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Probability distribution solutions of a general
linear equation of infinite order, II

by Tomasz Kochanek and Janusz Morawiec (Katowice)

Abstract. Let (Ω,A, P ) be a probability space and let τ : R×Ω → R be a mapping
strictly increasing and continuous with respect to the first variable, and A-measurable
with respect to the second variable. We discuss the problem of existence of probability
distribution solutions of the general linear equation

F (x) =
�

Ω

F (τ(x, ω))P (dω).

We extend our uniqueness-type theorems obtained in Ann. Polon. Math. 95 (2009),
103–114.

1. Introduction. Throughout the paper, (Ω,A, P ) is a probability
space and τ : R × Ω → R is a mapping such that for every x ∈ R the
function τ(x, ·) is A-measurable, and for every ω ∈ Ω the function τ(·, ω) is
strictly increasing and continuous.

We investigate the set of probability distribution (p.d.) solutions of the
linear functional equation

(1.1) F (x) =
�

Ω

F (τ(x, ω))P (dω)

extending the results obtained in [KM]; for the background of equation (1.1)
see the references therein.

As explained in detail in [KM, §2], we may restrict our considerations to
the case where

(1.2) {x ∈ R : τ(x, ω) = x for almost all ω ∈ Ω} = ∅.

This follows from [MR, Theorem 2]; also by that theorem, we know that
(1.2) forces every p.d. solution F of (1.1) to be automatically continuous.
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From now on we assume (1.2). For any interval J ⊂ R we define

C(J) = {F : R→ [0, 1] |F is a weakly increasing (and continuous)
solution of (1) such that F (inf J) = 0 and F (sup J) = 1},

with the notation F (−∞) = limx→−∞ F (x) and F (+∞) = limx→+∞ F (x).
We say that a set S ⊂ R is τ -invariant if S 6= ∅ and for every x ∈ S we

have τ(x, ω) ∈ S for almost all ω ∈ Ω. Put

S1 = {I ⊂ R : I is a minimal compact τ -invariant interval},

S2 =
{
I ⊂ R \

⋃
S1 : I is a maximal τ -invariant half-line

}
,

and S = S1 ∪ S2. In view of the definition and our assumption (1.2), the
family S consists of pairwise disjoint non-degenerate closed proper subinter-
vals of R. Therefore, since

⋃
S1 is closed (cf. the proof of [KM, Claim 7]),⋃

S is closed as well. This implies that R \
⋃
S is a non-empty open set.

Indeed,
⋃
S = R would imply that the set of all end-points of the intervals

from S is a countable perfect set, which is impossible.
By virtue of [KM, Corollary 2, Remarks 1 and 2], we find that:

(i) Every p.d. solution F of (1.1) is constant on each member of S.
(ii) For each open component J of the set R \

⋃
S the class C(J) has at

most one element.
(iii) If F is a p.d. solution of (1.1) and J is an open component of R\

⋃
S

with C(J) = {G}, then

G =
F − F (inf J)

F (sup J)− F (inf J)
.

(iv) The existence of any p.d. solution of (1.1) is equivalent to C(J) 6= ∅
for at least one open component J of R \

⋃
S.

These four statements show that in order to describe every p.d. solution F
of equation (1.1) we should be able to decide whether C(J) 6= ∅ and, if so, to
describe the unique member of C(J), for every open component J of R\

⋃
S.

This is the aim of the present paper.

2. Some lemmas. We start with two auxiliary lemmas which yield
certain connections between solutions of any of the two inequalities:

F0(x) ≥
�

Ω

F0(τ(x, ω))P (dω),(2.1)

F0(x) ≤
�

Ω

F0(τ(x, ω))P (dω)(2.2)

and solutions of equation (1.1).
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Lemma 2.1. If F0 : R → [0, 1] is an increasing solution of (2.1)
(or (2.2)), then the sequence (Fn)n∈N of functions Fn : R → [0, 1] defined
by the formula

(2.3) Fn(x) =
�

Ω

Fn−1(τ(x, ω))P (dω) for n ∈ N, x ∈ R

is decreasing (respectively increasing), hence it is pointwise convergent to a
certain F : R→ [0, 1].

