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Re
ent progress on the Ja
obian Conje
tureby Michiel de Bondt and Arno van den Essen (Nijmegen)In memory of S. �ojasiewi
zAbstra
t. We des
ribe some re
ent developments 
on
erning the Ja
obian Conje
-ture (JC). First we des
ribe Dru»kowski's result in [6℄ whi
h asserts that it su�
es to studythe JC for Dru»kowski mappings of the form x + (Ax)∗3 with A2 = 0. Then we des
ribethe authors' result of [2℄ whi
h asserts that it su�
es to study the JC for so-
alled gradientmappings, i.e. mappings of the form x−∇f , with f ∈ k[n] homogeneous of degree 4. Usingthis result we explain Zhao's reformulation of the JC whi
h asserts the following: for everyhomogeneous polynomial f ∈ k[n] (of degree 4) the hypothesis ∆m(fm) = 0 for all m ≥ 1implies that ∆m−1(fm) = 0 for all large m (∆ is the Lapla
e operator). In the last se
tionwe des
ribe Kumar's formulation of the JC in terms of smoothness of a 
ertain family ofhypersurfa
es.Introdu
tion. Sin
e the �rst appearan
e of the JC in [12℄ various pa-pers have been published 
on
erning this 
onje
ture. One of the milestonesis undoubtedly the 
lassi
al 1982 paper [1℄ of Bass, Connell and Wright.This paper gave an impulse to the �eld of polynomial automorphisms, whi
his now �ourishing as never before. To mention a few highlights: the 
oun-terexample to the real Ja
obian Conje
ture by Pin
huk in [14℄, 1994, proofsof the 2-dimensional Markus�Yamabe Conje
ture by Glutsuk, Fessler andGutierrez in [9℄, [8℄ and [10℄, the polynomial 
ounterexamples to the Markus�Yamabe Conje
ture in all dimensions ≥ 3 by Cima, van den Essen, Gasull,Hubbers and Mañosas in [4℄, 1995, the proof of the linearization 
onje
turefor C
∗-a
tions on C

3 by Kaliman, Koras, Makar-Limanov and Russell in[11℄ and re
ently the negative solution of the tame generators 
onje
ture byShestakov and Umirbaev in [15℄. However, sin
e the famous redu
tion the-orems of Bass, Connell, Wright/Yagzhev [16℄ and Dru»kowski [5℄, not mu
hprogress has been made towards the Ja
obian Conje
ture.The aim of this paper is to report on some surprising new redu
tiontheorems, whi
h go far beyond the 
lassi
al redu
tions mentioned before. The2000 Mathemati
s Subje
t Classi�
ation: Primary 14R15.Key words and phrases: Ja
obian Conje
ture, Hessian Conje
ture, Lapla
e operator.[1℄



2 M. de Bondt and A. van den Essentwo most important papers in this respe
t are [2℄ and [17℄. In the authors'paper [3℄ a survey is given of various results related to the paper [2℄. Thereforein this paper we will fo
us our attention on Zhao's paper [17℄ (see Se
tion 3).First we re
all in Se
tion 2 the main result of [2℄, on whi
h Zhao's result isbased. Finally, in the last se
tion we des
ribe one more 
onsequen
e of themain theorem of [2℄: namely a reformulation of the JC, due to Mohan Kumar,in terms of smoothness of a family of hypersurfa
es.1. The 
lassi
al redu
tion theorems and Dru»kowski's re
ent re-du
tion. Throughout this paper k denotes an algebrai
ally 
losed �eld of
hara
teristi
 zero, and by k[n] or k[x] we denote the n-variable polynomialring k[x1, . . . , xn]. Re
all that the Ja
obian Conje
ture asserts that a poly-nomial map F : kn → kn is invertible if detJF ∈ k∗, where JF = (∂Fi/∂xj)denotes the Ja
obian matrix of F .In [1℄ Bass, Connell and Wright and in [16℄ Yagzhev showed that it su�
esto investigate the JC for all n ≥ 1 and all polynomial maps of the form
F = x + H, where H = (H1, . . . , Hn) is homogeneous (of degree 3) and
JH nilpotent (in fa
t they show that for su
h homogeneous maps H the
ondition detJF ∈ k∗ is equivalent to JH being nilpotent). A little laterDru»kowski in [5℄ showed that one may even assume that ea
h Hi is of theform L3

i , where Li is a linear form. In other words it su�
es to study theJC for polynomial maps of the form x + (Ax)∗3, where A ∈ Mn(k) and
(v1, . . . , vn)∗3 denotes the ve
tor (v3

