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On meromorphic solutions of the
Riccati differential equations

by Ran Ran Zhang and Zong Xuan Chen (Guangzhou)

Abstract. We investigate the growth and Borel exceptional values of meromorphic
solutions of the Riccati differential equation

w′ = a(z) + b(z)w + w2,

where a(z) and b(z) are meromorphic functions. In particular, we correct a result of E. Hille
[Ordinary Differential Equations in the Complex Domain, 1976] and get a precise estimate
on the growth order of the transcendental meromorphic solution w(z); and if at least one
of a(z) and b(z) is non-constant, then we show that w(z) has at most one Borel exceptional
value. Furthermore, we construct numerous examples to illustrate our results.

1. Introduction and results. In this paper, we use the standard no-
tations of Nevanlinna’s value distribution theory ([4, 11]). We use λ(f) and
λ(f) to denote respectively the exponents of convergence of the zero se-
quence and of the sequence of distinct zeros of a meromorphic function
f(z); λ(1/f) to denote the exponent of convergence of the pole sequence of
f(z); and σ(f) to denote the order of growth of f(z). We also use

σ2(f) = lim sup
r→∞

log+ log+ T (r, f)
log r

and λ2

(
1
f

)
= lim sup

r→∞

log+ log+N(r, f)
log r

to denote respectively the hyperorder of f(z) and the hyperexponent of
convergence of the pole sequence of f(z).

The Malmquist–Yosida theorem (see, e.g., [6, Chapter 10]) states that if
R(z, w) is rational in w with meromorphic coefficients, and if the differential
equation w′ = R(z, w) admits an admissible meromorphic solution, then this
equation must be a Riccati differential equation

(1.1) w′ = a(z) + b(z)w + c(z)w2,

where a(z), b(z), c(z) are meromorphic functions. So the Riccati differential
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equation (1.1) has taken a special position in algebraic differential equations.
If c(z) 6≡ 0, then by the transformation

(1.2) w =
1
c(z)

u− b(z)
2c(z)

− c′(z)
2c(z)2

,

(1.1) can be transformed into

(1.3) u′ = A(z) + u2,

where

A = ac− b2

4
+
b′

2
− 3

4

(
c′

c

)2

− b

2
c′

c
+

1
2
c′′

c
.

From (1.2) we see that a solution w(z) of (1.1) is meromorphic if and only
if the corresponding solution u(z) of (1.3) is meromorphic. So the numbers
of meromorphic solutions of (1.1) and (1.3) are the same.

In [1, 6, 12, 13], the maximum number of distinct meromorphic solutions
of (1.3) has been discussed. The main results are summarized in the following
three theorems.

Theorem A ([1, Proposition 2.1]). If the Riccati differential equation
(1.3) with A(z) meromorphic has at least three distinct meromorphic so-
lutions u1(z), u2(z), u3(z), then this equation has a one-parameter family
{yc(z) : c ∈ C} of distinct meromorphic solutions with the property that any
meromorphic solution u(z) 6≡ u1(z) of (1.3) satisfies u(z) = yc(z) for some
c ∈ C.

Theorem B. Suppose that A(z) is meromorphic and has at least one
pole.

(i) If A(z) has at least one simple pole, then (1.3) admits at most one
meromorphic solution (Proposition 9.1.6 in [6]).

(ii) If A(z) has exactly one simple pole and no poles of higher multiplic-
ity, then (1.3) admits exactly one meromorphic solution (Example
6.2 in [1]).

(iii) If A(z) has at least one pole of odd multiplicity m ≥ 3, then (1.3)
admits no meromorphic solutions. If all poles of A(z) with multi-
plicity m ≥ 3 are of even multiplicity, then (1.3) admits at most two
distinct meromorphic solutions (Theorem 6.12 in [1]).

(iv) If A(z) has a double pole such that 4c−2 6∈ E, then (1.3) admits at
most two distinct meromorphic solutions. Moreover, if 4c−2 = 1,
then (1.3) admits at most one meromorphic solution (Theorem 6.4
in [1]).

In Theorem B, c−2 denotes the coefficient of the first term of the Laurent
expansion of A(z) at a double pole z0, i.e.,
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A(z) =
c−2

(z − z0)2
+ · · · ,

and
E := {1− n2 |n is an integer ≥ 2}.

Theorem C ([12, Theorem 5]). Suppose that A(z) is a transcendental
meromorphic function of finite order. If δ(∞, A) > 0, then (1.3) admits at
most two distinct meromorphic solutions of finite order.