Moreover, the function F is either constant or

(2.4)
F − F (−∞)

F (+∞)− F (−∞)
∈ C(R).

Proof. If F0 satisfies (2.1), then by the definition, F1 ≤ F0. In particular,
F1(τ(x, ω)) ≤ F0(τ(x, ω)) for all x ∈ R and ω ∈ Ω. After integration we get
F2 ≤ F1 and, by induction, Fn ≤ Fn−1 for every n ∈ N. Analogously, if F0

satisfies (2.2), then Fn−1 ≤ Fn for every n ∈ N. Let F = limn→∞ Fn. Since
F0 is increasing, each Fn and F itself are increasing as well. Moreover, F
satisfies (1.1). Thus, in view of [MR, Theorem 2], either F is constant or
(2.4) holds.

In the following we consider the product space (Ω∞,A∞, P∞) and the
iterates τn : R×Ω∞ → R defined (cf. [BJ], [BK], [D]) by putting

τ1(x, ω1, . . .) = τ(x, ω1),

τn+1(x, ω1, . . .) = τ(τn(x, ω1, . . .), ωn+1) for n ∈ N.
It is easily seen that for each n ∈ N we have

τn+1(x, ω1, . . .) = τn(τ(x, ω1), ω2, . . .)

and the nth iterate τn(x, ω) depends only on the first n coordinates of ω.
Hence it is justified to write τn(x, ω1, . . . , ωm) instead of τn(x, ω1, . . .), if
m ≥ n.

Lemma 2.2. Assume x0, y0 ∈ R ∪ {−∞,+∞}.

(i) If x0 ∈ R and (Fn)n∈N is given by (2.3) with F0 = χ[x0,+∞), then

Fn(x) = P∞(τn(x, ω) ≥ x0) for n ∈ N, x ∈ R.

If (x0, y0) is a component of R \
⋃
S, then F0 satisfies (2.1).

(ii) If y0 ∈ R and (Fn)n∈N is given by (2.3) with F0 = χ[y0,+∞), then

Fn(x) = P∞(τn(x, ω) ≥ y0) for n ∈ N, x ∈ R.

If (x0, y0) is a component of R \
⋃
S, then F0 satisfies (2.2).

Proof. Since the proofs of both assertions (i) and (ii) are similar, we
show only the first one.
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For any x ∈ R we have

F1(x) =
�

Ω

χ[x0,+∞)(τ(x, ω1))P (dω1)

= P (τ(x, ω1) ≥ x0) = P∞(τ1(x, ω1, . . .) ≥ x0).

Assuming that the desired formula holds true for a fixed n ∈ N and every
x ∈ R, we get

Fn+1(x) =
�

Ω

Fn(τ(x, ω1))P (dω1)

=
�

Ω

Pn(τn(τ(x, ω1), ω2, . . . , ωn+1) ≥ x0)P (dω1)

=
�

Ω

Pn(τn+1(x, ω1, . . . , ωn+1) ≥ x0)P (dω1)

= Pn+1(τn+1(x, ω1, . . . , ωn+1) ≥ x0)

= P∞(τn+1(x, ω1, . . .) ≥ x0).

Now, suppose (x0, y0) is a component of R \
⋃
S. Then x0 is a right

end-point of some τ -invariant interval. Hence τ(x0, ω) ≤ x0 for almost all
ω ∈ Ω. Therefore, if x < x0 then τ(x, ω) < τ(x0, ω) ≤ x0 for almost all
ω ∈ Ω, hence F0(τ(x, ω)) = 0 for almost all ω ∈ Ω and (2.1) holds; if x ≥ x0

then F0(x) = 1 and again (2.1) holds.