1 , . . . , v
3
n). More re
ently Dru»kowski in[6℄ obtained the following improvement of his redu
tion theorem.Theorem 1.1 (Dru»kowski, 2000). It su�
es to investigate the JC forall n ≥ 1 and all polynomial maps of the form x+(Ax)∗3 with the additionalproperty that A2 = 0.Proof. Let

F := x + (Ax)∗3 : kn → knand let i ∈ k satisfy i2 = −1. Put F∗ := x + 2i(Ax)∗3. Observe that F∗ =
zF (z−1x), where z2 = 1/2i. So F is invertible i� F∗ is invertible i�

F̂ := (F∗, y) = (x + 2i(Ax)∗3, y) : k2n → k2nis invertible. Now put
Q := (x + iy, y + (A(x + iy))∗3) and S := (x − iy, y).Then G := S ◦ F̂ ◦Q is invertible i� F̂ is invertible. Furthermore, one readilyveri�es that G = (x, y) + (N(x, y))∗3, where

N :=

(
−iA A

A iA

)

satis�es N2 = 0.



Re
ent progress on the Ja
obian Conje
ture 32. Redu
tion to the symmetri
 
ase. Let JH be a Ja
obian matrix.Then one easily veri�es that JH is symmetri
 i� H is a gradient mapping,i.e. H = ∇f (= (fx1 , . . . , fxn
)) for some f ∈ k[x]. The main result of [2℄asserts that it su�
es to investigate the JC for all n ≥ 2 and all F : kn → knof the form F = x + ∇f (with J(∇f) nilpotent). More pre
isely, we haveTheorem 2.1 (de Bondt and van den Essen, 2003). If the JC is true forall polynomial maps F : k2n → k2n of the form x+∇f , with J(∇f) nilpotent(and homogeneous), then the JC is true for all polynomial maps of the form

x + H : kn → kn with JH nilpotent (and homogeneous).The proof of this result is based on the next lemma. Re
all that
J(∇f) =

(
∂2f

∂xi∂xj

)
=: H(f)is the Hessian of f . The standard bilinear form on kn is denoted by 〈 , 〉.Lemma 2.2. Let H = (H1(x), . . . , Hn(x)) ∈ k[x]n and let y1, . . . , yn benew variables. Put

f := fH = (−i)〈H(x + iy), y〉.Then JH is nilpotent i� H(f) is nilpotent.Proof. (1) H(f) is nilpotent i� det(TI2n − H(f)) = T 2n. De�ne S :=
(x − iy, y) and let S0 be the 
orresponding matrix in M2n(k). Then g :=
f ◦ S = (−i)〈H(x), y〉 and(2) H(g) =

(
∗ (−i)(JH)t

(−i)JH 0

)
.Furthermore(3) H(g) = St

0H(f)|S(x,y)S0.Sin
e detS0 = 1 we infer from (1) and (3) that H(f) is nilpotent i�
detSt

0(TI2n −H(f))|S(x,y)S0 = T 2n i� det(TSt
0S0 −H(g)) = T 2n.Sin
e

St
0S0 =

(
In −iIn

−iIn 0

)
,we dedu
e from (2) that

H(f) is nilpotent i� det

(
∗ −iT In + i(JH)t

−iT In + iJH 0

)
= T 2n.Sin
e for n × n matri
es A and B we have

det

(
∗ −iA

−iB 0

)
= detAdet B



4 M. de Bondt and A. van den Essenwe see that H(f) is nilpotent i� det(TIn − (JH)t) det(TIn − JH) = T 2n i�
det(TIn − JH) = Tn i� JH is nilpotent.Proof of Theorem 2.1. Let H = (H1(x), . . . , Hn(x)) with JH nilpotent(and H homogeneous). Let f = fH be as in Lemma 2.2. Then H(f) isnilpotent (and f is homogeneous). So by our hypothesis

