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Non-trivial solutions for a class of (p1, . . . , pn)-biharmonic
systems with Navier boundary conditions

by Shapour Heidarkhani (Kermanshah and Tehran)

Abstract. Using a recent critical point theorem due to Bonanno, the existence of a
non-trivial solution for a class of systems of n fourth-order partial differential equations
with Navier boundary conditions is established.

1. Introduction. This paper deals with the existence of at least one
non-trivial solution for the following nonlinear elliptic system of n fourth-
order partial differential equations under Navier boundary conditions

(1.1)

{
∆(|∆ui|pi−2∆ui) = λFui(x, u1, . . . , un) in Ω,

ui = ∆ui = 0 on ∂Ω

for 1 ≤ i ≤ n, where n ≥ 1 is an integer, pi > max{1, N/2} for 1 ≤ i ≤ n,
Ω ⊂ RN (N ≥ 1) is a non-empty bounded open set with smooth boundary
∂Ω, λ > 0, F : Ω × Rn → R is a function such that F (·, t1, . . . , tn) is
measurable in Ω for all (t1, . . . , tn) ∈ Rn, F (x, ·, . . . , ·) is C1 in Rn for every
x ∈ Ω and for every % > 0,

sup
|(t1,...,tn)|≤%

n∑
i=1

|Fti(x, t1, . . . , tn)| ∈ L1(Ω),

and Fui denotes the partial derivative of F with respect to ui for 1 ≤ i ≤ n.
The system (1.1) is called (p1, . . . , pn)-biharmonic.

Fourth-order nonlinear equations furnish a model to study traveling
waves in suspension bridges, so they are important to physics. Due to
this, many researchers have discussed the existence of at least one solu-
tion, or multiple solutions, or even infinitely many solutions for fourth-
order boundary value problems by using lower and upper solution meth-
ods, Morse theory, the mountain-pass theorem, constrained minimization
and concentration-compactness principle, fixed-point theorems and degree
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theory, and variational methods; we refer the reader to [1, 2, 4–20, 24] and
references therein.

As an example, we point out the following special case of our main
results.

Theorem 1.1. Let p > max{1, N/2}. Let h : Ω → R be a positive and
essentially bounded function and g : R→ R be a non-negative function such
that limt→0+ g(t)/tp−1 = +∞. Then for each λ in]

0,
1

pkp
	
Ω h(x) dx

sup
ν>0

ν
	 p√ν
0 g(ξ) dξ

[
where

k := sup
u∈W 2,p(Ω)∩W 1,p

0 (Ω)\{0}

maxx∈Ω |u(x)|
(
	
Ω |∆ui(x)|p dx)1/p

,

the problem {
∆(|∆u|p−2∆u) = λh(x)g(u) in Ω,

u = ∆u = 0 on ∂Ω

has a non-trivial weak solution in W 2,p(Ω) ∩W 1,p
0 (Ω).

In the present paper, our motivation comes from the recent paper [7].

2. Main results. First, for the reader’s convenience we recall Theo-
rem 2.5 of [21] as given in [3, Theorem 5.1] (see also [3, Proposition 2.1] for
related results), which is our main tool to transfer the existence of a weak
solution of (1.1) into the existence of a critical point of the Euler functional:

For a given non-empty set X, and two functionals Φ, Ψ : X → R, we
define

β(r1, r2) = inf
v∈Φ−1(]r1,r2[)

supu∈Φ−1(]r1,r2[) Ψ(u)− Ψ(v)

r2 − Φ(v)
,

ρ(r1, r2) = sup
v∈Φ−1(]r1,r2[)

Ψ(v)− supu∈Φ−1(]−∞,r1[) Ψ(u)

Φ(v)− r1
,

for all r1, r2 ∈ R, r1 < r2.