3. The case S 6= ∅. Obviously, recursion (2.3) may produce a non-
trivial solution of equation (1.1) only if the initial function F0 is non-
constant. Lemma 2.2 guarantees that in the case S 6= ∅ it is always possible
to find a suitable solution of (2.1) or (2.2). We will exploit this fact in the
next lemma.

Throughout this section we assume S 6= ∅.

Lemma 3.1. Assume J = (x0, y0) is a component of R \
⋃
S.

(i) If x0 ∈ R, y0 ∈ R, (Fn)n∈N is given by (2.3) with F0 = χ[x0,+∞) and
F = limn→∞ Fn, then C(J) = {F}.

(ii) If x0 ∈ R, y0 = +∞, (Fn)n∈N is given by (2.3) with F0 = χ[x0,+∞)

and F = limn→∞ Fn, then F 6= 0 implies C(J) = {F}, whereas
F = 0 implies C(J) = ∅.

(iii) If x0 = −∞, y0 ∈ R, (Fn)n∈N is given by (2.3) with F0 = χ[y0,+∞)

and F = limn→∞ Fn, then F 6= 1 implies C(J) = {F}, whereas
F = 1 implies C(J) = ∅.

Proof. (i) Since J is a bounded component of R \
⋃
S, we infer that

x0 and y0 are (respectively right and left) end-points of some τ -invariant
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intervals. Consequently,

P (τ(x, ω) ≤ x0) = 1, P (τ(y, ω) ≥ y0) = 1 for x ≤ x0, y ≥ y0.

A simple induction yields

P∞(τn(x, ω)≤ x0) = 1, P∞(τn(y, ω)≥ y0) = 1 for n ∈ N, x≤ x0, y ≥ y0,

which, in the light of Lemma 2.2, means nothing else than

Fn|(−∞,x0] = 0 and Fn|[y0,+∞) = 1 for n ∈ N.

By Lemma 2.1, F ∈ C(J).
(ii) Analogously to the proof of (i) we can show that F |(−∞,x0] = 0 and

either F is constant or the function F/F (+∞) belongs to C(J). Now it is
enough to prove that C(J) 6= ∅ implies F (+∞) = 1.

Let G ∈ C(J). Obviously, G ≤ F0. Therefore

G(x) =
�

Ω

G(τ(x, ω))P (dω) ≤
�

Ω

F (τ(x, ω))P (dω) = F1(x)

for x ∈ R and further, by induction, G ≤ Fn for every n ∈ N. Hence G ≤ F ,
which implies F (+∞) = 1.

(iii) The proof runs analogously to the proof of (ii).

As a consequence of Lemmas 2.2 and 3.1 we obtain the following theorem.

Theorem 3.2. Assume S 6= ∅ and J = (x0, y0) is a component of
R \

⋃
S.

(i) If x0 ∈ R and y0 ∈ R, then C(J) 6= ∅. The unique member of C(J)
is given by F = limn→∞ Fn, where (Fn)n∈N is defined by (2.3) with
F0 = χ[x0,+∞).

(ii) If x0 ∈ R and y0 = +∞, then C(J) 6= ∅ if and only if

lim
x→+∞

lim
n→∞

P∞(τn(x, ω) ≥ x0) > 0.

In that case the unique member of C(J) is given by F = limn→∞ Fn,
where (Fn)n∈N is defined by (2.3) with F0 = χ[x0,+∞).

(iii) If x0 = −∞, y0 ∈ R, then C(J) 6= ∅ if and only if

lim
y→−∞

lim
n→∞

P∞(τn(y, ω) < y0) > 0.

In that case the unique member of C(J) is given by F = limn→∞ Fn,
where (Fn)n∈N is defined by (2.3) with F0 = χ[y0,+∞).

Unfortunately, the two necessary and sufficient conditions appearing in
assertions (ii) and (iii) are hard to verify in concrete situations. Nevertheless,
there are clear conditions which are necessary for C(J) 6= ∅.
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Theorem 3.3. Assume J = (x0, y0) is a component of R \
⋃
S.