G := (x1 + fx1 , . . . , xn + fxn
, y1 + fy1 , . . . , yn + fyn

)is invertible. Consequently, with S as in the proof of Lemma 2.2, S−1 ◦G◦Sis also invertible. An easy 
al
ulation shows that
S−1 ◦ G ◦ S = (x1 + H1(x), . . . , xn + Hn(x), ∗, . . . , ∗).Sin
e this last map is invertible, the desired result follows from the nextlemma.Lemma 2.3. If F̃ := (F1(x), . . . , Fn(x), ∗, . . . , ∗) : k2n → k2n is invert-ible, then F := (F1(x), . . . , Fn(x)) : kn → kn is invertible.Proof. Let (G1(x, y), . . . , Gn(x, y), ∗, . . . , ∗) be the inverse of F̃ . Then inparti
ular

Fi(G1(x, y), . . . , Gn(x, y)) = xi for all i.So Fi(G1(x, 0), . . . , Gn(x, 0)) = xi for all i, whi
h means that F is invertiblewith inverse (G1(x, 0), . . . , Gn(x, 0)).Combining Theorem 2.1 with the 
lassi
al Bass�Connell�Wright/Yagzhevredu
tion theorem we getCorollary 2.4. The following statements are equivalent :(i) The Ja
obian Conje
ture.(ii) The Ja
obian Conje
ture for polynomial maps of the form x + ∇fwith H(f) nilpotent and f homogeneous of degree 4.3. Zhao's Lapla
e operator formulation of the Ja
obian Conje
-ture. In the previous se
tion we saw that it su�
es to investigate the JCfor polynomial maps of the form x + ∇f with H(f) (= J(∇f)) nilpotent(and we may even assume that f is homogeneous of degree 4).In [17℄ Zhao uses this result to obtain a remarkable reformulation of theJC. Re
all that the Lapla
e operator, denoted ∆, is equal to ∂2
1 + · · · + ∂2

n(∂i := ∂/∂xi).Theorem 3.1 (Zhao, 2004). The JC is equivalent to ea
h of the followingstatements.(i) If f is a homogeneous polynomial of degree≥3 su
h that ∆m(fm)=0for all m ≥ 1, then ∆m−1(fm) = 0 for all large m.(ii) If f is a homogeneous polynomial of degree 4 su
h that ∆m(fm) = 0for all m ≥ 1, then ∆m−1(fm) = 0 for all large m.



Re
ent progress on the Ja
obian Conje
ture 5In the remainder of this se
tion we give a somewhat simpli�ed proof ofthis result. We start with some notations and generalities.If R is a 
ommutative ring, then R[[x]] denotes the ring R[[x1, . . . , xn]] offormal power series in x1, . . . , xn over R. The order of an element g of R[[x]],denoted o(g), is by de�nition the smallest degree of a monomial appearingin g if g 6= 0, and o(g) = ∞ if g = 0. More generally, if H = (H1, . . . , Hn) ∈
R[[x]]n then o(H) denotes the minimum of the o(Hi).Now let H ∈ k[[x]]n with o(H) ≥ 2. Then the formal map F = x − Hsatis�es detJF (0) = 1. So it has a formal inverse. To study this inverse the
ru
ial idea in [17℄ is to embed F in a family of su
h maps. More pre
isely,let t be a new variable and let A := k[t]. Then de�ne

Ft := x − tH(x) ∈ A[[x]]n.Sin
e det(JxFt)(0) = 1 it follows from the formal inverse fun
tion theorem([7, 1.1.2℄) that Ft has a unique formal inverse, say Gt in A[[x]]n, whi
h isof the form x + Ut(x) with o(Ut) ≥ 2. Setting t = 0 in Ft(Gt(x)) = x we get
G0(x) = x. So Ut(x) = tNt(x) for some Nt(x) ∈ A[[x]]n. Hen
e