Theorem 2.1 ([3, Theorem 5.1]). Let X be a reflexive real Banach
space, Φ : X → R be a sequentially weakly lower semicontinuous, coercive
and continuously Gâteaux differentiable functional whose Gâteaux deriva-
tive admits a continuous inverse on X∗, and Ψ : X → R be a continuously
Gâteaux differentiable functional whose Gâteaux derivative is compact. Put
Iλ = Φ− λΨ and assume that there are r1, r2 ∈ R, r1 < r2, such that

β(r1, r2) < ρ(r1, r2).
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Then for each λ ∈ ]1/ρ(r1, r2), 1/β(r1, r2)[ there is u0,λ ∈ Φ−1(]r1, r2[) such
that Iλ(u0,λ) ≤ Iλ(u) for all u ∈ Φ−1(]r1, r2[) and I ′λ(u0,λ) = 0.

From now on, X will denote the Cartesian product of n Sobolev spaces
W 2,pi(Ω) ∩W 1,pi

0 (Ω) for i = 1, . . . , n, i.e., X = (W 2,p1(Ω) ∩W 1,p1
0 (Ω)) ×

· · · × (W 2,pn(Ω) ∩W 1,pn
0 (Ω)) endowed with the norm

‖(u1, . . . , un)‖ =

n∑
i=1

‖ui‖pi

where

‖ui‖pi =
( �
Ω

|∆ui(x)|pi dx
)1/pi

for 1 ≤ i ≤ n.

We say that u = (u1, . . . , un) is a weak solution to the system (1.1) if
u = (u1, . . . , un) ∈ X and

�

Ω

n∑
i=1

|∆ui(x)|pi−2∆ui(x)∆vi(x) dx

− λ
�

Ω

n∑
i=1

Fui(x, u1(x), . . . , un(x))vi(x) dx = 0

for every (v1, . . . , vn) ∈ X.

For all γ > 0 we define

(2.1) K(γ) =

{
t = (t1, . . . , tn) ∈ Rn :

n∑
i=1

|ti|pi
pi
≤ γ

}
.

Put

(2.2) k := max

{
sup

ui∈W 2,pi (Ω)∩W 1,pi
0 (Ω)\{0}

maxx∈Ω |ui(x)|pi
‖ui‖pipi

: 1 ≤ i ≤ n
}
.

If pi > max{1, N/2} for 1 ≤ i ≤ n, since the embedding W 2,pi(Ω) ∩
W 1,pi

0 (Ω) ↪→ C0(Ω) for 1 ≤ i ≤ n is compact, one has k <∞.

Fix x0 ∈ Ω and pick s1, s2 with 0 < s1 < s2 such that

B(x0, s1) ⊂ B(x0, s2) ⊆ Ω

where B(x0, si) denotes the (open) ball with center at x0 and radius of si
for i = 1, 2.

Put

(2.3) σi = σi(N, pi, s1, s2) :=
12(N + 2)2(s1 + s2)

(s2 − s1)3

(
kπN/2(sN2 − sN1 )

Γ (1 +N/2)

)1/pi
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for 1 ≤ i ≤ n and

(2.4) θi = θi(N, pi, s1, s2) :=
3N

(s2 − s1)(s1 + s2)

(
kπN/2((s1 + s2)

N − (2s1)
N )

2NΓ (1 +N/2)

)1/pi

if N <
4s1

s2 − s1
,

12s1
(s2 − s1)2(s1 + s2)

(
kπN/2((s1 + s2)

N − (2s1)
N )

2NΓ (1 +N/2)

)1/pi

if N ≥ 4s1
s2 − s1

,

for 1 ≤ i ≤ n, where Γ denotes the Gamma function. For given two positive
constants ν and τ with ν 6=

∑n
i=1

∏n
j=1, j 6=i pj(τσi)

pi , put

aτ (ν) :=

	
Ω supt∈K(ν/

∏n
i=1 pi)

F (x, t) dx−
	
B(x0,s1)

F (x, τ, . . . , τ) dx

ν −
∑n

i=1

∏n
j=1, j 6=i pj(τσi)

pi
.

