcal{N}(S_{T_0^*})\). Thus, since \(S_{T_0^*} = S_{T_0^*}^2\) and \(S_{T_1^*} = S_{T_1^*}^2\) \((T\) is a bi-isometry), we get the decompositions

\[
\mathcal{H} = \mathcal{N}(I - S_{T_0^*}) \oplus \mathcal{N}(S_{T_0^*}) = \mathcal{N}(I - S_{T_1^*}) \oplus \mathcal{N}(I - S_{T_1^*}) \oplus \mathcal{H}_{su} \oplus [\mathcal{N}(S_{T_0^*}) \oplus \mathcal{H}_{su}]
\]

Then from \((3.3)\) we infer (as \(H_0 = \mathcal{N}(S_T) = \{0\}\) in this case) that \(H_s \oplus H_1 = \mathcal{N}(S_{T_0^*}) \oplus H_{su}\), or \(\mathcal{N}(S_{T_1^*}) = H_{su} \oplus H_s \oplus H_1\). By symmetry we also have \(\mathcal{N}(S_{T_0^*}) = H_{us} \oplus H_s \oplus H_1\), and so

\[
H_s \oplus H_1 \subset \mathcal{N}(S_{T_0^*}) \cap \mathcal{N}(S_{T_1^*}) =: \mathcal{H}_{ss}.
\]

Now if \(h \in \mathcal{H}_{ss}\) and we write \(h = h_1 \oplus h_0 = h_2 \oplus h_0'\) with \(h_1 \in H_{us}\), \(h_2 \in H_{su}\) and \(h_0, h_0' \in H_s \oplus H_1\), then \(h_1 \oplus (-h_2) \oplus (h_0 - h_0') = 0\), hence \(h_1 = h_2 = 0\) and \(h_0 = h_0'\). This implies \(h = h_0 \in H_s \oplus H_1\), and we conclude that \(H_s \oplus H_1 = H_{ss}\). Clearly, in this case the subspace \(H_{ss}\) reduces \(T_i\) \((i = 0, 1)\) to a shift, and it contains any other subspace of \(H\) with this property.

Conversely, assume that \(H_s \oplus H_1 = \mathcal{N}(S_{T_0^*}) \cap \mathcal{N}(S_{T_1^*})\). Then as above we get the decomposition

\[
\mathcal{H} = H_u \oplus [\mathcal{N}(I - S_{T_0^*}) \cap \mathcal{N}(I - S_{T_1^*})] \oplus \mathcal{N}(S_{T_0^*}) \cap \mathcal{N}(S_{T_1^*}) + H_s \oplus H_1,
\]

and from \((3.3)\) we infer that

\[
H_{us} \oplus H_{su} = \mathcal{N}(I - S_{T_0^*}) \cap \mathcal{N}(S_{T_1^*}) \oplus \mathcal{N}(S_{T_0^*}) \cap [\mathcal{N}(S_{T_0^*}) \cap \mathcal{N}(S_{T_1^*})] \perp.
\]

Since \(H_{us} \subset \mathcal{N}(I - S_{T_0^*}) \cap \mathcal{N}(S_{T_1^*})\) and \(H_{su} \subset \mathcal{N}(I - S_{T_1^*}) \cap \mathcal{N}(S_{T_0^*})\) (by \((3.3)\)), the preceding equality leads to \(H_{us} = \mathcal{N}(I - S_{T_0^*}) \cap \mathcal{N}(S_{T_1^*})\) and also (because \(S_{T_1^*} = S_{T_1^*}^2\))

\[
H_{su} = \mathcal{N}(S_{T_0^*}) \cap [\mathcal{N}(S_{T_0^*}) \cap \mathcal{N}(S_{T_1^*})] \perp \cap \mathcal{N}(S_{T_0^*}) \cap \mathcal{N}(I - S_{T_1^*}),
\]

hence \(H_{su} = \mathcal{N}(I - S_{T_0^*}) \cap \mathcal{N}(S_{T_0^*})\). This completes the proof of (i).
For (ii) it is clear that if $\mathcal{H}_s = \mathcal{N}(S_{T_0}^1) \cap \mathcal{N}(S_{T_1}^1)$ and $\mathcal{H}_1 = \{0\}$ then T_0 and T_1 doubly commute on \mathcal{H}_s, and finally, they doubly commute on $\mathcal{H} = \mathcal{H}_{us} \oplus \mathcal{H}_{su} \oplus \mathcal{H}_s$ (T being a bi-isometry).