Some results on the growth of meromorphic solutions of Riccati differ-
ential equations have been obtained in [5, 6, 9]. The main results claimed
are as follows.

Theorem D ([9]). Suppose that A(z) is a rational function that can
be represented as A(z) = azγ + · · · in the neighborhood of infinity. If u(z)
is a transcendental meromorphic solution of (1.3), then σ(u) = 1 + γ/2.
Furthermore, if γ < −1, then (1.3) admits no transcendental meromorphic
solutions.

Theorem E ([5, Theorem 4.6.3]). Suppose that the Riccati differential
equation

(1.4) w′ = a(z) + b(z)w + w2

has rational coefficients, and the limits limz→∞ a(z)|z|−α and
limz→∞ b(z)|z|−β are finite non-zero constants. If w(z) is a meromorphic
solution of (1.4) with infinitely many poles, then σ(w) = 1 + max{β, α/2}.

However the following example shows that Theorem E is not always
true.

Example 1. The function w(z) = tan z − z2 satisfies the equation

w′ = z4 − 2z + 1 + 2z2w + w2,

where a(z) = z4 − 2z + 1, b(z) = 2z2, α = 4, β = 2. Obviously, σ(w) =
1, while by Theorem E, we get σ(w) = 1 + max{2, 4/2} = 3. This is a
contradiction.

In this paper, we will investigate the equation (1.4) and correct Theo-
rem E. Our method is totally different from the method used in [5].

Theorem 1.1. Suppose that a(z) and b(z) are two rational functions
such that as z →∞,

|a(z)| ∼ c1|z|m, |b(z)| ∼ c2|z|n,(1.5) ∣∣∣∣a(z)− b2(z)
4

+
b′(z)

2

∣∣∣∣ ∼ c3|z|k,(1.6)

where c1, c2, c3 are three constants with c1c2c3 6= 0, and m,n, k are three
integers.
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(i) Every transcendental meromorphic solution w(z) of (1.4) satisfies

(1.7) σ(w) = 1 + min{k/2, max{n,m/2}} ≥ 1/2.

(ii) If k ≥ −1, then (1.4) admits at most two distinct rational solu-
tions.

Remark 1. By a brief inspection of the proof of Theorem 1.1, we see
that if a(z) − b2(z)/4 + b′(z)/2 ≡ 0, then all the meromorphic solutions of
(1.4) are w(z) = −1

2b(z) and yc(z) = − 1
z+c −

1
2b(z) (c ∈ C). So (1.4) admits

no transcendental meromorphic solutions in this situation.

From Theorem 1.1, we can easily get the following corollary.

Corollary 1.1. Suppose that a(z) and b(z) are two rational functions
such that |a(z)| ∼ c1|z|m and |b(z)| ∼ c2|z|n as z → ∞, where c1, c2 are
constants with c1c2 6= 0, and m,n are integers. If 2n 6= m, then every
transcendental meromorphic solution w(z) of (1.4) satisfies

σ(w) = 1 + max{n,m/2} ≥ 1/2.

Remark 2. Example 1 shows that the conditionm 6= 2n in Corollary 1.1
cannot be omitted. In the case of m = 2n, we need the additional condition
(1.6) to get (1.7).

In the case where at least one of a(z) and b(z) is transcendental, we get

Theorem 1.2. Suppose that a(z) is a meromorphic function and the
number of multiple poles of a(z) is finite. Suppose that b(z) is a meromorphic
function with finitely many poles. Suppose further that σ = max{σ(a), σ(b)}
<∞.

(i) Every meromorphic solution w(z) of (1.4) satisfies σ2(w) = λ2(1/w)
≤ σ.

(ii) If σ(a) > σ(b), then (1.4) admits at most two distinct meromorphic
solutions of finite order.

Remark 3. If b(z) ≡ 0, then (1.4) becomes (1.3) with A(z) = a(z). In
this case, the conclusions in Theorems 1.1 and 1.2 also hold.

In the above theorems we deal with the growth order. Next we will
consider the problem of Borel exceptional values. It is well-known that a
meromorphic function of finite order admits at most two Borel exceptional
values. We will show in Theorem 1.3 that every meromorphic solution w(z)
of (1.1) admits at most one Borel exceptional value under certain assump-
tions. From transformation (1.2) and Theorem D, we know that if the co-
efficients of (1.1) are rational, then max{σ(a), σ(b), σ(c)} = 0 < σ(w) < ∞
for every transcendental meromorphic solution w(z) of (1.1).