Theorem 2.2. Assume that there exist a non-negative constant ν1 and
two positive constants ν2 and τ with

ν1 <
n∑
i=1

n∏
j=1, j 6=i

pj(τθi)
pi and

n∑
i=1

n∏
j=1, j 6=i

pj(τσi)
pi < ν2

such that

(A1) F (x, t) ≥ 0 for each (x, t) ∈ (Ω \B(x0, s1))× [0, τ ]n;

(A2) aτ (ν2) < aτ (ν1).

Then for each λ in]
1

k
∏n
i=1 pi

1

aτ (ν1)
,

1

k
∏n
i=1 pi

1

aτ (ν2)

[
the system (1.1) admits a non-trivial weak solution u0 = (u01, . . . , u0n) ∈ X
such that

ν1/k <

n∑
i=1

n∏
j=1, j 6=i

pj‖u0i‖pipi < ν2/k.

Proof. To apply Theorem 2.1, we introduce the functionals Φ, Ψ : X → R
for u = (u1, . . . , un) ∈ X as follows:

Φ(u) =
n∑
i=1

‖ui‖pipi
pi

, Ψ(u) =
�

Ω

F (x, u1(x), . . . , un(x)) dx.

It is well known that Φ and Ψ are well defined and continuously differentiable
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with derivatives at u = (u1, . . . , un) ∈ X given by

Φ′(u)(v) =
�

Ω

n∑
i=1

|∆ui(x)|pi−2∆ui(x)∆vi(x) dx,

Ψ ′(u)(v) =
�

Ω

n∑
i=1

Fui(x, u1(x), . . . , un(x))vi(x) dx,

for every v = (v1, . . . , vn) ∈ X; moreover Ψ is sequentially weakly upper
semicontinuous. Lemma 2.1 of [11] shows that Φ′ admits a continuous inverse
on X∗, and since Φ′ is monotone, we infer that Φ is sequentially weakly lower
semicontinuous (see [23, Proposition 25.20(d)]). Furthermore, Ψ ′ : X → X∗

is a compact operator (for details, see [14]).

Set w(x) = (w1(x), . . . , wn(x)) where for 1 ≤ i ≤ n,

wi(x) =


0 if x ∈ Ω \B(x0, s2),
τ(3(l4 − s42)− 4(s1 + s2)(l

3 − s32) + 6s1s2(l
2 − s22))

(s2 − s1)3(s1 + s2)
if x ∈ B(x0, s2) \B(x0, s1),

τ if x ∈ B(x0, s1),

where l = dist(x, x0) =
√∑N

i=1(xi − x0i )2, and define

r1 =
ν1

k
∏n
i=1 pi

and r2 =
ν2

k
∏n
i=1 pi

.

We have

∂wi(x)

∂xi
=


0 if x ∈ Ω \B(x0, s2) ∪B(x0, s1),

12τ(l2(xi − x0i )− (s1 + s2)l(xi − x0i ) + s1s2(xi − x0i ))
(s2 − s1)3(s1 + s2)

if x ∈ B(x0, s2) \B(x0, s1),

∂2wi(x)

∂x2i
=


0 if x ∈ Ω \B(x0, s2) ∪B(x0, s1),

12τ(s1s2 + (2l − s1 − s2)(xi − x0i )2/l − (s2 + s1 − l)l)
(s2 − s1)3(s1 + s2)

if x ∈ B(x0, r2) \B(x0, r1),

and

N∑
i=1

∂2wi(x)

∂x2i
=


0 if x ∈ Ω \B(x0, s2) ∪B(x0, s1),

12τ((N + 2)l2 − (N + 1)(s1 + s2)l +Ns1s2)

(s2 − s1)3(s1 + s2)

if x ∈ B(x0, s2) \B(x0, s1).
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It is easy to see that w = (w1, . . . , wn) ∈ X and, in particular,

(2.5) ‖wi‖pipi =
(12τ)pi2πN/2

(s2 − s1)3pi(s1 + s2)piΓ (N/2)

×
s2�

s1

|(N + 2)ξ2 − (N + 1)(s1 + s2)ξ +Ns1s2|piξN−1 dξ

for 1 ≤ i ≤ n. Hence, from (2.3)–(2.5) we get

(2.6) (τθi)
pi/k < ‖wi‖pipi < (τσi)

pi/k

for 1 ≤ i ≤ n. However, bearing in mind the assumptions on ν1, ν2 and τ ,
we see that

r1 < Φ(w) < r2.