Conversely, if $T_0 T_1^* = T_1 T_0$ then $\mathcal{N}(I - S_{T_0}^1)$ and $\mathcal{N}(S_{T_1}^1)$ reduce T_{1-i}, and so $\mathcal{N}(I - S_{T_1}^1) \cap \mathcal{N}(S_{T_0}^1)$ reduces T_i (resp. T_{i-1}) to a unitary (resp. shift) operator, for $i = 0, 1$. Thus, it is needed that $\mathcal{H}_{us} = \mathcal{N}(I - S_{T_0}^1) \cap \mathcal{N}(S_{T_1}^1)$ and $\mathcal{H}_{su} = \mathcal{N}(I - S_{T_1}^1) \cap \mathcal{N}(S_{T_0}^1)$, which gives $\mathcal{H}_s \oplus \mathcal{H}_1 = \mathcal{N}(S_{T_0}^1) \cap \mathcal{N}(S_{T_1}^1)$.

But, in this case we have $\mathcal{H}_s = \mathcal{N}(S_{T_0}^1) \cap \mathcal{N}(S_{T_1}^1)$ because T_0 and T_1 doubly commute on $\mathcal{H}_s \oplus \mathcal{H}_1$, hence $\mathcal{H}_1 = \{0\}$. This ends the proof. □

Remark 3.8. In fact, this proposition shows that a bi-isometry $T = (T_0, T_1)$ on \mathcal{H} induces an orthogonal decomposition

$$\mathcal{H} = \mathcal{H}_u \oplus \mathcal{H}_{us} \oplus \mathcal{H}_{su} \oplus \mathcal{H}_{ss},$$

where the subspaces have the above meaning, if and only if $\mathcal{H}_{us} = \mathcal{N}(I - S_{T_0}^1) \cap \mathcal{N}(S_{T_1}^1)$ and $\mathcal{H}_{su} = \mathcal{N}(I - S_{T_1}^1) \cap \mathcal{N}(S_{T_0}^1)$, while in this case $\mathcal{H}_{ss} = \mathcal{N}(S_{T_0}^1) \cap \mathcal{N}(S_{T_1}^1)$. Hence \mathcal{H}_{ss} reduces T_0 and T_1 to shift operators and it is the maximum subspace with this property.

Recall that the decomposition (3.8) is known as the Słociński decomposition (see [Sl]). Moreover in (3.8) we have $\mathcal{H}_{ss} = \mathcal{H}_s$ if and only if T_0 and T_1 doubly commute.

Remark 3.9. In Example 1 of [GS] a bi-isometry T was given for which $\mathcal{H}_{us} = \mathcal{N}(I - S_{T_0}^1) \subset \mathcal{N}(S_{T_1}^1)$ and $\mathcal{H}_{su} \oplus \mathcal{H}_1 = \mathcal{N}(S_{T_0}^1)$ with $\mathcal{N}(S_{T_0}^1) \cap \mathcal{N}(S_{T_1}^1) = \{0\} = \mathcal{H}_u$. In view of the above strict inclusion, $\mathcal{N}(I - S_{T_1}^1) \subset \mathcal{H}_{su} \oplus \mathcal{H}_1$ and also $\mathcal{H}_1 \neq \{0\}$ because otherwise we get $\mathcal{H}_{su} = \mathcal{N}(I - S_{T_1}^1)$, a contradiction. So $\mathcal{H}_{us} \subset \mathcal{N}(I - S_{T_1}^1) = \mathcal{N}(I - S_{T_0}^1) \cap \mathcal{N}(S_{T_1}^1)$, even if $\mathcal{H}_{us} = \mathcal{N}(I - S_{T_0}^1) \cap \mathcal{N}(S_{T_1}^1)$, hence T does not have a Słociński decomposition (3.8).

Remark 3.10. Consider the bicontraction $T = (T_0, T_1)$ on \mathcal{K} from Example 2.9. Since $S_T = 0$, T is strongly stable on \mathcal{K}. On the other hand, as T_0, T_1 are quasinormal, by Theorem 2.3 we have $S_{T^*} = S_{T^*_0}^2$ and $\mathcal{R}(S_{T^*_0}) \subset \mathcal{R}(S_T) = \{0\}$, that is, $S_{T^*_0} = \{0\}$. Hence T^* is strongly stable on \mathcal{K} and we have $\mathcal{K} = \mathcal{N}(S_T) = \mathcal{N}(S_{T^*_0}) = \mathcal{K}_00$ in the corresponding decomposition (3.4).