(i) If x0 ∈ R, y0 = +∞ and C(J) 6= ∅, then almost all functions τ(·, ω)
are unbounded from above.

(ii) If x0 = −∞, y0 ∈ R and C(J) 6= ∅, then almost all functions τ(·, ω)
are unbounded from below.

Proof. Since the proofs of (i) and (ii) are similar, we only show (i).
Suppose that there exists M ∈ R such that α = P (τ(·, ω) ≤ M) > 0.

Define a sequence (ξn)n≥0 by the formula

(3.1) ξn = inf{x ∈ R : Fn(x) = 1},
where (Fn)n∈N is given by (2.3) with F0 = χ[x0,+∞) (we put ξn = +∞
if the underlying set is empty). By Lemma 2.2(i), F0 satisfies (2.1), hence
Lemma 2.1 implies that the sequence (Fn)n∈N is decreasing. Therefore
(ξn)n≥0 is increasing, and since ξ0 = x0, it follows that x0 ≤ ξn−1 ≤ ξn
for n ∈ N.

We will show that

(3.2) ξn = inf{x ∈ R : P (τ(x, ω) ≥ ξn−1) = 1} for n ∈ N.
The case ξn = +∞ is trivial, since then formula (2.3) implies that there is
no x ∈ R with P (τ(x, ω) ≥ ξn−1) = 1. Thus we may assume ξn < +∞, and
consequently ξn−1 < +∞. Denote the right-hand side of (3.2) by ηn. The
equality

(3.3) Fn(x) =
�

Ω

Fn−1(τ(x, ω))P (dω) = 1,

jointly with (3.1), implies that P (τ(x, ω) ≥ ξn−1) = 1 for every x > ξn.
Therefore P (τ(ξn, ω) ≥ ξn−1) = 1, i.e. ξn ≥ ηn. For the converse inequality
fix any x ∈ R with P (τ(x, ω) ≥ ξn−1) = 1. Then (3.3) yields Fn(x) = 1,
hence ξn ≤ x. This shows that ξn ≤ ηn.

Let ξ = limn→∞ ξn. If ξ were finite then, in view of (3.2), we would have
τ(ξ, ω) ≥ ξ for almost all ω ∈ Ω, which means that ξ is a left end-point
of some τ -invariant interval. This, however, is impossible, since ξ ≥ x0 and
(x0,+∞) ⊂ R \

⋃
S. Therefore ξ = +∞, hence there is n ∈ N such that

ξn>M . In view of (3.1), we have Fn(M)< 1. For every x∈R we thus obtain

Fn+1(x) =
�

Ω

Fn(τ(x, ω))P (dω) =
�

τ(x,ω)≤M

+
�

τ(x,ω)>M

≤ αFn(M) + (1− α) < 1.
Consequently, Fn+1(+∞) < 1. Hence we also have

lim
x→+∞

lim
n→∞

Fn(x) < 1,

which in the light of Lemma 2.2(i) and Theorem 3.2(ii) implies C(J) = ∅.
Thus the proof has been completed.
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4. The case S = ∅. Throughout this section we assume S = ∅.
Lemma 4.1. If F ∈ C(R), then F (R) ⊂ (0, 1).

Proof. Put x0 = inf{x ∈ R : F (x) = 1} and suppose x0 ∈ R. Then it
follows from

1 = F (x0) =
�

Ω

F (τ(x0, ω))P (dω)

that F (τ(x0, ω)) = 1 for almost all ω ∈ Ω, thus τ(x0, ω) ≥ x0 for almost all
ω ∈ Ω, which contradicts S = ∅. Similarly we can prove that F (x) > 0 for
every x ∈ R.

Lemma 4.2. If x0 ∈ R, F ∈ C(R) and (Fn)n∈N is given by (2.3) with
F0 = χ[x0,+∞), then

(4.1)
F (x)− F (x0)

1− F (x0)
≤ Fn(x) ≤ F (x)

F (x0)
for n ∈ N, x ∈ R.

