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Probability distribution solutions of a general
linear equation of infinite order, II

by ToMAsz KOCHANEK and JANUSzZ MoORAWIEC (Katowice)

Abstract. Let (£2, A, P) be a probability space and let 7: R X 2 — R be a mapping
strictly increasing and continuous with respect to the first variable, and .4-measurable
with respect to the second variable. We discuss the problem of existence of probability
distribution solutions of the general linear equation

F(z) = S F(r(z,w)) P(dw).

We extend our uniqueness-type theorems obtained in Ann. Polon. Math. 95 (2009),
103-114.

1. Introduction. Throughout the paper, ({2, 4, P) is a probability
space and 7: R x 2 — R is a mapping such that for every x € R the
function 7(z,-) is A-measurable, and for every w € {2 the function 7(-,w) is
strictly increasing and continuous.

We investigate the set of probability distribution (p.d.) solutions of the
linear functional equation

(1.1) F(z) = | F(r(z,w)) P(dw)
(0]

extending the results obtained in [KM]; for the background of equation
see the references therein.

As explained in detail in [KM)| §2], we may restrict our considerations to
the case where

(1.2) {z € R:7(z,w) =z for almost all w € 2} = 0.

This follows from [MR) Theorem 2J; also by that theorem, we know that
(1.2)) forces every p.d. solution F' of (|I.1]) to be automatically continuous.
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From now on we assume (1.2)). For any interval J C R we define
C(J)={F:R —[0,1]| F is a weakly increasing (and continuous)
solution of (1) such that F(inf J) =0 and F(supJ) = 1},
with the notation F'(—o0) = lim,; o F(z) and F(+00) = lim,— o F(2).
We say that a set S C R is 7-invariant if S # () and for every x € S we
have 7(z,w) € S for almost all w € £2. Put

S1 = {I C R: [ is a minimal compact 7-invariant interval},
Sy = {I CR\ USl : I is a maximal 7-invariant hadf—line}7

and § = &1 USs. In view of the definition and our assumption , the
family S consists of pairwise disjoint non-degenerate closed proper subinter-
vals of R. Therefore, since |JS; is closed (cf. the proof of [KM| Claim 7)),
JS is closed as well. This implies that R\ [JS is a non-empty open set.
Indeed, | JS = R would imply that the set of all end-points of the intervals
from S is a countable perfect set, which is impossible.

By virtue of [KM, Corollary 2, Remarks 1 and 2|, we find that:

(i) Every p.d. solution F' of ([1.1)) is constant on each member of S.

(ii) For each open component J of the set R\ | JS the class C(J) has at
most one element.

(iii) If F' is a p.d. solution of (1.1) and J is an open component of R\ JS
with C(J) = {G}, then

F — F(inf J)
F(supJ) — F(inf J)’

(iv) The existence of any p.d. solution of ([1.1)) is equivalent to C(J) # 0

for at least one open component J of R\ |JS.

These four statements show that in order to describe every p.d. solution F
of equation we should be able to decide whether C(J) # ) and, if so, to
describe the unique member of C(.J), for every open component J of R\|JS.
This is the aim of the present paper.

2. Some lemmas. We start with two auxiliary lemmas which yield
certain connections between solutions of any of the two inequalities:

(2.1) Fy(x) > | Fo(r(z,w)) P(dw),

(2.2) Fo(z) < \ Fy(r(z,w)) P(dw)

SE N

and solutions of equation (|1.1)).
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LEmMmA 2.1. If Fo: R — [0,1] is an increasing solution of (2.1))
(or (2.2))), then the sequence (Fy)nen of functions Fy,: R — [0,1] defined
by the formula

(2.3) Fp(z) = | Fuoi(7(z,w)) P(dw)  forneN, z€R
02

is decreasing (respectively increasing), hence it is pointwise convergent to a
certain F: R — [0, 1].