4. Remarks on invariant subspaces for bicontractions

To every bicontraction $T = (T_0, T_1)$ on \mathcal{H} one can associate a bi-isometry $V = (V_0, V_1)$ on $\overline{\mathcal{R}(S_T)}$ such that

$$V_i S_{T_i}^{1/2} h = S_{T_i}^{1/2} T_i h \quad (h \in \mathcal{H}, \ i = 0, 1).$$

Clearly, V_i is an isometry (T_i being an S_T-isometry), and $V_0 V_1 = V_1 V_0$ because $T_0 T_1 = T_1 T_0$. Since $\mathcal{N}(S_T)$ is invariant for $S_{T_i}^{1/2} T_i$, $\overline{\mathcal{R}(S_T)}$ is invariant.
for $T_i^*S^{1/2}_T$, and the above definition of V_i implies
\begin{equation}
S^{1/2}_T V_i^* k = T_i^* S^{1/2}_T k \quad (k \in \overline{R(S_T)}, \ i = 0, 1).
\end{equation}

This relation gives $V_i S_T V_i^* \leq S_T$ on $\overline{R(S_T)}$, hence V_i^* is an \widehat{S}_T-contraction $(i = 0, 1)$, where $\widehat{S}_T = S_T |_{\overline{R(S_T)}}$. Other properties of V are summarized in

Proposition 4.1. Let $T = (T_0, T_1)$ be a bicontraction on H and $V = (V_0, V_1)$ be the bi-isometry on $\overline{R(S_T)}$ associated to T as in (4.1). Then
\begin{equation}
\lim_{m,n \to \infty} V_0^m V_1^n \widehat{S}_T V_1^* V_0^m k = \lim_{m,n \to \infty} V_0^m V_1^n \widehat{S}_T^{1/2} V_1^* V_0^m k = k
\end{equation}
and
\begin{equation}
\lim_{m,n \to \infty} V_0^m V_1^n \widehat{S}_T V_1^* V_0^m k = \lim_{n \to \infty} V_1^n S_T^{1/2} S_T^* S_T^{1/2} V_1^* k = S_T^{1/2} S_T^* S_T^{1/2} k
\end{equation}
for every $k \in \overline{R(S_T)}$ and $i = 0, 1$, where the operator limit in (4.4) is considered as acting on $\overline{R(S_T)}$. Moreover, the operator $S_T^{1/2} S_T^* S_T^{1/2}$ commutes with V_0 and V_1 and $\mathcal{R}(S_T^{1/2} S_T^* S_T^{1/2})$, as a subspace of $\overline{R(S_T)}$, reduces V_0 and V_1 to unitary operators.

Proof. For every $k \in S_T^{1/2} h$ with $h \in H$ and any integers $m, n \geq 1$,
\begin{align*}
\| I - V_0^m V_1^n \widehat{S}_T V_1^* V_0^m k \| &= \| V_0^m V_1^n S_T^{1/2} (I - S_T) T_0^m T_1^n h \|^2 \\
&\leq \| (I - S_T)^{1/2} T_0^m T_1^n h \|^2 = \| T_0^m T_1^n h \|^2 - \| S_T^{1/2} T_0^m T_1^n h \|^2 \to 0
\end{align*}
as $m, n \to \infty$. Since $0 \leq I - S_T^{1/2} \leq I - S_T$ we get as above
\begin{align*}
\| I - V_0^m V_1^n \widehat{S}_T^{1/2} V_1^* V_0^m k \|^2 &\leq \| (I - S_T^{1/2})^{1/2} T_0^m T_1^n h \|^2 \\
&\leq \| (I - S_T)^{1/2} T_0^m T_1^n h \|^2 \to 0
\end{align*}
as $m, n \to \infty$. So, the first equality of (4.3) holds for every $k \in \overline{R(S_T)}$ (the corresponding sequences are bounded).