Gt(x) = x + tNt(x).Consequently, the equation Gt(Ft(x)) = x implies that
x − tH(x) + tNt(Ft(x)) = x,when
e(4) Nt(Ft(x)) = H(x).By the 
hain rule we get JNt(Ft) · JFt = JH. Using JFt = I − tJH thisgives

JNt(Ft) = JH · (I − JH)−1 =
∞∑

k=1

(JH)k(x)tk−1.Writing ∂t for ∂/∂t we getProposition 3.2. Nt(x) is the unique formal solution of the Cau
hyproblem(5) ∂t(Nt) = JNt · Nt, Nt=0(x) = H(x).Proof. The initial 
ondition follows dire
tly from (4). Furthermore, dif-ferentiating (4) with respe
t to t gives ∂t(Nt)(Ft)− (JNt)H = 0. Composingfrom the right with Gt and using (4) gives the desired result.From now on we assume that JH is symmetri
. So H = ∇f for someunique f ∈ k[[x]] with o(f) ≥ 3. It follows from (5) that JNt(Ft) is symmetri
and hen
e so is JNt(x). Consequently, there exists a unique Qt ∈ A[[x]] with
o(Qt) ≥ 3 su
h that Nt(x) = ∇Qt. So Gt(x) = x + t∇Qt. Writing 〈 , 〉 forthe standard bilinear form we have



6 M. de Bondt and A. van den EssenProposition 3.3. Qt is the unique solution of the Cau
hy problem(6) ∂t(Qt) = 1
2〈∇Qt,∇Qt〉, Qt=0 = f.Proof. Using Nt = ∇Qt and 3.2 we get

∇(∂t(Qt)) = ∂t(∇Qt) = JNt · ∇Qt.Also one easily veri�es that
∇
(

1
2〈∇Qt,∇Qt〉

)
= H(Qt) · ∇Qt = JNt · ∇Qt.So ∇(∂t(Qt)) = ∇

(
1
2〈∇Qt,∇Qt〉

). This implies the �rst equality in (6), sin
ethe polynomials in this equation have no 
onstant term. Finally, using (4)we �nd that ∇Qt=0 = N0 = H = ∇f , whi
h gives Qt=0 = f .In order to investigate JC one should, a

ording to 3.4 study polynomialmaps x −∇f with H(f) nilpotent. Therefore we 
all an element f ∈ k[[x]]for whi
h the matrix H(f) is nilpotent, Hesse nilpotent, HN for short.Lemma 3.4. Let f ∈ k[[x]] with o(f) ≥ 3. Then f is HN i� ∆Qt = 0.Proof. Observe that JNt = J(∇Qt) = H(Qt), when
e
TrJNt = TrH(Qt) = ∆Qt.Sin
e H = ∇f we also have JH = H(f). Then it follows from (5) by takingtra
es that(7) (∆Qt)(Ft) =

∞∑

k=1

TrH(f)ktk−1.Finally, f is HN i� TrH(f)k = 0 for all k ≥ 1 i� (∆Qt)(Ft) = 0 i� ∆Qt = 0.Now we are able to give Zhao's main theorem, whi
h gives a beautifulformula for Qt (and hen
e for the formal inverse Gt = x +∇Qt) in 
ase f isHN. In fa
t his theorem gives the following more general result.Theorem 3.5 (Zhao, 2004). Let f ∈ k[[x]]n with o(f) ≥ 3 and HN. Then(8) Qk
t = k!

∞∑

m=0

tm

2mm!(m + k)!
∆m(fm+k) for all k ≥ 1.Proof. Introdu
e a new variable s and 
onsider the generating fun
tionof the sequen
e {Qk

t /k!}, i.e. U := exp(sQt).
Claim. U is the unique solution of the Cau
hy problem(9) ∂t(U) =

1

2s
∆U, U(t = 0) = exp(sf).To prove this 
laim observe that, using (6), we get(10) ∂t(U) =

s

2
〈∇Qt,∇Qt〉U and U(t = 0) = exp(sf).
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ent progress on the Ja
obian Conje
ture 7Furthermore,
∆U = s