Theorem 1.3. Suppose that a(z), b(z), c(z) are meromorphic functions
of finite order, and at least two of them are linearly independent. Suppose
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that w(z) is a meromorphic solution of (1.1) with max{σ(a), σ(b), σ(c)} =
β < σ(w) <∞. Then w(z) admits at most one Borel exceptional value.

Corollary 1.2. Suppose that a(z) and b(z) are two rational functions
and at least one of them is non-constant. If w(z) is a transcendental mero-
morphic solution of (1.4), then w(z) admits at most one Borel exceptional
value.

Remark 4. By transformation (1.2), equation (1.1) can be transformed
into (1.3). From (1.2), we see that w(z) and u(z) may have different growth
orders and different numbers of Borel exceptional values. See the following
two examples.

Example 2. The meromorphic function w(z) = 1/z − ez satisfies the
equation

w′ = − 2
z2

+ e2z − ez + 2ezw + w2.

By (1.2), u(z) = 1/z satisfies the equation

u′ = −2/z2 + u2.

Obviously, σ(u) = 0, σ(w) = 1.

Example 3. The meromorphic function w(z) = −1/z + tan z satisfies
the equation

w′ =
2
z2

+ 1 +
2
z
w + w2.

By (1.2), u(z) = tan z satisfies the equation

u′ = 1 + u2.

The solution w(z) has no Borel exceptional value, while u(z) has two Borel
exceptional values, namely i and −i.

2. Lemmas for the proofs of theorems

Lemma 2.1 ([7, p. 193]). Let g(z) be a meromorphic function. If all
poles of g(z) are simple and the residues at all poles are integers, then
exp{

	z
g(t) dt} is meromorphic. In particular, if all poles of g(z) are sim-

ple and the residues at all poles are positive integers, then exp{
	z
g(t) dt} is

entire.

Lemma 2.2 ([2, Lemma 1]). Suppose that w(z) is a meromorphic func-
tion with σ(w) = β <∞. Then for any given ε > 0, there is a set E ⊂ (1,∞)
with finite linear measure and finite logarithmic measure such that

|w(z)| ≤ exp{rβ+ε}

for |z| = r 6∈ [0, 1] ∪ E, r →∞.
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Lemma 2.3 ([3, pp. 69–70] or [10, p. 82]). Suppose that f1(z), . . . , fn(z)
are meromorphic functions and g1(z), . . . , gn(z) are entire functions satisfy-
ing the following conditions:

(1)
∑n

j=1 fj(z)e
gj(z) ≡ 0;

(2) gj(z)− gk(z) are not constants for 1 ≤ j < k ≤ n;
(3) for 1 ≤ j ≤ n, 1 ≤ h < k ≤ n,

T (r, fj) = o{T (r, egh−gk)} n.e. as r →∞.
Then fj(z) ≡ 0 (j = 1, . . . , n).

3. Proofs of Theorems 1.1 and 1.2 and examples

Proof of Theorem 1.1. By the transformation

(3.1) w(z) = u(z)− 1
2
b(z),

the equation (1.4) can be transformed into the equation (1.3) with

(3.2) A(z) = a(z)− b2(z)
4

+
b′(z)

2
.

(a) We first prove the conclusion (i).
Since w(z) is a transcendental meromorphic solution of (1.4) and b(z) is a

rational function, by (3.1) we see that u(z) = w(z)+ 1
2b(z) is a transcendental

meromorphic solution of (1.3). By (1.3) we know that outside the poles of
A(z), u(z) has at most simple poles with residue −1. Since A(z) is rational,
A(z) can have only finitely many poles; denote them by z1, . . . , zs. By (1.3)
every zj (j ∈ {1, . . . , s}) is a pole of u(z). Let the multiplicity of u(z) at zj
be mj . Then u(z) can be represented in the form

u(z) =
c1m1

(z − z1)m1
+ · · ·+ c11

z − z1
+ · · ·+

cjmj

(z − zj)mj
+ · · ·+ cj1

z − zj

+ · · ·+
csms

(z − zs)ms
+ · · ·+ cs1

z − zs
+ ϕ(z),

where ϕ(z) is analytic at the points z1, . . . , zs and has at most simple poles
with residue −1.