Now from (4.1) and (4.2) we obtain
\begin{equation*}
V_0^m V_1^n \widehat{S}_T V_1^* V_0^m k = S_T^{1/2} T_0^m T_1^n T_0^* T_1^* S_T^{1/2} k \to S_T^{1/2} S_T^* S_T^{1/2} k
\end{equation*}
as $m, n \to \infty$, for any $k \in \overline{R(S_T)}$, which proves the second equality of (4.4). Obviously, $\overline{R(S_T)}$ reduces the operator $S_T^{1/2} S_T^* S_T^{1/2}$ (which is self-adjoint), so this operator can be considered in $\mathcal{B}(\overline{R(S_T)})$. On the other hand, since
\begin{equation*}
V_i^m \widehat{S}_T V_i^* V_i^m k = S_T^{1/2} T_i^m T_i^* S_T^{1/2} k \to S_T^{1/2} S_T^* S_T^{1/2} k
\end{equation*}
as $m \to \infty$, we have (by the previous remark)
\begin{equation*}
S_T^{1/2} S_T^* S_T^{1/2} k = \lim_{n \to \infty} V_1^n S_T^{1/2} S_T^* S_T^{1/2} V_1^* k
\end{equation*}
for $k \in \overline{R(S_T)}$ and $i = 0, 1$. So, the first equality of (4.4) holds true.
For the last assertion notice that by (4.1) and (4.2), V_i^* is a $S_T^{1/2}S_T^*S_T^{1/2}$-isometry, that is, $V_i^*S_T^{1/2}S_T^*S_T^{1/2}V_i^* = S_T^{1/2}S_T^*S_T^{1/2}$, because T_i^* is an S_T^*-isometry, $i = 0, 1$. This also implies

$$S_T^{1/2}S_T^*S_T^{1/2}V_i^* = V_i^*S_T^{1/2}T_iS_T^*S_T^{1/2} = V_i^*S_T^{1/2}S_T^*S_T^{1/2},$$

which means that $S_T^{1/2}S_T^*S_T^{1/2}$ commutes with V_i for $i = 0, 1$. This ensures that the range

$$\mathcal{R}(S_T^{1/2}S_T^*S_T^{1/2}) = \frac{\mathcal{R}(S_T^{1/2}S_T^*S_T^{1/2})}{\mathcal{R}(S_T^{1/2}S_T^*S_T)}$$

as a subspace of $\overline{\mathcal{R}(S_T)}$ reduces V_0 and V_1. Since from the second equality of (4.4) it follows that

$$\mathcal{R}(S_T^{1/2}S_T^*S_T^{1/2}) \subset \bigcap_{m \geq 0} \mathcal{R}(V_0^m) \cap \bigcap_{n \geq 0} \mathcal{R}(V_1^n) = \mathcal{N}(I - S_{V_0^*}) \cap \mathcal{N}(I - S_{V_1^*}),$$

we infer that V_0 and V_1 are unitary on $\mathcal{R}(S_T^{1/2}S_T^*S_T^{1/2})$. □

Remark 4.2. From (4.1) one can get the polar decomposition of $S_T^{1/2}T_i$ ($i = 0, 1$). Note $|S_T^{1/2}T_i| = S_T^{1/2}$, and put $\tilde{V}_i = J V_i P$ where P is the projection of \mathcal{H} onto $\mathcal{R}(S_T)$ and $J = P^*$ is the canonical embedding of $\mathcal{R}(S_T)$ into \mathcal{H}. Clearly, \tilde{V}_i isometrically maps $\mathcal{R}(S_T) = \mathcal{N}(S_T) = \mathcal{N}(S^{1/2}_T T_i)$ onto $\mathcal{R}(\tilde{V}_i) \subset \mathcal{R}(S_T^{1/2} T_i) \subset \mathcal{R}(S_T)$, and

$$\mathcal{N}(\tilde{V}_i) = \mathcal{N}(P) = \mathcal{N}(S_T) = \mathcal{N}(S_T^{1/2} T_i).$$

Hence \tilde{V}_i is a partial isometry in $\mathcal{B}(\mathcal{H})$, and the polar decomposition of $S_T^{1/2} T_i$ is $S_T^{1/2} T_i = \tilde{V}_i S_T^{1/2}$, while \tilde{V}_i is even an extension of V_i, for $i = 0, 1$.

