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Infinitely many solutions for a mixed
boundary value problem

by Gabriele Bonanno (Messina)
and Elisabetta Tornatore (Palermo)

Abstract. The existence of infinitely many solutions for a mixed boundary value
problem is established. The approach is based on variational methods.

1. Introduction. Mixed boundary value problems, as well as Dirichlet
or Neumann problems, have been widely studied because of their applica-
tions to various fields of applied sciences, as mechanical engineering, control
systems, computer science, economics, artificial or biological neural networks
and many others.

In this connection, several existence and multiplicity results for solutions
to second order ordinary differential nonlinear equations, with mixed condi-
tions at the ends, have been investigated making use of fixed point theorems,
lower and upper solutions and variational methods (see, for instance, [1], [2],
[4], [5], [7], [8]).

The aim of this paper is to establish the existence of infinitely many
solutions for mixed boundary value problems by using a very recent critical
points theorem (see Theorem 2.1). Our main result (Theorem 3.1), under
an appropriate oscillating behaviour of the nonlinear term, ensures an un-
bounded sequence of solutions for this type of problem. As an example, we
present here its special case.

Theorem 1.1. Let g : R→ R be a nonnegative continuous function, put
G(ξ) =

	ξ
0 g(t) dt for all ξ ∈ R and assume

lim inf
ξ→+∞

G(ξ)
ξ2

= 0, lim sup
ξ→+∞

G(ξ)
ξ2

= +∞.
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Then the problem {−u′′ + u′ + u = g(u) in ]0, 1[,
u(0) = u′(1) = 0,

has a sequence of pairwise distinct classical solutions.

The note is arranged as follows. In Section 2, we recall some basic defini-
tions and our abstract framework, while Section 3 is devoted to the existence
of infinitely many solutions for mixed boundary value problems.

2. Preliminaries. Our main tool to investigate the existence of in-
finitely many solutions for mixed boundary value problems is the infinitely
many critical points theorem due to B. Ricceri ([6, Theorem 2.5]). Here, we
recall it as given in [3].

Theorem 2.1 (see [6, Theorem 2.5] and [3, Theorem 2.1]). Let X be a
reflexive Banach space, Φ : X → R be a continuously Gâteaux differentiable,
coercive and sequentially weakly lower semicontinuous functional, Ψ :X→R
be a sequentially weakly upper semicontinuous and continuously Gâteaux
differentiable functional, and λ be a positive real parameter.

Put, for each r > infX Φ,

(1)
ϕ(r) := inf

u∈Φ−1(]−∞,r[)

supv∈Φ−1(]−∞,r[) Ψ(v)− Ψ(u)
r − Φ(u)

,

γ := lim inf
r→+∞

ϕ(r), δ := lim inf
r→(infX Φ)+

ϕ(r).

One has

(a) For every r > infX Φ and every λ ∈ ]0, 1/ϕ(r)[, the restriction of the
functional Φ− λΨ to Φ−1(]−∞, r[) admits a global minimum, which
is a critical point (local minimum) of Φ− λΨ in X.

(b) If γ <∞ then, for each λ ∈ ]0, 1/γ[, the following alternative holds:
either

(b1) Φ− λΨ possesses a global minimum, or
(b2) there is a sequence {un} of critical points (local minima) of

Φ− λΨ such that limn→+∞ Φ(un) = +∞.

(c) If δ <∞ then, for each λ ∈ ]0, 1/δ[, the following alternative holds:
either

(c1) there is a global minimum of Ψ which is a local minimum of
Φ− λΨ , or

(c2) there is a sequence {un} of pairwise distinct critical points (lo-
cal minima) of Φ − λΨ , with limn→+∞ Φ(un) = infX Φ, which
weakly converges to a global minimum of Φ.
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Now, consider the following mixed boundary value problem:

(RSλ)
{−(pu′)′ + qu = λf(t, u) in I = ]a, b[,
u(a) = u′(b) = 0,

where p, q ∈ L∞([a, b]) are such that

p0 = ess inf
t∈[a,b]

p(t) > 0, q0 = ess inf
t∈[a,b]

q(t) ≥ 0,

f : [a, b] × R → R is a Carathéodory function and λ is a positive real
parameter.