From (2.2) for each (u1, . . . , un) ∈ X,

sup
x∈Ω
|ui(x)|pi ≤ k‖ui‖pipi

for i = 1, . . . , n, so

(2.7) sup
x∈Ω

n∑
i=1

|ui(x)|pi
pi

≤ k
n∑
i=1

‖ui‖pipi
pi

for each u = (u1, . . . , un) ∈ X, and so using (2.7), we see that

Φ−1(]−∞, r2[) =

{
(u1, . . . , un) ∈ X :

n∑
i=1

‖ui‖pipi
pi

< r2

}

⊆
{

(u1, . . . , un) ∈ X :

n∑
i=1

|ui(x)|pi
pi

< kr2 for all x ∈ Ω
}
,

and it follows that

sup
u∈Φ−1(]−∞,r2[)

Ψ(u) = sup
u∈Φ−1(]−∞,r2[)

�

Ω

F (x, u(x)) dx

≤
�

Ω

sup
t∈K(kr2)

F (x, t) dx.

Since for 1 ≤ i ≤ n, 0 ≤ wi(x) ≤ τ for each x ∈ Ω, condition (A1) ensures
that

�

Ω\B(x0,s2)

F (x,w(x)) dx+
�

B(x0,s2)\B(x0,s1)

F (x,w(x)) dx ≥ 0.
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Therefore, taking (2.6) into account, one has

β(r1, r2) ≤
supu∈Φ−1(]−∞,r2[) Ψ(u)− Ψ(w)

r2 − Φ(w)

≤
	
Ω supt∈K(kr2) F (x, t) dx− Ψ(w)

r2 − Φ(w)

≤
(
k

n∏
i=1

pi

)	
Ω supt∈K(kr2) F (x, t) dx−

	
B(x0,s1)

F (x, τ, . . . , τ) dx

ν2 −
∑n

i=1

∏n
j=1, j 6=i pj(τσi)

pi

=
(
k

n∏
i=1

pi

)
aτ (ν2).

On the other hand, by a similar reasoning,

ρ(r1, r2) ≥
Ψ(w)− supu∈Φ−1(]−∞,r1[) Ψ(u)

Φ(w)− r1

≥
Ψ(w)−

	
Ω supt∈K(kr2) F (x, t) dx

Φ(w)− r1

≥
(
k

n∏
i=1

pi

)	
B(x0,s1)

F (x, τ, . . . , τ) dx−
	
Ω supt∈K(kr1) F (x, t) dx∑n

i=1

∏n
j=1, j 6=i pj(τσi)

pi − ν1

=
(
k

n∏
i=1

pi

)
aτ (ν1).

Hence, from assumption (A2), one has β(r1, r2) < ρ(r1, r2). Therefore, ap-
plying Theorem 2.1, taking into account that the weak solutions of the
system (1.1) are exactly the solutions of the equation Φ′(u) − λΨ ′(u) = 0,
we obtain the conclusion.

Now we point out the following consequence of Theorem 2.2.

Theorem 2.3. Assume that assumption (A1) in Theorem 2.2 holds.
Suppose that there exist two positive constants ν and τ with

n∑
i=1

n∏
j=1, j 6=i

pj(τσi)
pi < ν

such that

(A3)

	
Ω supt∈K(ν/

∏n
i=1 pi)

F (x, t) dx

ν
<

	
B(x0,s1)

F (x, τ, . . . , τ) dx∑n
i=1

∏n
j=1, j 6=i pj(τσi)

pi
;

(A4) F (x, 0, . . . , 0) = 0 for every x ∈ Ω.