∑

i

∂i(∂i(Qt)U) = s∆(Qt)U + s2
∑

i

∂i(Qt)
2U(11)

= s2〈∇Qt,∇Qt〉U,sin
e ∆Qt = 0 by 3.4. From (10) and (11) we get (9). However, also theformal series
∞∑

k=0

tk

(2s)kk!
∆k(exp(sf))is a solution of the Cau
hy problem (9), as one easily veri�es. So by unique-ness this series is equal to exp(sQt). Comparing the 
oe�
ients of sk for all

k ≥ 1 we obtain (8).As an immediate 
onsequen
e of (8) we getCorollary 3.6. Let f ∈ k[[x]] with o(f) ≥ 3 and f HN. Then ∆m(fm)
= 0 for all m ≥ 1.Proof. By 3.4, ∆Qt = 0. Then use (8) with k = 1.Now we show that the 
onverse holds as well:Theorem 3.7. Let f ∈ k[[x]] with o(f) ≥ 3. Then f is HN i� ∆m(fm)
= 0 for all m ≥ 1 i� ∆m(fm) = 0 for all 1 ≤ k ≤ n.This follows dire
tly from the next result with k = n, using the fa
t thatan n×n matrix A over a domain is nilpotent i� Tr Ak = 0 for all 1 ≤ k ≤ n.Proposition 3.8. Let vm(f) := ∆m(fm) and um(f) := TrH(f)m for all
m ≥ 1. Let k ≥ 1. If v1(f) = · · · = vk(f) = 0, then u1(f) = · · · = uk(f) = 0.The proof of this result is based on the following lemma in whi
h we usethe symbol �∗� to denote a non-zero 
onstant in k.Lemma 3.9. Let k ≥ 1 and u1(f) = · · · = uk(f) = 0. Then for all m ≥ 1,(12) ∂l

tQ
m
t ≡ ∗∆lQm+l

t (mod t(k+1)−l) for all 1 ≤ l ≤ k.Proof. By indu
tion on l. For the 
ase l = 1, observe that
∂tQ

m
t = mQm−1

t ∂t(Qt) = ∗Qm−1
t 〈∇Qt,∇Qt〉 (by (6)).So we need to show that Qm−1

t 〈∇Qt,∇Qt〉 ≡ ∆(Qm+1
t ) (mod tk). To see thisobserve that

∆(Qm+1
t ) = ∗Qm

t ∆Qt + ∗Qm−1
t 〈∇Qt,∇Qt〉.Sin
e by (7) and the hypothesis ∆Qt ≡ 0 (mod tk), the 
ase l = 1 follows.Now assume (12) holds for some l with 1 ≤ l ≤ k. Applying ∂t to (12)gives(13) ∂l+1

t Qm
t ≡ ∗∆l∂t(Q

m+l
t ) (mod t(k+1)−(l+1)).



8 M. de Bondt and A. van den EssenFrom the 
ase l = 1 with m + l instead of m we get
∂t(Q

m+l
t ) ≡ ∗∆Qm+l+1

t (mod tk).Combining this with (13) gives the desired result for l + 1.Proof of 3.8. By indu
tion on k. The 
ase k = 1 is obvious sin
e v1(f) =
u1(f). So assume 3.8 for k ≥ 1 and let us prove it for k+1. So we assume that
v1(f) = · · · = vk+1(f) = 0. In parti
ular the indu
tion hypothesis impliesthat u1(f) = · · · = uk(f) = 0. So by (7),

∆Qt ≡ uk+1(f)tk (mod tk+1).Consequently,
uk+1(f) =

1

k!
∂k

t (∆Qt)t=0.Furthermore, applying ∆ to (12) with l = k and m = 1 we get
∂k

t (∆Qt) ≡ ∗∆k+1Qk+1
t (mod t).So, using Q0 = f (by (6)), we get

uk+1(f) = ∗∆k+1Qk+1
0 = ∗∆k+1fk+1 = vk+1 = 0,as desired.Now we are �nally able to giveProof of Theorem 3.1. Let f be homogeneous of degree 4. Substituting

t = 1 in (8) with k = 1 we see that the formal inverse of x − ∇f is of theform x + ∇Q, where
Q =