Proof. Iterating equation (1.1) and using Lemma 2.2(i) we get

F (x) =
�

Ω∞

F (τn(x, ω))P∞(dω) =
�

τn(x0,ω)≥x0

+
�

τn(x0,ω)<x0

≤ P∞(τn(x, ω) ≥ x0) + F (x0)P∞(τn(x, ω) < x0)
= Fn(x) + F (x0)(1− Fn(x))

for n ∈ N, x ∈ R. By Lemma 4.1 we obtain the first estimate in (4.1). To
show the second one we write

F (x) ≥
�

τn(x0,ω)≥x0

F (τn(x, ω))P∞(dω)

≥ F (x0)P∞(τn(x, ω) ≥ x0) = F (x0)Fn(x)

for n ∈ N, x ∈ R.

Lemma 4.3. If x0 ∈ R and (Fn)n∈N is given by (2.3) with F0 = χ[x0,+∞),
then the function F : R→ [0, 1] defined by

F (x) = lim inf
n→∞

Fn(x)

is increasing and satisfies

(4.2) F (x) ≥
�

Ω

F (τ(x, ω))P (dω),

whereas the function F : R→ [0, 1] defined by

F (x) = lim sup
n→∞

Fn(x)

is increasing and satisfies

(4.3) F (x) ≤
�

Ω

F (τ(x, ω))P (dω).
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Proof. It is obvious that F and F are increasing. Inequalities (4.2)
and (4.3) immediately follow from the Fatou lemma applied to the sequences
(Fn)n∈N and (1− Fn)n∈N, respectively.

From now on x0 ∈ R is fixed and F , F stand for the two functions defined
in Lemma 4.3.

Lemma 4.4. In each of the following cases:

(a) (Fn)n∈N is given by (2.3) with F0 = F and F = limn→∞ Fn;
(b) (Fn)n∈N is given by (2.3) with F0 = F and F = limn→∞ Fn,

we have:

(i) If F is non-constant, then C(R) = {F}.
(ii) If F is constant, then C(R) = ∅.
Proof. Both in case (a) and (b), Lemma 4.3, jointly with Lemma 2.1,

implies that F : R → [0, 1] is a well-defined function such that (2.4) holds
provided F is non-constant. Now it is enough to show that C(R) 6= ∅ implies
both F (−∞) = 0 and F (+∞) = 1.

Let G ∈ C(R). By Lemma 4.2,
G(x)−G(x0)

1−G(x0)
≤ F (x) ≤ F (x) ≤ G(x)

G(x0)
for x ∈ R.

Substituting τ(x, ω) for x, integrating both sides and applying a simple
induction we arrive at the inequalities

G(x)−G(x0)
1−G(x0)

≤ Fn(x) ≤ G(x)
G(x0)

for x ∈ R,

where Fn may be defined either as in case (a) or as in case (b). In both
cases we may pass to the limits as n → ∞ and then x → ±∞ to obtain
F (−∞) = 0 and F (+∞) = 1.

As a consequence of Lemma 4.4 we obtain the following theorem.

Theorem 4.5. We have C(R) 6= ∅ if and only if the limit

(4.4) F (x) = lim
n→∞

P∞(τn(x, ω) > x0)

exists for every x ∈ R and the function F is a probability distribution. In
that case C(J) = {F}.

Proof. Assume first that formula (4.4) defines a p.d. function F :
R→ [0, 1]. Then, by virtue of Lemma 2.2(i), we infer that F = limn→∞ Fn,
where (Fn)n∈N is given by (2.3) with F0 = χ[x0,+∞). Thus it follows imme-
diately from (2.3) that F is a solution of (1.1). Hence C(R) = {F}.

Now, assume that there exists a function G ∈ C(R) and let us distinguish
cases (a) and (b) of Lemma 4.4. By using Lemmas 4.3 and 2.2(i), we obtain
what follows.
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Case (a). For any x ∈ R we have

F1(x) =
�

Ω

F (τ(x, ω))P (dω) ≤ F (x) = lim inf
n→∞

P∞(τn(x, ω) ≥ x0).