Put

F (t, x) =
x�

0

f(t, ξ) dξ

for all (t, x) ∈ [a, b]× R. Denote

X = {u ∈W 1,2([a, b]) : u(a) = 0};
the usual norm in X is defined by

‖u‖X =
( b�
a

u2(t) dt+
b�

a

(u′(t))2 dt
)1/2

.

For every u, v ∈ X, we define

(2) (u, v) =
b�

a

p(t)u′(t)v′(t) dt+
b�

a

q(t)u(t)v(t) dt.

We observe that (2) defines an inner product on X whose corresponding
norm is

‖u‖ =
( b�
a

p(t)(u′(t))2dt+
b�

a

q(t)(u(t))2 dt
)1/2

.

A simple computation shows that the norm ‖ · ‖ is equivalent to the usual
one.

A function u ∈ X is said to be a weak solution of problem (RSλ) if
b�

a

p(t)u′(t)v′(t) dt+
b�

a

q(t)u(t)v(t) dt = λ

b�

a

f(t, u(t))v(t) dt ∀v ∈ X.

Clearly, if f is continuous, p ∈ C1([a, b]) and q ∈ C0([a, b]), then weak
solutions of (RSλ) are classical solutions.

It is well known that (X, ‖·‖) is compactly embedded in (C0([a, b]), ‖·‖∞)
and

(3) ‖u‖∞ ≤

√
b− a
p0
‖u‖ ∀u ∈ X.
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We use the following notations:

‖p‖∞ = ess sup
t∈[a,b]

p(t), ‖q‖∞ = ess sup
t∈[a,b]

q(t).

In order to study problem (RSλ), we will use the functionals Φ, Ψ : X→R
defined by putting

(4) Φ(u) =
1
2
‖u‖2, Ψ(u) =

b�

a

F (t, u(t)) dt ∀u ∈ X.

Since Φ is continuous and convex it is weakly sequentially lower semicon-
tinuous. Moreover Φ is continuously Gâteaux differentiable and its Gâteaux
derivative admits a continuous inverse. On the other hand, Ψ is sequentially
weakly upper semicontinuous, Gâteaux differentiable with compact deriva-
tive, one has

Φ′(u)(v) =
b�

a

p(t)u′(t)v′(t) dt+
b�

a

q(t)u(t)v(t) dt,

Ψ ′(u)(v) =
b�

a

f(t, u(t))v(t) dt ∀v ∈ X,

and moreover
Φ(0) = Ψ(0) = 0.

Since a critical point for the functional Φ− λΨ is any u ∈ X such that

Φ′(u)(v)− λΨ ′(u)(v) = 0 ∀v ∈ X,
the critical points for Φ − λΨ are exactly the weak solutions for problem
(RSλ).

Now, put

k =
3p0

6‖p‖∞ + 2(b− a)2‖q‖∞
,(5)

A = lim inf
ξ→+∞

	b
a max|x|≤ξ F (t, x) dt

ξ2
,(6)

B = lim sup
ξ→+∞

	b
(a+b)/2 F (t, ξ) dt

ξ2
,(7)

λ1 =
1

3(b− a)
3‖p‖∞ + (b− a)2‖q‖∞

B
=

p0

2(b− a)kB
,(8)

λ2 =
p0

2(b− a)A
.(9)

We note that if p = q = 1 and b − a = 1 then k = 3/8, and if q = 0 and
p = 1 then k = 1/2.
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3. Mixed boundary value problems. Our main result is the follow-
ing theorem.

Theorem 3.1. Assume that

(i)
(a+b)/2�

a

F (t, ξ) dt ≥ 0 ∀ξ ≥ 0,

(ii) lim inf
ξ→+∞

	b
a max|x|≤ξ F (t, x) dt

ξ2
< k lim sup

ξ→+∞

	b
(a+b)/2 F (t, ξ) dt

ξ2

where k is given by (5).

Then, for each λ ∈ ]λ1, λ2[, where λ1, λ2 are given by (8) and (9), the problem
(RSλ) has a sequence of weak solutions which is unbounded in X.