72 S. Heidarkhani

Then for r := ν/k
∏n
i=1 pi and each λ in]

1

k
∏n
i=1 pi

∑n
i=1

∏n
j=1, j 6=i pj(τσi)

pi

	
B(x0,s1)

F (x, τ, . . . , τ) dx
,

1

k
∏n
i=1 pi

ν	
Ω supt∈K(kr) F (x, t) dx

[
the system (1.1) admits a non-trivial weak solution u0 = (u01, . . . , u0n) ∈ X
such that supx∈Ω

∑n
i=1 |ui(x)|pi/pi < kr.

Proof. Applying Theorem 2.2 we have the conclusion, by picking ν1 = 0
and ν2 = ν. Indeed, owing to our assumptions, one has

aτ (ν) <

(
1−

∑n
i=1

∏n
j=1, j 6=i pj(τσi)

pi

ν

) 	
Ω supt∈K(kr) F (x, t) dx

ν −
∑n

i=1

∏n
j=1, j 6=i pj(τσi)

pi

=

	
Ω supt∈K(kr) F (x, t) dx

ν

<

	
B(x0,s1)

F (x, τ, . . . , τ) dx∑n
i=1

∏n
j=1, j 6=i pj(τσi)

pi
= aτ (0).

In particular,

aτ (ν) <

	
Ω supt∈K(kr) F (x, t) dx

ν
.

Hence, Theorem 2.2, taking (2.3) into account, yields the result.

We now point out the following special case of the previous results when
F does not depend on x ∈ Ω. To be precise, let F : Rn → R be a C1 function
in Rn such that F (0, . . . , 0) = 0.

Consider the following nonlinear elliptic system of n fourth-order partial
differential equations under Navier boundary conditions:

(2.8)

{
∆(|∆ui|pi−2∆ui) = λFui(u1, . . . , un) in Ω,

ui = ∆ui = 0 on ∂Ω

for 1 ≤ i ≤ n. Given two positive constants ν and τ with
n∑
i=1

n∏
j=1, j 6=i

pj(τσi)
pi 6= ν,

put

bτ (ν) :=
m(Ω) maxt∈K(ν/

∏n
i=1 pi)

F (t)− sN1 πN/2/Γ (1 +N/2)F (τ, . . . , τ)

ν −
∑n

i=1

∏n
j=1, j 6=i pj(τσi)

pi
.

We have the following existence results.



Non-trivial solutions for (p1, . . . , pn)-biharmonic systems 73

Corollary 2.4. Assume that there exist a non-negative constant ν1 and
two positive constants ν2 and τ with with ν1 <

∑n
i=1

∏n
j=1, j 6=i pj(τθi)

pi and∑n
i=1

∏n
j=1, j 6=i pj(τσi)

pi < ν2 such that

(B1) F (t) ≥ 0 for each t ∈ [0, τ ]n;

(B2) bτ (ν2) < bτ (ν1).

Then for each λ in ]
1

k
∏n
i=1 pi

1

bτ (ν1)
,

1

k
∏n
i=1 pi

1

bτ (ν2)

[
the system (2.4) admits a non-trivial weak solution u0 = (u01, . . . , u0n) ∈ X
such that ν1/k <

∑n
i=1

∏n
j=1, j 6=i pj‖u0i‖

pi
pi < ν2/k.

Proof. Set F (x, t) = F (t) for all x ∈ Ω and ti ∈ R for 1 ≤ i ≤ n. Since

m(B(x0, s1)) = sN1
πN/2

Γ (1+N/2) , Theorem 2.2 yields the conclusion.

We point out the following consequence of Theorem 2.2 when n = 1.