Observe also that for a bicontraction $T^* = (T_0^*, T_1^*)$ there are isometries $V_{*0}, V_{*1} \in \mathcal{B}(\overline{\mathcal{R}(S_T^*)})$ which satisfy

$$V_{*i} S_T^{1/2} k = S_T^{1/2} T_{*i}^* k \quad (k \in \overline{\mathcal{R}(S_T^*)}, \ i = 0, 1).$$

Recall that two bicontractions $T = (T_0, T_1)$ on \mathcal{H} and $S = (S_0, S_1)$ on \mathcal{K} are *similar* if there exists an invertible operator $A \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ satisfying $A T_i = S_i A$, $i = 0, 1$. If A belongs to $\mathcal{B}(\mathcal{H}, \mathcal{K})$ is only densely defined, i.e. $\mathcal{R}(A) = \mathcal{K}$ with $\mathcal{N}(A) = \{0\}$ and A intertwines T_i with S_i ($i = 0, 1$), one says that T is a *quasiaffine transform* of S. Finally, T is *quasisimilar* to S if T and S are quasiaffine transforms of each other.

As in the case of a single contraction (see [K]), we can characterize these concepts using the asymptotic limit operators S_T and S_{T^*}.

We first give the following
Lemma 4.3. Let \(T = (T_0, T_1) \) be a bicontraction on \(\mathcal{H} \) such that \(\mathcal{N}(S_T) = (S_T^*) = \{0\} \). Then for \(i = 0, 1 \) we have

\[
\begin{align*}
V_i & S_{T_i}^{1/2} S_{T_i}^{1/2} = S_{T_i}^{1/2} S_{T_i}^{1/2} V_i^*; \\
S_{T_i}^{1/2} S_{T_i}^{1/2} V_i & = V_i^* S_{T_i}^{1/2} S_{T_i}^{1/2}, \\
S_{T_i}^{1/2} V_i & = T_i S_{T_i}^{1/2} S_{T_i}^{1/2}, \\
S_{T_i} S_{T_i} V_i & = T_i S_{T_i} S_{T_i}^{1/2};
\end{align*}
\]

Proof. The hypothesis implies \(\mathcal{H} = \mathcal{R}(S_T) = \mathcal{R}(S_{T_i}) \), so \(V_i \) and \(V_{si} \) are isometries on \(\mathcal{H} \). Then by (4.1) and (4.5) we get

\[
V_i S_{T_i}^{1/2} S_{T_i}^{1/2} = S_{T_i}^{1/2} T_i S_{T_i}^{1/2} = S_{T_i}^{1/2} S_{T_i}^{1/2} V_i^*;
\]

that is, (4.6). By duality we have \(V_{si} S_{T_i}^{1/2} S_{T_i}^{1/2} = S_{T_i}^{1/2} T_i S_{T_i}^{1/2} V_i^* \), whence one obtains (4.7). Now from (4.7) it follows that

\[
S_{T_i} S_{T_i}^{1/2} V_i = S_{T_i}^{1/2} V_i^* S_{T_i}^{1/2} S_{T_i}^{1/2} = (V_{si} S_{T_i}^{1/2})^* S_{T_i}^{1/2} S_{T_i}^{1/2} = T_i S_{T_i} S_{T_i}^{1/2};
\]

that is, (4.8), while (4.9) is immediate from (4.8). \(\blacksquare \)

Theorem 4.4. If \(T \) is a bicontraction on \(\mathcal{H} \) then:

(i) \(T \) is similar to a bi-isometry if and only if \(S_T \) is invertible.

(ii) \(T \) is similar to a unitary bicontraction if and only if \(S_T \) and \(S_{T_i} \) are invertible.

(iii) \(T \) is quasisimilar to a unitary bicontraction if and only if

\[
\mathcal{N}(S_T) = \mathcal{N}(S_{T_i}) = \{0\}.
\]

Proof. (i) If \(S_T \) is invertible then \(T \) is similar via \(S_T \) to the bi-isometry \(V = (V_0, V_1) \) given in (4.1). Conversely, suppose that \(T \) is similar to a bi-isometry \(S = (S_0, S_1) \) on \(\mathcal{K} \) via an invertible operator \(A \) from \(\mathcal{H} \) onto \(\mathcal{K} \). Let \(A = QA \) be the polar decomposition of \(A \), with \(Q \) unitary and \(|A| \) invertible. Since \(AT_i = S_i A \) we get \(S_i = Q|A|T_i|A|^{-1}Q^* \), whence \(|A|T_i = Q^* S_i Q |A| = W_i |A| \) where \(W_i = Q^* S_i Q \) is an isometry, \(i = 0, 1 \). It follows that \(|A| = W_i^* |A|T_i \), and also \(W_i = |A|T_i |A|^{-1} \), and both give \(A^* A = |A|^2 = T_i^* A^* A T_i \), for \(i = 0, 1 \). This forces that \(A^* A \leq S_T \), hence \(S_T \) is invertible.