Proof. Our goal is to apply Theorem 2.1. Consider the Sobolev space X
and the operators defined in (4). Pick λ ∈ ]λ1, λ2[.

Let {cn} be a real sequence such that limn→+∞ cn = +∞ and

lim
n→+∞

	b
a max|ξ|≤cn F (t, ξ) dt

c2n
= A.

Put
rn =

p0

2(b− a)
c2n for all n ∈ N.

Taking into account (3), one has ‖v‖∞ ≤ cn for all v ∈ X such that ‖v‖2 ≤
2rn. Hence, for all n ∈ N,

ϕ(rn) = inf
u∈Φ−1(]−∞,rn[)

supv∈Φ−1(]−∞,rn[) Ψ(v)− Ψ(u)
rn − Φ(u)

≤
sup‖v‖2<2rn

	b
a F (t, v(t)) dt
rn

≤
	b
a max|ξ|≤cn F (t, ξ) dt

rn
=

2(b− a)
p0

	b
a max|ξ|≤cn F (t, ξ) dt

c2n
.

Therefore, since from (ii) one has A <∞, we obtain

γ := lim inf
n→∞

ϕ(rn) ≤ 2(b− a)
p0

A <∞.

Now, we claim that the functional Iλ = Φ−λΨ is unbounded from below.
Let {dn} be a real sequence such that limn→∞ dn = +∞ and

(10) lim
n→+∞

	b
(a+b)/2 F (t, dn) dt

d2
n

= B.
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For all n ∈ N define

ωn(t) =

{ 2dn
b− a

(t− a) if t ∈ [a, (a+ b)/2[,

dn if t ∈ [(a+ b)/2, b].
Clearly, ωn ∈ X and

(11) ‖ωn‖2 ≤ 2
d2
n

b− a

(
‖p‖∞ +

(b− a)2

3
‖q‖∞

)
.

Therefore

(12) Φ(ωn)− λΨ(ωn) =
1
2
‖ωn‖2 − λ

b�

a

F (t, ωn(t)) dt

≤ d2
n

b− a

(
‖p‖∞ +

(b− a)2

3
‖q‖∞

)
− λ

b�

a

F (t, ωn(t)) dt.

Taking into account (i), we have

(13)
b�

a

F (t, ωn(t)) dt ≥
b�

(a+b)/2

F (t, dn) dt.

Then, for all n ∈ N,

Φ(ωn)− λΨ(ωn) ≤ d2
n

b− a

(
‖p‖∞ +

(b− a)2

3
‖q‖∞

)
− λ

b�

(a+b)/2

F (t, dn) dt

(14)

=
d2
np0

2(b− a)k
− λ

b�

(a+b)/2

F (t, dn) dt.

Now, if B <∞, we fix ε ∈
] p0

2λ(b−a)kB , 1
[
. From (10) there exists νε ∈ N such

that
b�

(a+b)/2

F (t, dn) dt > εBd2
n ∀n > νε,

therefore

Φ(ωn)− λΨ(ωn) ≤
[

p0

2(b− a)k
− λεB

]
d2
n ∀n > νε,

and by the choice of ε, one has

lim
n→∞

[Φ(ωn)− λΨ(ωn)] = −∞.

On the other hand, if B = +∞, we fix

M >
p0

2λ(b− a)k
.
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From (10) there exists νM ∈ N such that
b�

(a+b)/2

F (t, dn) dt > Md2
n ∀n > νM ,

therefore

Φ(ωn)− λΨ(ωn) ≤
[

p0

2(b− a)k
− λM

]
d2
n ∀n > νM ,

and by the choice of M , one has

lim
n→∞

[Φ(ωn)− λΨ(ωn)] = −∞.

Hence, our claim is proved.
Since all assumptions of Theorem 2.1 are satisfied, the functional Iλ =

Φ− λΨ admits a sequence {un} of critical points such that limn→∞ ‖un‖ =
+∞, and the conclusion is achieved.

Now, we point out the following consequence of Theorem 3.1.

Corollary 3.1. Let f : R → R be a nonnegative continuous function,
q ∈ C0([a, b]), p ∈ C1([a, b]) and put F (t) =

	t
0 f(ξ) dξ for all t ∈ R. Assume

that

lim inf
ξ→+∞

F (ξ)
ξ2

<
k

2
lim sup
ξ→+∞

F (ξ)
ξ2

.