Let
c1m1

(z − z1)m1
+ · · ·+ c11

z − z1
+ · · ·+

csms

(z − zs)ms
+ · · ·+ cs1

z − zs
=
Q(z)
P (z)

,

where P (z), Q(z) are relatively prime polynomials with degQ < degP or
Q(z) ≡ 0. Then

u(z) =
Q(z)
P (z)

+ ϕ(z).
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Since u(z) is transcendental, it follows that ϕ(z) = u(z)−Q(z)/P (z) 6≡ 0
and ϕ(z) is transcendental. By Lemma 2.1, there exists an entire function
g(z) = exp{−

	z
ϕ(t) dt} such that ϕ(z) = −g′(z)/g(z). So

(3.3) u(z) =
Q(z)
P (z)

− g′(z)
g(z)

.

Since u(z) is transcendental, so is g(z). Substituting (3.3) into (1.3), we have

(3.4)
g′′

g
− 2Q

P

g′

g
+A(z) +

Q2

P 2
− Q′

P
+
QP ′

P 2
= 0.

Since g(z) is a transcendental entire function, from (3.4), degQ < degP or
Q(z) ≡ 0, and Wiman–Valiron theory ([8]), we have

(3.5) k ≥ −1

and

(3.6) σ(g) =
k + 2

2
.

We divide our discussion into two cases.

Case 1: k is odd. Since (k + 2)/2 is not an integer, by Hadamard’s
factorization theory and (3.6), we get λ(g) = σ(g) = (k + 2)/2.

Case 2: k is even. Let g(z) = H(z)eP1(z), where H(z) is the canonical
product of the zeros of g(z). Since σ(g) = (k + 2)/2, we see that P1(z)
is a polynomial of degree at most (k + 2)/2. Since u(z) = Q/P − g′/g =
Q/P −H ′/H −P ′1 is transcendental, it follows that H(z) is transcendental.
Substituting g′/g = H ′/H + P ′1 into (3.4), we get

(3.7)
H ′′

H
+
(

2P ′1−
2Q
P

)
H ′

H
+P ′′1 +(P ′1)2−2Q

P
P ′1+A(z)+

Q2

P 2
−Q

′

P
+
QP ′

P 2
= 0.

By (3.7) and Wiman–Valiron theory, we get σ(H) = (k + 2)/2. So σ(H) =
λ(H) = λ(g) = (k + 2)/2.

Therefore we get λ(g) = (k + 2)/2 in both cases.
Since u · u = u′ −A(z), by the Tumura–Clunie Lemma we get

m(r, u) = S(r, u) +O(m(r,A)),

where S(r, u) = O(log T (r, u) + log r) n.e. as r →∞. Since A(z) is rational,
we have m(r,A) = O(log r). So

(3.8) T (r, u) = O(log T (r, u) + log r) +N(r, u) n.e. as r →∞.
This gives σ(u) ≤ λ(1/u). As obviously, λ(1/u) ≤ σ(u) we obtain σ(u) =
λ(1/u).

Since ϕ(z) = −g′(z)/g(z) and the residue of ϕ(z) at every pole is −1,
we see that every zero of g(z) is simple. So λ(g) = λ(g) = (k + 2)/2. By
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(3.3), we get λ(1/u) = λ(g). Therefore σ(u) = λ(1/u) = λ(g) = (k + 2)/2.
Combining (3.1) and (3.5), we get

(3.9) σ(w) = σ(u) =
k + 2

2
≥ 1

2
.

If k ≤ max{2n,m}, then k/2 ≤ max{n,m/2}. So (3.9) gives

σ(w) = 1 + min{k/2, max{n,m/2}} ≥ 1/2.

If k > max{2n,m}, then by (1.5) and (1.6) we get k < −1. This contradicts
(3.5). So we have proved the conclusion (i).

(b) Now we prove the conclusion (ii).
Assume that u(z) is a rational solution of (1.3). Since A(z) 6≡ 0, we have

u(z) 6≡ 0. So u(z) can be represented as

u(z) =
Q(z)
P (z)

+ ϕ(z),

where P (z), Q(z) are relatively prime polynomials with degQ < degP or
Q(z) ≡ 0, and ϕ(z) is a polynomial. Since k ≥ −1, it follows that Q(z)/P (z)
is not a solution of (1.3). Indeed, if Q(z)/P (z) satisfies (1.3), then

Q′P −QP ′

P 2
= A(z) +

Q2

P 2
.

Since degQ < degP or Q(z) ≡ 0, we have

|A(z)| =
∣∣∣∣Q′P − QP ′

P 2
− Q2

P 2

∣∣∣∣ = O

(
1
|z|2

)
or |A(z)| ≡ 0.