(ii) The previous remark implies that if \(T \) is similar to a unitary bicontraction then \(S_T \) and \(S_{T_i} \) are invertible.

Conversely, assume that \(S_T \) and \(S_{T_i} \) are invertible, so \(AT_i = S_i A \) as above, and \(BT_i^* = S_{si} B \) where \(S_{si} \) are isometries on \(\mathcal{G} \) and \(B \in \mathcal{B}(\mathcal{H}, \mathcal{G}) \) is invertible. Since \(T_i = B^* S_{si}(B^*)^{-1} \) we get \(S_i A = AB^* S_{si}^* (B^*)^{-1} \) where \(S_{si}^* \) is a coisometry, therefore it is surjective. This yields \(\mathcal{R}(S_i) = \mathcal{K} \), that is, \(S_i \) is unitary, \(i = 0, 1 \). Hence \(T \) is similar to the unitary bicontraction \(S \).

(iii) Suppose that \(T \) is quasisimilar to \(U = (U_0, U_1) \) where \(U_i \) are unitary operators on \(\mathcal{K} \), \(i = 0, 1 \). If \(A \in \mathcal{B}(\mathcal{H}, \mathcal{K}) \) is such that \(\mathcal{R}(A) = \mathcal{H}, \mathcal{N}(A) = \{0\} \)
and $AT_i = U_i A$ $(i = 0, 1)$ then $AT_i^m T^n_i = U_0^m U_1^n A$ for $m, n \in \mathbb{N}$. So, for $h \in \mathcal{N}(S_T)$ we have $T_0^m T_1^n h \to 0$ $(m, n \to \infty)$, hence $U_0^m U_1^n A h \to 0$ $(m, n \to \infty)$, which gives $Ah = 0$ and $h = 0$, too. Thus $\mathcal{N}(S_T) = \{0\}$, and similarly, since U is a quasiaffine transform of T, $\mathcal{N}(S_{T^*}) = \{0\}$.

Conversely, assume that $\mathcal{N}(S_T) = \mathcal{N}(S_{T^*}) = \{0\}$, therefore $\mathcal{R}(S_T) = \mathcal{R}(S_{T^*}) = \mathcal{H}$. We infer that $\mathcal{N}(S_{T^*} S_T^{1/2}) = \{0\}$ and also $\mathcal{R}(S_{T^*} S_T^{1/2}) = \mathcal{H}$. By (4.1) and (4.8) and the previous remarks we conclude that T is quasisimilar to (V_0, V_1), and it remains to see that V_0 and V_1 are unitary. Indeed, since $\mathcal{N}(T_i^*) \subset \mathcal{N}(S_{T^*}) = \{0\}$ one has $\mathcal{N}(T_i^*) = \{0\}$. But by (4.2) we have $S_T^{1/2} \mathcal{N}(V_i^*) \subset \mathcal{N}(T_i^*)$, hence $\mathcal{N}(V_i^*) = \{0\}$, which means that V_i is unitary, $i = 0, 1$. ■

As in the case of a single contraction, the above results can be used to make some remarks on the invariant subspaces of a bicontraction $T = (T_0, T_1)$ on \mathcal{H}. Obviously, an invariant subspace of T means a jointly invariant subspace of T_0 and T_1.

Theorem 4.5. The following statements hold for every bicontraction $T = (T_0, T_1)$ on \mathcal{H}:

(i) If $\mathcal{N}(S_T) = \mathcal{N}(S_{T^*}) = \{0\}$ then either T_0 and T_1 are unitary scalar, or T has nontrivial invariant subspaces which are hyperinvariant for T_0 or T_1.

(ii) If $S_T \neq 0$ and $S_{T^*} \neq 0$ then either T_0 and T_1 are unitary scalar, or T has nontrivial invariant subspaces which are invariant for any operator which commutes with T_0 and T_1.