Let f : Ω × R → R be an L2-Carathéodory function. Let F be defined
by F (x, t) =

	t
0 f(x, s) ds for each (x, t) ∈ Ω × R. Put

(2.9) σ = σ(N, p, s1, s2) :=
12(N + 2)2(s1 + s2)

(s2 − s1)3

(
kπN/2(sN2 − sN1 )

Γ (1 +N/2)

)1/p

and

(2.10) θ = θ(N, p, s1, s2) :=
3N

(s2 − s1)(s1 + s2)

(
kπN/2((s1 + s2)

N − (2s1)
N )

2NΓ (1 +N/2)

)1/p

if N <
4s1

s2 − s1
,

12s1
(s2 − s1)2(s1 + s2)

(
kπN/2((s1 + s2)

N − (2s1)
N )

2NΓ (1 +N/2)

)1/p

if N ≥ 4s1
s2 − s1

,

where

k = sup
u∈W 2,p(Ω)∩W 1,p

0 (Ω)\{0}

maxx∈Ω |u(x)|
(
	
Ω |∆ui(x)|p dx)1/p

.

Given two positive constants ν and τ with ν 6= (στ)p, put

cτ (ν) :=

	
Ω sup|t|≤ν F (x, t) dx−

	
B(x0,s1)

F (x, τ) dx

ν − (τσ)p
.

Theorem 2.5. Assume that there exist a non-negative constant ν1 and
two positive constants ν2 and τ with ν1 < (τθ)p and (τσ)p < ν2 such that

(C1) F (x, t) ≥ 0 for each (x, t) ∈ (Ω \B(x0, s1))× [0, τ ];

(C2) cτ (ν2) < cτ (ν1).
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Then for each λ ∈
]

1
pkp

1
cτ (ν1)

, 1
pkp

1
cτ (ν2)

[
the problem

(2.11)

{
∆(|∆u|p−2∆u) = λf(x, u) in Ω,

u = ∆u = 0 on ∂Ω

has a non-trivial weak solution u0 ∈W 2,p(Ω) ∩W 1,p
0 (Ω) such that

ν1/k <
�

Ω

|∆u0(x)|p dx < ν2/k.

The last result gives the existence of a non-trivial weak solution in
W 2,p(Ω) ∩W 1,p

0 (Ω) to the problem (2.11) in the autonomous case.

Let f : R → R be a continuous function, and put F (t) =
	t
0 f(ξ) dξ for

all t ∈ R. The following result is a direct consequence of Theorem 2.5.

Theorem 2.6. Assume that there exist a non-negative constant ν1 and
two positive constants ν2 and τ with ν1 < (τθ)p and (τσ)p < ν2 such that

(D1) f(t) ≥ 0 for each t ∈ [−ν2,max{ν2, τ}];

(D2)
m(Ω)F (ν2)− sN1 πN/2

Γ (1+N/2)F (τ)

ν2 − (τσ)p
<
m(Ω)F (ν1)− sN1 πN/2

Γ (1+N/2)F (τ)

ν1 − (τσ)p
.

Then for each λ in]
1

pkp
ν1 − (τσ)p

m(Ω)F (ν1)− sN1 πN/2

Γ (1+N/2)F (τ)
,

1

pkp
ν2 − (τσ)p

m(Ω)F (ν2)− sN1 πN/2

Γ (1+N/2)F (τ)

[
the problem {

∆(|∆u|p−2∆u) = λf(u) in Ω,

u = ∆u = 0 on ∂Ω

has a non-trivial weak solution u0 ∈W 2,p(Ω) ∩W 1,p
0 (Ω) such that

ν1/k <
�

Ω

|∆u0(x)|p dx < ν2/k.

Finally, we prove the theorem in the introduction.

Proof of Theorem 1.1. For fixed λ as in the conclusion, there exists a
positive constant ν such that

λ <
1

pkp
	
Ω h(x) dx

ν
	 p√ν
0 g(ξ) dξ

.

Moreover, limt→0+ g(t)/tp−1 = +∞ implies limt→0+
	t
0 g(ξ) dξ/tp = +∞.

Therefore, one can choose a positive constant τ satisfying τ < p
√
ν/σ and

such that
σp

λpkp
1	

B(x0,s1)
h(x) dx

<

	τ
0 g(ξ) dξ

τp
.
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Hence, the conclusion follows from Theorem 2.5 with ν1 = 0, ν2 = ν and
f(x, t) = h(x)g(t) for every (x, t) ∈ Ω × R.
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