This contradicts |A(z)| ∼ c3|z|k, k ≥ −1, c3 6= 0. So Q(z)/P (z) is not a solu-
tion of (1.3). But u(z) is a solution of (1.3). So ϕ(z) = u(z)−Q(z)/P (z) 6≡ 0.
Since ϕ(z) is a non-zero polynomial, g(z) = exp{−

	z
ϕ(t)dt}must be a tran-

scendental entire function such that ϕ(z) = −g′(z)/g(z). Therefore we have

(3.10) u(z) =
Q(z)
P (z)

− g′(z)
g(z)

.

Now we assume that (1.3) has three distinct rational solutions u(z),
u2(z), u3(z). Following the same argument as in (2.1) and (2.2) of [1], we
denote

y1(z) =
1

u(z)− u2(z)
, y2(z) =

1
u(z)− u3(z)

,

V0(z) = y1 − y2 =
u2 − u3

(u− u2)(u− u3)
6≡ 0.

By calculation, we find that y1(z), y2(z) both satisfy

y′ + 2uy = 1,
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and V0(z) satisfies
V ′ + 2uV = 0.

So by (3.10) we have

V ′0
V0

= −2u = −2
(
Q

P
− g′

g

)
.

This yields

(3.11)
g′

g
=

1
2
V ′0
V0

+
Q

P
.

Since we have proved g(z) is transcendentally entire, by Wiman–Valiron
theory, we get

(3.12)
g′(z)
g(z)

=
ν(r)
z

(1 + o(1)),

where |z| = r, |g(z)| = M(r, g), r 6∈ [0, 1] ∪ E, E ⊂ (1,∞) is of finite
logarithmic measure, and ν(r) denotes the central index of g(z). Substituting
(3.12) into (3.11), we have

(3.13)
ν(r)
z

(1 + o(1)) =
1
2
V ′0
V0

+
Q

P
.

Since Q(z), P (z) are polynomials satisfying degQ < degP or Q(z) ≡ 0, and
V0 is rational, by (3.13), when r 6∈ [0, 1] ∪ E and r is sufficiently large, we
have

(3.14) ν(r) ≤ 2r
∣∣∣∣12 V ′0

V0

∣∣∣∣+ 2r
∣∣∣∣QP
∣∣∣∣ ≤M,

where M is a positive constant. (3.14) contradicts the fact that g(z) is
transcendentally entire.

Hence (1.3) admits at most two rational solutions. Since b(z) is rational,
by (3.1) we see that (1.4) admits at most two rational solutions. This finishes
the proof.

Remark 5. The conclusion (i) in Theorem 1.1 can also be proved by
use of Theorem D. However, the proof of Theorem D in [9] is complicated,
while using our method of proof we can give a brief proof of Theorem D.

Example 4. Consider the equation

(3.15) w′ =
−2z − 3

4z2
− 5

4
+ z2 + 2zw + w2,

where a(z) = −2z−3
4z2

− 5
4 + z2, b(z) = 2z, m = 2, n = 1, k = 0.
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The equation (3.15) admits meromorphic solutions

w1(z) =
1
2z

+
1
2
− z, w2(z) =

1
2z

+
1
2
− z

z − 1
− z,

yc(z) =
1
2z

+
1
2
− z − zez

(z − 1)ez + c
(c 6= 0, c ∈ C).

By (3.1), (3.2) and Theorem A, (3.15) has no other meromorphic solutions.
Obviously, w1(z) and w2(z) are rational functions, and for every c (c 6=
0, c ∈ C), yc(z) is a transcendental meromorphic function with σ(yc) = 1 =
1 + min{k/2,max{n,m/2}} ≥ 1/2.

Example 4 illustrates Theorem 1.1(i) in the case k < max{2n,m}. This
example also shows that Theorem 1.1(ii) is best possible in the sense that
two rational solutions may appear.

Example 5. All the meromorphic solutions of the equation

w′ =
2
z2

+ 1 +
2
z
w + w2

are
w1(z) = −1

z
+ tan z

and
yc(z) =

c tan z − 1
tan z + c

− 1
z

(c ∈ C),

where a(z) = 2/z2 + 1, b(z) = 2/z, m = 0, n = −1, k = 0. If c = i, then
yi(z) = i − 1/z; if c = −i, then y−i(z) = −i − 1/z. Obviously, for every
c (c ∈ C, c 6= ±i), σ(w1) = σ(yc) = 1 = 1 + min{k/2,max{n,m/2}} ≥ 1/2.