Proof. (i) The assumption of (i) ensures, by Theorem 4.4, that T is quasisimilar to a bicontraction $U = (U_0, U_1)$ with U_1 unitary. If U_0 (or U_1) is nonscalar then U_0 (resp. U_1) has nontrivial hyperinvariant subspaces, and by [K, Corollary 4.8] it follows that T_0 (resp. T_1) has nontrivial hyperinvariant subspaces. Hence T has nontrivial invariant subspaces, as in the case considered before. In the other case, one has $U_i = \lambda_i I$ with $|\lambda_i| = 1$, and since T_i is a quasiaffine transform of U_i by an injective operator, we infer $T_i = \lambda_i I$, $i = 0, 1$. Clearly, when $\dim \mathcal{H} > 1$, any nontrivial subspace of \mathcal{H} is invariant for T.

Note also that $\mathcal{N}(S_{T_i}) = \mathcal{N}(S_{T_i^*}) = \{0\}$ for $i = 0, 1$ by the hypothesis of (i). Thus, one can directly apply [K, Corollary 4.11] for T_i $(i = 0, 1)$ to obtain the conclusion of (i).

(ii) The assumption of (ii) gives $\mathcal{H} \neq \mathcal{N}(S_T)$ and $\mathcal{H} \neq \mathcal{N}(S_{T^*})$. So, if $\mathcal{N}(S_T) \neq \{0\}$ then $\mathcal{N}(S_T)$ is a nontrivial invariant subspace for T. Since $h \in \mathcal{N}(S_T)$ iff $T_0^m T_1^n h \to 0$ $(m, n \to \infty)$, it follows that $\mathcal{N}(S_T)$ is also invariant for any operator which commutes with T_0 and T_1.

If \(\mathcal{N}(S_{T^*}) \neq \{0\} \) then, as above, \(\mathcal{N}(S_{T^*}) \) is a nontrivial invariant subspace for \(T^* \) and, also, for any operator that commutes with \(T^*_0 \) and \(T^*_1 \). In this case, \(\overline{\mathcal{R}(S_{T^*})} \) is a nontrivial invariant subspace for \(T \), which remains invariant for any commutant of \(T_0 \) and \(T_1 \).

The other case, namely \(\mathcal{N}(S_T) = \mathcal{N}(S_{T^*}) = \{0\} \), was discussed in (i).

Corollary 4.6. Let \(T \) be a bicontraction on \(\mathcal{H} \) which has no nontrivial invariant subspace. Then either \(T \) or \(T^* \) is strongly stable on \(\mathcal{H} \). More precisely, either \(T \) and \(T^* \) are strongly stable, or \(T \) is strongly stable and \(0 < \|S_T h\| < \|h\| \) for all nonzero \(h \in \mathcal{H} \), or \(T^* \) is strongly stable and \(0 < \|S_T h\| < \|h\| \) for all nonzero \(h \in \mathcal{H} \).

Proof. By the previous theorem, \(T \) has no nontrivial invariant subspaces iff \(S_T = 0 \) or \(S_{T^*} = 0 \), equivalently \(\mathcal{N}(S_T) = \mathcal{H} \) or \(\mathcal{N}(S_{T^*}) = \mathcal{H} \). When this happens, we also have \(\mathcal{H} = \mathcal{N}(I - S_T) \oplus \mathcal{N}(S_T) \) or \(\mathcal{H} = \mathcal{N}(I - S_{T^*}) \oplus \mathcal{N}(S_{T^*}) \), that is, \(\mathcal{N}(I - S_T) = \{0\} \) or \(\mathcal{N}(I - S_{T^*}) = \{0\} \). Hence only the following cases are admissible:

(a) \(\mathcal{H} = \mathcal{N}(S_T) = \mathcal{N}(S_{T^*}) \) which means that \(T \) and \(T^* \) are strongly stable,

(b) \(\mathcal{H} = \mathcal{N}(S_T) \) and \(\mathcal{N}(S_{T^*}) = \mathcal{N}(I - S_{T^*}) = \{0\} \), so \(T \) is strongly stable and \(0 < \|S_T h\| < \|h\| \) for \(0 \neq h \in \mathcal{H} \),

(c) \(\mathcal{H} = \mathcal{N}(S_{T^*}) \) and \(\mathcal{N}(S_T) = \mathcal{N}(I - S_T) = \{0\} \), meaning that \(T^* \) is strongly stable and \(0 < \|S_T h\| < \|h\| \) for \(0 \neq h \in \mathcal{H} \).