Moreover, the function F is either constant or

F — F(—o0)
F(+00) — F(—0o0)

Proof. If Fy satisfies , then by the definition, F} < Fy. In particular,
Fi(r(z,w)) < Fo(1(z,w)) for all x € R and w € §2. After integration we get
F, < Fy and, by induction, F,, < F,_1 for every n € N. Analogously, if Fj
satisfies , then F,,_1 < F, for every n € N. Let F' = lim,,_,, F},. Since

Iy is increasing, each F,, and F itself are increasing as well. Moreover, F
satisfies ((1.1). Thus, in view of [MR] Theorem 2|, either F' is constant or

(2.4) holds. m

In the following we consider the product space (£2°°,.4°°, P>°) and the
iterates 7": R x 2°° — R defined (cf. [BJ], [BK], [D]) by putting

(2.4)

€ C(R).

™z, wi,...) = 7(z,w),
Yz w,. ) = 7(7 @, w1, . ), wegr)  forme N
It is easily seen that for each n € N we have

Tz w, . ) = (T (2, W), W, - )

and the nth iterate 7" (z,w) depends only on the first n coordinates of w.
Hence it is justified to write 7" (z,w1,...,wn) instead of 7" (z,w1,...), if
m > n.

LEMMA 2.2. Assume g,y € RU{—00,+00}.
(i) If o € R and (Fy)nen is given by (2.3) with Fo = X[y 4oc), then
Fo(x) = P*(t"(x,w) > z9) forneN,zeR.

If (z0,y0) is a component of R\ |JS, then Fy satisfies (2.1)).
(ii) If yo € R and (Fy)nen is given by (2.3) with Fo = Xy, 400, then
F,(z) = P*(t"(z,w) > yo) forneN, zeR.
If (zo,y0) s a component of R\ |JS, then Fy satisfies (2.2)).

Proof. Since the proofs of both assertions (i) and (ii) are similar, we
show only the first one.
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For any z € R we have

Fi(2) = | Xjng,1o0) (T(2,w1)) P(dwr)
(%

= P(r(z,w1) > x0) = P® (Y (z,w1,...) > x0).

Assuming that the desired formula holds true for a fixed n € N and every

x € R, we get
Frii(x) = | Fu(r(z,w1)) P(dw)

0

= S Pn T($,W1),W2,...,wn+1) > 330) P(dwl)
0

= S ”+1(:U,w1,...,wn+1) ZZL‘O)P(dwl)
0
P ( n+1(gj’w17 B 7wn+1) > .170)

= P (", w,...) > x0).

Now, suppose (xg,y0) is a component of R\ |JS. Then z( is a right

end-point of some 7-invariant interval. Hence 7(zg,w) < xo for almost all
w € (2. Therefore, if + < xg then 7(x,w) < 7(xp,w) < z( for almost all
w € £2, hence Fy(7(x,w)) = 0 for almost all w € (2 and holds; if x > x
then Fy(z) =1 and again holds. =

3. The case S # (). Obviously, recursion (2.3)) may produce a non-

trivial solution of equation (1.1) only if the initial function Fj is non-
constant. Lemma guarantees that in the case S # () it is always possible

to find a suitable solution of (2.1f) or (2.2]). We will exploit this fact in the
next lemma.

Lo

Throughout this section we assume S # ().

LEMMA 3.1. Assume J = (z0,yo) is a component of R\ JS.

(i) Ifxo € R, yo € R, (Fy)nen is given by with Fy = X[zg,4+00) and
F =lim,,_.o F,, then C(J) = {F}.
(ii) If xg € R, yo = +00, (Fn)nen is given by with Fo = X[zg,+o0)
and F = limy,_.o Fy, then F # 0 implies C(J) = {F}, whereas
F =0 implies C(J) = 0.
(iii) If xg = —o00, yo € R, (Fj)nen is given by with Fo = X[ye,4)
and F' = limy,_.o Fy, then F' # 1 implies C(J) = {F}, whereas
F =1 implies C(J) = 0.