Example 5 illustrates Theorem 1.1(i) in the case k = max{2n,m}.
Example 6. The equation

w′ =
1

144z6
+

1
6z3

w + w2

admits exactly two meromorphic solutions (see Theorem B(iii))

w1(z) = −1
z
− 1

2z2
− 1

12z3
and w2(z) = −1

z
+

1
2z2
− 1

12z3
,

where a(z) = 1/144z6, b(z) = 1/6z3, m = −6, n = −3, k = −4, k >
max{2n,m}. Obviously, w1(z) and w2(z) are rational functions.

Example 6 illustrates the case k > max{2n,m}. From the proof of The-
orem 1.1(i), we see that if k > max{2n,m}, then (1.4) admits no transcen-
dental meromorphic solutions.

Example 7. The function w(z) = −1/z − z satisfies the equation

w′ = −2
z
− z2 − 2z − 3− 2w + w2,
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where a(z) = −2/z − z2 − 2z − 3, b(z) = −2, m = 2, n = 0, k = 2. By
(3.1), (3.2) and Theorem B(i), w(z) is the only meromorphic solution of this
equation. Obviously, w(z) is a rational function.

Example 7 shows that under the conditions of Theorem 1.1(ii), the equa-
tion (1.4) may have only one rational solution.

Example 8. All the meromorphic solutions of the equation

w′ = − 3
4z2

+ z2 − 1 + 2zw + w2

are

w1(z) = − 3
2z
− z

and

yc(z) = − 3
2z
− z − 1

cz3 − z/2
(c ∈ C),

where a(z) = −3/4z2 + z2 − 1, b(z) = 2z, m = 2, n = 1, k = −2.

Example 8 shows that if k < −1, then the equation (1.4) may have
infinitely many rational solutions.

Proof of Theorem 1.2. (a) Since w(z) is a meromorphic solution of (1.4),
we see that outside the poles of b(z) and the multiple poles of a(z), w(z) has
at most simple poles with residue −1. By the hypotheses of a(z) and b(z),
using the same method of proof as is used in Theorem 1.1(i), we find that
there exist two relatively prime polynomials P (z) and Q(z) with degQ <
degP or Q(z) ≡ 0 such that w(z) − Q(z)/P (z) has at most simple poles
with residue −1. By Lemma 2.1, there exists an entire function g(z) =
exp{−

	z(w(t)−Q(t)/P (t)) dt}, such that

(3.16) w(z)− Q(z)
P (z)

= −g
′(z)
g(z)

.

If g(z) is a polynomial, then by (3.16) we see that w(z) is rational. So
we get conclusion (i). If g(z) is a transcendental entire function, then by
Wiman–Valiron theory, we get

(3.17)
g(j)(z)
g(z)

=
(
ν(r)
z

)j
(1 + o(1)) (j = 1, 2),

where |z| = r, |g(z)| = M(r, g), r 6∈ [0, 1] ∪ E, E ⊂ (1,∞) is of finite
logarithmic measure, and ν(r) denotes the central index of g(z).

Substituting (3.16) into (1.4), we get

(3.18)
g′′

g
−
(
b+

2Q
P

)
g′

g
+ a+ b

Q

P
+
Q2

P 2
− Q′

P
+
QP ′

P 2
= 0.
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Substituting (3.17) into (3.18), we get

(3.19)
ν2(r)
z2

(1 + o(1))−
(
b+

2Q
P

)
ν(r)
z

(1 + o(1))

+ a+ b
Q

P
+
Q2

P 2
− Q′

P
+
QP ′

P 2
= 0.

By (3.19), when r 6∈ [0, 1] ∪ E and r is sufficiently large, we have

(3.20) ν2(r) ≤ 2r2
∣∣∣∣(b+ 2Q

P

)
ν(r)
z

(1+o(1))
∣∣∣∣+2r2

∣∣∣∣a+b
Q

P
+
Q2

P 2
−Q

′

P
+
QP ′

P 2

∣∣∣∣.
Since g(z) is transcendentally entire, we have ν(r)→∞ (as r →∞). So by
(3.20), when r 6∈ [0, 1] ∪ E and r is sufficiently large, we get

(3.21) ν(r) ≤ 4r
∣∣∣∣b+

2Q
P

∣∣∣∣+ 2r2
∣∣∣∣a+ b

Q

P
+
Q2

P 2
− Q′

P
+
QP ′

P 2

∣∣∣∣.
Since σ = max{σ(a), σ(b)} < ∞, by Lemma 2.2, for any given ε > 0, there
is a set E1 ⊂ (1,∞) with finite logarithmic measure such that

(3.22) |a(z)| ≤ exp{rσ+ε}, |b(z)| ≤ exp{rσ+ε}
for |z| = r 6∈ [0, 1] ∪ E1, r → ∞. Since P (z), Q(z) are polynomials with
degQ < degP or Q(z) ≡ 0, by (3.21), (3.22), when r 6∈ [0, 1] ∪ E ∪ E1 and
r is sufficiently large, we have

(3.23) ν(r) ≤ exp{rσ+2ε}.
This gives σ2(g) ≤ σ + 2ε. By the arbitrariness of ε, we get σ2(g) ≤ σ.