In the usual terminology (which also appears in [KO]), a bicontraction \(T \) belongs to the class \(C_0 \) (resp. \(C_1 \)) if \(\mathcal{N}(S_T) = \mathcal{H} \) (resp. \(\mathcal{N}(S_T) = \{0\} \)). Also, \(T \) belongs to \(C_0 \) (resp. \(C_1 \)) if \(T^* \) belongs to \(C_0 \) (resp. \(C_1 \)). For \(\alpha, \beta \in \{0, 1\} \), the class \(C_{\alpha\beta} \) is defined as \(C_\alpha \cap C_\beta \). Thus, Theorem 4.5 shows that any bicontraction of class \(C_{11} \) has nontrivial invariant subspaces, while Corollary 4.6 implies that every bicontraction without nontrivial invariant subspaces belongs to \(C_{01} \) or \(C_{10} \). Concerning these latter classes, the following fact can also be proved.

Theorem 4.7. Every bicontraction that does not belong to the class \(C_{00} \) has nontrivial invariant subspaces if and only if every bicontraction which is a quasiaffine transform of a unitary bicontraction has nontrivial invariant subspaces.

Proof. Let \(T = (T_0, T_1) \) be a bicontraction such that either \(T \) or \(T^* \) is not strongly stable, that is, \(S_T \neq 0 \) or \(S_{T^*} \neq 0 \). Suppose that \(T \) has no nontrivial invariant subspace, and firstly that \(S_T \neq 0 \). This forces \(\mathcal{N}(S_T) = \{0\} \) and hence \(\mathcal{N}(T_i) = \{0\} \), so \(T_i \neq 0 \) for \(i = 0, 1 \). Since \((I - V_i V_i^*) S_T^{1/2} T_i = 0 \), \(V_i \) being given by (4.1), the assumption on \(T \) implies \((I - V_i V_i^*) S_T^{1/2} = 0 \), \(i = 0, 1 \) (otherwise, \(\overline{\mathcal{R}(T_i)} \) is a nontrivial invariant subspace of \(T \)). As \(\overline{\mathcal{R}(S_T)} = \mathcal{H} \) it
follows that V_i is unitary for $i = 0, 1$, hence T is a quasi-affine transform by (4.1) of the unitary bicontraction $V = (V_0, V_1)$. By duality, in the case $S_{T^*} \neq 0$ it follows that T^* is a quasi-affine transform of the unitary bicontraction $V_* = (V_{*0}, V_{*1})$ given in (4.5). We proved that, under the cited assumption on T, there exist bicontractions (either T or T^*) without nontrivial invariant subspaces, that are quasi-affine transforms of unitary bicontractions.

Conversely, let T be a bicontraction on \mathcal{H} which is a quasi-affine transform of a unitary bicontraction $U = (U_0, U_1)$ on \mathcal{K} by an operator $A \in B(\mathcal{H}, \mathcal{K})$, such that T has no nontrivial invariant subspaces. Assuming that T is strongly stable, that is, $\mathcal{N}(S_T) = \mathcal{H}$, we get, for $0 \neq h \in \mathcal{H}$,

$$\|Ah\| = \|U_0^m U_1^n Ah\| = \|AT_0^m T_1^n h\| \to 0 \quad (m, n \to \infty),$$

which yields $h = 0$ (A being injective), a contradiction. Hence T is not strongly stable, in particular, T is not in the class C_{00}.

Note that Corollary 4.6 and Theorem 4.7 are direct extensions of [K] Corollary 5.9 and Theorem 4.14.

Finally, notice that some of the above facts concerning invariant subspaces for bicontractions are known (even for multicontractions) and obtained by a different method (see e.g. [KO] Theorems 2.2 and 2.3). Here we pointed out the role of asymptotic limit operators in the above problems, which is similar to the case of a single contraction (see [K]).

Acknowledgements. The first author was supported by the Polish Ministry of Science and Higher Education (grant NN201 546438).

References

Marek Kosiek
Wydział Matematyki i Informatyki
Uniwersytet Jagielloński
Łojasiewicza 6
30-348 Kraków, Poland
E-mail: Marek.Kosiek@im.uj.edu.pl

Laurian Suciu
Department of Mathematics
“Lucian Blaga” University of Sibiu
Dr. Ion Ratiu 5-7
Sibiu 550012, Romania
E-mail: laurians2002@yahoo.com

Received 20.7.2011
and in final form 22.9.2011