Then, for each λ in the interval]
p0

(b− a)2k lim supξ→+∞ F (ξ)/ξ2
,

p0

2(b− a)2 lim infξ→+∞ F (ξ)/ξ2

[
,

the problem {−(pu′)′ + qu = λf(u) in I = ]a, b[,
u(a) = u′(b) = 0,

possesses a sequence of pairwise distinct classical solutions.

Remark 3.1. In Theorem 3.1 we can replace ξ → +∞ by ξ → 0+,
applying in the proof part (c) of Theorem 2.1 instead of (b). In this case we
obtain a sequence of pairwise distinct solutions to the problem (RSλ) which
converges uniformly to zero.

Now, consider the following problem:

(Pλ)
{−(p̄u′)′ + r̄u′ + q̄u = λg(t, u) in I = ]a, b[,
u(a) = u′(b) = 0,

where g : [a, b] × R → R is a continuous function, p̄ ∈ C1([a, b]), q̄, r̄ ∈
C0([a, b]) and λ is a positive parameter. Moreover, p̄ is positive, q̄ is non-
negative and R is a primitive of r̄/p̄.
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Put

G(t, x) =
x�

0

g(t, ξ) dξ

for all (t, x) ∈ [a, b]× R, and

k′ =
3 mint∈[a,b] e

−Rp̄

6‖e−Rp̄‖∞ + 2(b− a)2‖e−Rq̄‖∞
,

λ̄1 =
1

3(b− a)
3‖e−Rp̄‖∞ + (b− a)2‖e−Rq̄‖∞

lim supξ→+∞
	b
(a+b)/2 e

−R(t)G(t, ξ) dt/ξ2
,

λ̄2 =
mint∈[a,b] e

−Rp̄

2(b− a) lim infξ→+∞
	b
a max|x|≤ξ e−R(t)G(t, x) dt/ξ2

.

Corollary 3.2. Assume that

(i)
(a+b)/2�

a

e−R(t)G(t, ξ) dt ≥ 0 ∀ξ ≥ 0,

(ii) lim inf
ξ→+∞

	b
a max|x|≤ξ e−R(t)G(t, x) dt

ξ2
<k′ lim sup

ξ→+∞

	b
(a+b)/2 e

−R(t)G(t, ξ) dt

ξ2
.

Then, for each λ ∈ ]λ̄1, λ̄2[, the problem (Pλ) possesses a sequence of pairwise
distinct classical solutions.

Proof. Since the solutions of the problem{
−(e−Rp̄u′)′ + e−Rq̄u = λe−Rg(t, u) in I = ]a, b[,
u(a) = u′(b) = 0,

are solutions of the problem (Pλ), the conclusion follows from Theorem 3.1.

Remark 3.2. Theorem 1.1 in the Introduction immediately follows from
Corollary 3.2.

Example 3.1. Put

an :=
2n!(n+ 2)!− 1

4(n+ 1)!
, bn :=

2n!(n+ 2)! + 1
4(n+ 1)!

for every n ∈ N, and define the nonnegative continuous function g : R→ R
by

g(ξ) =


32(n+ 1)!2[(n+ 1)!2 − n!2]

π

√
1

16(n+ 1)!2
−
(
ξ − n!(n+ 2)

2

)2

if ξ ∈
⋃
n∈N[an, bn],

0 otherwise.
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By a simple computation, we obtain

lim inf
ξ→+∞

G(ξ)
ξ2

= 0 and lim sup
ξ→+∞

G(ξ)
ξ2

= 4,

so
0 = lim inf

ξ→+∞

G(ξ)
ξ2

<
3

2e(
√
e+ 1))

=
3

8e(
√
e+ 1))

lim sup
ξ→+∞

G(ξ)
ξ2

.

Hence, from Corollary 3.2, for each λ > 1/3, the problem{−u′′ + u′ + u = λg(u) in ]0, 1[,
u(0) = u′(1) = 0,

has a sequence of pairwise distinct classical solutions.
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