Since w ·w = w′− a(z)− b(z)w, by the Tumura–Clunie Lemma we have

m(r, w) = O(m(r, a) +m(r, b)) + S(r, w),

where S(r, w) = O(log T (r, w) + log r) n.e. as r →∞. So

(3.24) T (r, w) = O(log T (r, w) + log r +m(r, a) +m(r, b)) +N(r, w) n.e.

as r →∞.
Since a(z) and b(z) are of finite order, by (3.24), we get σ2(w) ≤ λ2(1/w).

In addition, we have σ2(w) ≥ λ2(1/w). So σ2(w) = λ2(1/w).
Hence from σ2(g) ≤ σ and (3.16), we get σ2(w) = λ2(1/w) ≤ σ2(g) ≤ σ.

So conclusion (i) holds.
(b) By the transformation

(3.25) w(z) = u(z)− 1
2
b(z),

the equation (1.4) can be transformed into (1.3) with

(3.26) A(z) = a(z)− b2(z)
4

+
b′(z)

2
.
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If A(z) has at least one simple pole, then by Theorem B(i), (1.3) admits
at most one meromorphic solution. So by (3.25), (1.4) admits at most one
meromorphic solution. If A(z) has no simple poles, then by (3.26) and the
hypotheses on a(z) and b(z), A(z) has only finitely many poles. So N(r,A) =
O(log r). Since σ(a) > σ(b), A(z) must be a transcendental meromorphic
function. So δ(∞, A) = 1 > 0. By Theorem C, the equation (1.3) admits
at most two distinct meromorphic solutions of finite order. By (3.25) and
σ(b) <∞, we get conclusion (ii).

We give three examples to illustrate Theorem 1.2.

Example 9. All the meromorphic solutions of the equation

w′ = e2z + w + w2

are
w1(z) = ez tan ez

and

yc(z) =
(cez + 1

2)(tan ez + c)− (c2 + 1)ez

tan ez + c
− 1

2
(c ∈ C),

where a(z) = e2z, b(z) = 1. If c = i, then yi(z) = iez; if c = −i, then y−i(z) =
−iez. Obviously, λ2(1/w1) = σ2(w1) = 1 ≤ max{σ(a), σ(b)}, λ2(1/y±i) =
σ2(y±i) = 0 ≤ max{σ(a), σ(b)} and for every c (c ∈ C, c 6= ±i), λ2(1/yc) =
σ2(yc) = 1 ≤ max{σ(a), σ(b)}.

Example 9 illustrates Theorem 1.2(i). This example also shows that The-
orem 1.2(ii) is best possible in the sense that two meromorphic solutions of
finite order may appear.

Example 10. The function w(z) = ez satisfies the equation

w′ = (2/z)ez + ez − e2z − (2/z)w + w2,

where a(z) = (2/z)ez+ez−e2z, b(z) = −2/z. By (3.25), (3.26) and Theorem
B(i), w(z) is the only meromorphic solution of this equation. Obviously,
σ(w) = 1 <∞.

Example 10 shows that under the conditions of Theorem 1.2(ii), the
equation (1.4) may have only one meromorphic solution with finite order.

Example 11. All the meromorphic solutions of the equation

w′ = e2z − ez + 1 + 2ezw + w2

are
w1(z) = tan z − ez

and
yc(z) =

c tan z − 1
tan z + c

− ez (c ∈ C),
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where a(z) = e2z − ez + 1, b(z) = 2ez. Obviously all the meromorphic
solutions of this equation are of finite order.

Example 11 shows that if σ(a) ≤ σ(b), then the equation (1.4) may have
infinitely many solutions with finite order.

4. Proofs of Theorem 1.3 and Corollary 1.2 and examples

Proof of Theorem 1.3. Assume that w(z) has two Borel exceptional val-
ues a1, b1 (a1 6= b1). We divide our discussion into two cases.

Case (i): a1 6=∞, b1 6=∞. Let

F (z) =
w(z)− a1

w(z)− b1
.