Proof. (i) Since J is a bounded component of R\ |JS, we infer that
and yo are (respectively right and left) end-points of some 7-invariant
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intervals. Consequently,
P(r(z,w) <z9) =1, P(r(y,w)>yo)=1 forax <z, y>yo.
A simple induction yields
P(1"(z,w) <x0) =1, PP(1"(y,w) >yo) =1 forneN, z<uzg, y>yo,
which, in the light of Lemma means nothing else than
Fol(—some) =0 and  Fyulpy, 400) =1 forneN.

By Lemma 2.1, F € C(J).

(ii) Analogously to the proof of (i) we can show that F|(_. ;,) = 0 and
either F' is constant or the function F'/F(400) belongs to C(J). Now it is
enough to prove that C(J) # () implies F(+oc0) = 1.

Let G € C(J). Obviously, G < Fy. Therefore

G(z) = | G(r(z,w)) P(dw) < | F(r(2,w)) P(dw) = Fi(z)
2 (9}
for x € R and further, by induction, G < F;, for every n € N. Hence G < F,
which implies F(+00) = 1.
(iii) The proof runs analogously to the proof of (ii). =

As a consequence of Lemmas[2.2]and [3.1] we obtain the following theorem.

THEOREM 3.2. Assume S # 0 and J = (xg,yo) is a component of
R\US.
(i) If zo € R and yo € R, then C(J) # 0. The unique member of C(J)
is given by F = lim,, . Fy,, where (F},)nen is defined by (2.3) with
Fo = Xzo,400) -
(ii) If 2o € R and yo = 400, then C(J) # 0 if and only if

lim lim P*(7"(z,w) > zg) > 0.

T——+00 N—00

In that case the unique member of C(J) is given by F' = lim,,_,o0 F,,

where (Fp)nen is defined by (2.3) with Fy = X[z9,400)-
(iii) If zg = —o0, yo € R, then C(J) # 0 if and only if

lim lim P*(7"(y,w) < yo) > 0.

Yy——00 N—00

In that case the unique member of C(J) is given by F' = lim,,_,o0 F,,
where (Fp)nen is defined by (2.3) with Fy = X[yo 4o0)-

Unfortunately, the two necessary and sufficient conditions appearing in
assertions (ii) and (iii) are hard to verify in concrete situations. Nevertheless,
there are clear conditions which are necessary for C(J) # 0.
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THEOREM 3.3. Assume J = (xo,y0) is a component of R\ |JS.

(i) If xo € R, yo = +00 and C(J) # 0, then almost all functions 7(-,w)
are unbounded from above.

(il) If 2o = —o0, yo € R and C(J) # 0, then almost all functions 7(-,w)
are unbounded from below.

Proof. Since the proofs of (i) and (ii) are similar, we only show (i).

Suppose that there exists M € R such that « = P(7(-,w) < M) > 0.
Define a sequence (&,)n>0 by the formula
(3.1) & =inf{z e R: F,(x) =1},
where (Fy,)nen is given by (2.3) with Fy = X[35,400) (We put &, = 400
if the underlying set is empty). By Lemma [2.2{i), Fy satisfies (2.1]), hence
Lemma implies that the sequence (F,)necn is decreasing. Therefore
(&€n)n>0 1is increasing, and since &y = zg, it follows that zo < &,—1 < &,
for n € N.

We will show that
(3.2) &n=inf{z eR: P(1(z,w) > &,—1) =1} forneN.

The case &, = 400 is trivial, since then formula ([2.3) implies that there is
no r € R with P(7(z,w) > §,-1) = 1. Thus we may assume §,, < 400, and
consequently &,_1 < 4o00. Denote the right-hand side of (3.2)) by 1,. The
equality
(3.3) Fp(z) = | Fuoi(r(,0)) Pldw) = 1,

(9}
jointly with (3.1)), implies that P(r(z,w) > §,-1) = 1 for every = > &,.
Therefore P(7(&p,w) > &p—1) = 1, i.e. &, > . For the converse inequality
fix any x € R with P(7(z,w) > &,—1) = 1. Then (3.3) yields F,(x) = 1,
hence &, < x. This shows that &, < n,.