Since Lemmas 2.1 and 4.3 imply that the sequence (Fn)n∈N is decreasing,
we infer that

(4.5) Fm(x) ≤ lim inf
n→∞

P∞(τn(x, ω) ≥ x0) for m ∈ N, x ∈ R.

By Lemma 4.4, limm→∞ Fm = G and hence (4.5) yields

(4.6) G(x) ≤ lim inf
n→∞

P∞(τn(x, ω) ≥ x0) for x ∈ R.

Case (b). For any x ∈ R we have

F1(x) =
�

Ω

F (τ(x, ω))P (dω) ≥ F (x) = lim sup
n→∞

P∞(τn(x, ω) ≥ x0).

Since Lemmas 2.1 and 4.3 imply that the sequence (Fn)n∈N is increasing,
we infer that

(4.7) Fm(x) ≥ lim sup
n→∞

P∞(τn(x, ω) ≥ x0) for m ∈ N, x ∈ R.

By Lemma 4.4, limm→∞ Fm = G and hence (4.7) yields

(4.8) G(x) ≥ lim sup
n→∞

P∞(τn(x, ω) ≥ x0) for x ∈ R.

Inequalities (4.6) and (4.8) show that the limit F (x) given by (4.4) exists
and for every x ∈ R we have F (x) = G(x), which completes the proof.

The last result, which is analogous to Theorem 3.3, gives a necessary
condition for C(R) 6= ∅.

Theorem 4.6. If C(R) 6= ∅, then almost all functions τ(·, ω) are un-
bounded from below and from above.

Proof. Suppose first that there exists M ∈ R such that P (τ(·, ω) ≤ M)
> 0. Let (Fn)n∈N and F be as in Lemma 4.4(a). Define a sequence (ξn)n≥0

by formula (3.1). If ξ0 = −∞ then obviously we have F = F = 1, hence
Lemma 4.4(ii) implies C(R) = ∅. Thus we may assume ξ0 > −∞. In view of
inequality (4.2) and Lemma 2.1, the sequence (Fn)n∈N is decreasing. As in
the proof of Theorem 3.3, we deduce that

ξn = inf{x ∈ R : P (τ(x, ω) ≥ ξn−1) = 1} ≥ ξn−1 for n ∈ N,
and we may consider ξ = limn→∞ ξn. If ξ were finite then we would have
τ(ξ, ω) ≥ ξ for almost all ω ∈ Ω, which contradicts the fact that S = ∅.
Therefore ξ = +∞ and, by the argument of the proof of Theorem 3.3, we
infer that F (+∞) < 1. Hence, in view of Lemma 4.4, we must have C(R) = ∅.

Now, suppose that for some m ∈ R we have α = P (τ(·, ω) ≥ m) > 0.
Let (Fn)n∈N and F be as in Lemma 4.4(b). Define a sequence (νn)n≥0 by
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the formula

(4.9) νn = sup{x ∈ R : Fn(x) = 0}
(νn = −∞ if the underlying set is empty). If ν0 = +∞ then obviously
F = F = 0, hence Lemma 4.4(ii) implies C(R) = ∅. Thus we may assume
ν0 < +∞.

In view of inequality (4.3) and Lemma 2.1, the sequence (Fn)n∈N is
increasing. Therefore (νn)n≥0 is decreasing: νn ≤ νn−1 ≤ ν0 < +∞ for
n ∈ N. Just as above we conclude that limn→∞ νn = −∞, hence νn < m for
some n ∈ N. By (4.9), we have Fn(m) > 0. For every x ∈ R we thus obtain

Fn+1(x) =
�

Ω

Fn(τ(x, ω))P (dω) ≥
�

τ(x,ω)≥m

≥ αFn(m) > 0.

Consequently, Fn(−∞) > 0 and also F (−∞) > 0. In view of Lemma 4.4,
we infer that C(R) = ∅.
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