So F (z) has two Borel exceptional values 0,∞, λ(F ) < σ(F ), λ(1/F ) <
σ(F ) and σ(F ) = σ(w). By Hadamard’s factorization theory, F (z) can be
represented as F (z) = (H1(z)/H2(z))eP (z), where H1(z) and H2(z) denote
respectively the canonical products of zeros and poles of F (z). We have

σ(H1) = λ(H1) = λ(F ) < σ(F ), σ(H2) = λ(H2) = λ

(
1
F

)
< σ(F ).

Since β < σ(F ) = σ(w) < ∞, P (z) is a polynomial of degree n (≥ 1) and
σ(F ) = n.

From
F (z) =

w(z)− a1

w(z)− b1
=
H1(z)
H2(z)

eP (z),

we get

(4.1) w =
a1H2 − b1H1e

P

H2 −H1eP
.

Substituting (4.1) into (1.1), we get

0 = (a(z) + b(z)b1 + c(z)b21)H2
1e

2P + [b1P ′H1H2 − 2a(z)H1H2(4.2)
+ b1H

′
1H2 − a1H

′
1H2 − a1P

′H1H2 − b1H1H
′
2 + a1H1H

′
2

− b(z)a1H1H2 − b(z)b1H1H2 − 2c(z)a1b1H1H2]eP

+ (a(z) + b(z)a1 + c(z)a2
1)H2

2 .

By (4.2) and Lemma 2.3, we get

(4.3)
{
a(z) + b(z)b1 + c(z)b21 = 0,
a(z) + b(z)a1 + c(z)a2

1 = 0.
(4.3) yields b(z)=−(a1+b1)c(z), a(z)=a1b1c(z). So any two of a(z), b(z), c(z)
are dependent, which contradicts our hypotheses.

Case (ii): One of a1 and b1 is∞. Without losing generality, let b1 =∞,
a1 6=∞.
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Let F (z) = w(z)−a1. Then F (z) has two Borel exceptional values 0,∞,
λ(F ) < σ(F ) and λ(1/F ) < σ(F ). Following the proof of Case (i), we get a
contradiction.

Therefore, w(z) has at most one Borel exceptional value.

Proof of Corollary 1.2. Suppose that w(z) is a transcendental meromor-
phic solution of (1.4). Since a(z) and b(z) are rational functions, by Theorem
1.1 and Remark 1, we get ∞ > σ(w) ≥ 1/2 > 0. Since c(z) ≡ 1, a(z) and
b(z) are rational functions and at least one of them is non-constant, it follows
that max{σ(a), σ(b), σ(c)} = 0 < σ(w) < ∞ and at least two of a(z), b(z)
and c(z) are linearly independent. By Theorem 1.3, w(z) admits at most
one Borel exceptional value.

We give several examples to show that our results are best possible in
certain senses.

Example 12. The function w(z) = 1 + tan z satisfies the equation
w′ = 2− 2w + w2.

The solution w(z) has two Borel exceptional values 1 + i, 1− i.
Example 13. The function w(z) = tan z2 + 2 satisfies the equation

w′ = 10z − 8zw + 2zw2.

The solution w(z) has two Borel exceptional values 2 + i, 2− i.

Example 14. The function u(z) = 1+e2z

1−e2z satisfies the equation

u′ = −1 + u2.

The solution u(z) has two Borel exceptional values −1, 1.

From the above three examples, we see that when any two of a(z), b(z)
and c(z) are dependent, (1.1) may have a meromorphic solution with two
Borel exceptional values. So, the hypothesis of Theorem 1.3 that “at least
two of a(z), b(z) and c(z) are linearly independent” cannot be omitted.

Example 15. The function w(z) = ez satisfies the equation
w′ = −ez + w + e−zw2,

where max{σ(a), σ(b), σ(c)} = σ(w) = 1. The solution w(z) has two Borel
exceptional values 0,∞.

Example 16. The function w(z) = ez satisfies the equation
w′ = −eez

+ e−zee
z
w + e−zw2,

where max{σ(a), σ(b), σ(c)} > σ(w). The solution w(z) has two Borel ex-
ceptional values 0,∞.

From Examples 15 and 16, we see that if max{σ(a), σ(b), σ(c)} ≥ σ(w),
then w(z) may have two Borel exceptional values.
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Example 17. The function w(z) = 1
ez+1/z satisfies the equation

w′ = −w +
(

1
z

+
1
z2

)
w2.

The solution w(z) has one Borel exceptional value 0.

From Examples 3 and 17, we see that under the conditions of Theo-
rem 1.3, the meromorphic solution w(z) of (1.1) may have one or no Borel
exceptional value.
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