Let & = limy,—,o0 &, If € were finite then, in view of (3.2)), we would have
T(§,w) > & for almost all w € (2, which means that £ is a left end-point
of some T-invariant interval. This, however, is impossible, since £ > zg and
(20, +00) C R\ US. Therefore £ = +o00, hence there is n € N such that
&n > M. In view of (3.1), we have F,, (M) < 1. For every x € R we thus obtain

Fop(o) = | Fo(r(@w) Pldw) = |+
2 T(z,w)<M  71(zw)>M
<aF,(M)+(1—a)<1.
Consequently, Fj,11(+00) < 1. Hence we also have
lim lim F,(z) <1,

T—+00 N—00

which in the light of Lemma [2.2fi) and Theorem [3.2(ii) implies C(J) = 0.
Thus the proof has been completed. »
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4. The case S = (). Throughout this section we assume S = ().
LEMMA 4.1. If F € C(R), then F(R) C (0,1).

Proof. Put zp = inf{z € R: F(z) = 1} and suppose o € R. Then it
follows from
1= F(zo) = | F(r(x0,w)) P(dw)
9]
that F'(7(xo,w)) = 1 for almost all w € {2, thus 7(x¢,w) > x( for almost all
w € £2, which contradicts S = (. Similarly we can prove that F(z) > 0 for
every r € R.

LEMMA 4.2. If g € R, F € C(R) and (Fy)nen s given by (2.3)) with
Fo = X[zo,+00)s then

F(z) — F(xo) F(x)
4.1 —— =L < F(r) < ——= orn €N, x eR.
W T Gy S S Ry
Proof. Tterating equation (|1.1)) and using Lemma (1) we get
Fz)= | F(r"(@w)Pe(dw)= | + |
200 T (xo,w)>x0 T (T0,W)<To

< P(r"(@,w) > x0) + F(20) P> (7" (%, w) < x0)
= Fp(z) + F(z0)(1 — Fu(x))
for n € N, x € R. By Lemma we obtain the first estimate in (4.1]). To

show the second one we write
F(z) > | F("(w,w)) P™(dw)
T (z0,w) >T0
> F(zo) P> (m"(z,w) > 20) = F(z0)Fn(z)
formeN,z€eR. =
LEMMA 4.3. Ifzp € R and (Fy,)nen s given by with Fy = X[zy,+00)>
then the function F': R — [0, 1] defined by
F(x) = liminf F,(z)

n—oo

is increasing and satisfies

(4.2) E(x) 2 | E(r(z,w)) P(dw),

whereas the function F: R — [0, 1] defined by
F(z) = limsup F, ()

is increasing and satisfies

(4.3) F(x) < | F(r(z,w)) P(dw).
2
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Proof. It is obvious that F and F are increasing. Inequalities (4.2))
and (4.3) immediately follow from the Fatou lemma applied to the sequences
(Fn)nen and (1 — F,)pen, respectively. m

From now on zy € R is fixed and F', F' stand for the two functions defined
in Lemma (4.3l

LEMMA 4.4. In each of the following cases:

(a) (Fn)nen is given by (2.3) with Fy = E and F = limy, o0 Fp;

(b) (Fy)nen is given by (2.3)) with Fo = F and F = lim,,_,o0 F,,
we have:

(i) If F is non-constant, then C(R) = {F'}.

(ii) If F is constant, then C(R) = ().

Proof. Both in case (a) and (b), Lemma jointly with Lemma
implies that F': R — [0,1] is a well-defined function such that (2.4 holds
provided F' is non-constant. Now it is enough to show that C(R) # () implies
both F(—o0) =0 and F(+00) = 1.

Let G € C(R). By Lemma

G(z) — G(xo) G(z)

1= G(xo) G(z0)

Substituting 7(z,w) for z, integrating both sides and applying a simple
induction we arrive at the inequalities

Gl) = Glan) _ . ) Clo)

1-— G(SEQ) G(l‘o)

where F,, may be defined either as in case (a) or as in case (b). In both

cases we may pass to the limits as n — oo and then x — 400 to obtain
F(—oc0)=0and F(+00)=1. =

As a consequence of Lemma [1.4] we obtain the following theorem.
THEOREM 4.5. We have C(R) # 0 if and only if the limit
(4.4) F(z) = lim P*(r"(z,w) > o)

<F(r)<F(x) < for z € R.

for x € R,

exists for every x € R and the function F' is a probability distribution. In
that case C(J) = {F}.

Proof. Assume first that formula defines a p.d. function F :
R — [0, 1]. Then, by virtue of Lemma i), we infer that F' = lim, ..o Fy,
where (F,)nen is given by with Fy = X[z 400)- Thus it follows imme-
diately from that F'is a solution of . Hence C(R) = {F'}.

Now, assume that there exists a function G € C(R) and let us distinguish
cases (a) and (b) of Lemma By using Lemmas [4.3] and [2.2[(i), we obtain
what follows.
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CASE (a). For any x € R we have
Fi(z) = | F(r(z,w)) P(dw) < F(x) = liminf P (7" (z,w) > o).

n—oo
Q
Since Lemmas and imply that the sequence (F),)nen is decreasing,
we infer that
(4.5) Fp(z) < liminf P®°(7"(z,w) > x9) form e N, z € R.
n—oo
By Lemma limy, 00 Fin = G and hence (4.5)) yields
(4.6) G(z) < liminf P> (7" (z,w) > z9) for z € R.
n—oo

CASE (b). For any x € R we have
Fi(z) = S F(1(z,w)) P(dw) > F(x) = limsup P (7" (z,w) > x0).

0 n—oo
Since Lemmas and imply that the sequence (F),)nen is increasing,

we infer that
(4.7) F,(z) > limsup P (7" (z,w) > x9) form € N,z € R.

By Lemma lim,;, oo Fn, = G and hence (4.7)) yields
(4.8) G(x) > limsup P*(t"(z,w) > xg) for x € R.

Inequalities (4.6) and (4.8]) show that the limit F'(x) given by (4.4)) exists
and for every x € R we have F(x) = G(z), which completes the proof. =

The last result, which is analogous to Theorem (3.3 gives a necessary
condition for C(R) # 0.

THEOREM 4.6. If C(R) # 0, then almost all functions 7(-,w) are un-
bounded from below and from above.

Proof. Suppose first that there exists M € R such that P(7(-,w) < M)
> 0. Let (F,)nen and F be as in Lemma [£.4[a). Define a sequence (&n)n>0
by formula . If ¢ = —oo then obviously we have F' = F' = 1, hence
Lemma [4.4{ii) implies C(R) = @. Thus we may assume & > —oo. In view of
inequality and Lemma the sequence (F,)nen is decreasing. As in
the proof of Theorem we deduce that

& =inf{z e R: P(r(z,w) > &—1) =1} > &1 forneN,
and we may consider & = lim,—,o &,. If £ were finite then we would have
T7(&,w) > £ for almost all w € 2, which contradicts the fact that S = (.
Therefore ¢ = +o00 and, by the argument of the proof of Theorem [3.3] we
infer that F'(+00) < 1. Hence, in view of Lemma we must have C(R) = ().

Now, suppose that for some m € R we have a = P(7(-,w) > m) > 0.
Let (Fy)nen and F be as in Lemma [4.4b). Define a sequence (vpn)n>0 by
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the formula
(4.9) v, =sup{z € R: F,(x) =0}

(v, = —oo if the underlying set is empty). If vy = +oo then obviously
F = F = 0, hence Lemma (ii) implies C(R) = ). Thus we may assume
vy < +00.

In view of inequality and Lemma the sequence (F))nen is
increasing. Therefore (vp)n>0 is decreasing: v, < vp—1 < vy < +oo for
n € N. Just as above we conclude that lim,, ., v, = —00, hence v, < m for

some n € N. By (4.9), we have F,,(m) > 0. For every € R we thus obtain

Fpi(z) = | Fu(r(z,w) Pldw) > | >aF,(m)>0.
N T(x,w)>m

Consequently, F,,(—oc0) > 0 and also F(—o0) > 0. In view of Lemma
we infer that C(R) = (). =
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