∞∑

m=0

1

2mm!(m + 1)!
∆m(fm+1).Sin
e H(f) being nilpotent is equivalent to the 
onditions des
ribed in 3.7,the desired result follows readily from 2.4.4. Kumar's formulation of the Ja
obian Conje
ture. We 
on
ludethis paper with an observation of Mohan Kumar ([13℄) whi
h des
ribes theJa
obian Conje
ture as a problem 
on
erning the smoothness of some hy-persurfa
es.Theorem 4.1 (Kumar, 2004). The Ja
obian Conje
ture is equivalent tothe following statement :(S) For every homogeneous HN polynomial f of degree 4, every 1 ≤ i ≤ nand every t ∈ k∗, the hypersurfa
e S(t, i) = 0, where

S(t, i) := xi + fxi
+

t

2
fxixi

+
t2

6
fxixixi

,has no singularities.



Re
ent progress on the Ja
obian Conje
ture 9Proof. (i) First assume (S). Let f be a homogeneous HN polynomial ofdegree 4. A

ording to 2.4 and [7, 4.2.1℄ it su�
es to show that F := x+∇fis inje
tive. Therefore suppose that F (a) = F (a + b) for some a, b ∈ kn with
b 6= 0. Choose an orthogonal matrix T su
h that T−1b = (t, 0, . . . , 0) for some
t ∈ k∗. Put g := f ◦ T . Then G := x + ∇g = x + T t ◦ ∇f ◦ T = T−1 ◦ F ◦ Tand G(T−1a) = G(T−1a + T−1b). So repla
ing F by G and f by g we mayassume that b = (t, 0, . . . , 0) for some t ∈ k∗.(ii) Now 
onsider the assumption(14) (x + ∇f)(a + (t, 0, . . . , 0)) = (x + ∇f)(a).Put a∗ := (a2, . . . , an). Then looking at the �rst 
omponent of (14) we get
a1 + t + fx1(a1 + t, a∗) = a1 + fx1(a). Expanding fx1(a1 + t, a∗) in its Taylorseries we dedu
e that(15) t + tfx1x1(a) +

t2

2
fx1x1x1(a) +

t3

6
fx1x1x1x1(a) = 0.For 2 ≤ i ≤ n, looking at the ith 
omponent of (14) gives(16) tfxix1(a) +

t2

2
fxix1x1(a) +

t3

6
fxix1x1x1(a) = 0.Dividing by t ∈ k∗ we dedu
e from (15) and (16) that the hypersurfa
e

S(t, 1) = 0 has a singularity at a, 
ontradi
tion.(iii) Conversely, assume that the JC holds. If for some homogeneous HNpolynomial f of degree 4, some 1 ≤ i ≤ n and some t ∈ k∗ the hypersurfa
e
S(t, i) = 0 has a singularity, say at a ∈ kn, then reading ba
kwards theargument in (ii) we �nd from (14) that the map x + ∇f is not inje
tive. Inparti
ular x + ∇f is not invertible, 
ontradi
ting the JC sin
e f is HN, i.e.
J(∇f) is nilpotent.To 
on
lude this paper we give the following interesting observation, alsodue to Kumar.Proposition 4.2. Let f be a homogeneous HN polynomial of degree 4.Then for every i ≤ i ≤ n and every t ∈ k the hypersurfa
e R(t, i) = 0, where

R(t, i) := xi + fxi
+ tfxixi

+
t2

2
fxixixi

,has no singularities.Proof. We may assume that i = 1. Let b := (t, 0, . . . , 0) and x∗ :=
(x2, . . . , xn). Sin
e H(f) is nilpotent, so is

H(f)(x1 + t, x∗) = H(f(x1 + t, x∗)).Using Taylor's expansion we get
f(x1 + t, x∗) = f(x) + tfx1(x) +

t2

2
fx1x1(x) + · · · .



10 M. de Bondt and A. van den EssenSin
e �taking the Hessian� of a polynomial is additive, we see that
H(f(x1 + t, x∗)) = H(f) + tH(fx1) +

t2

2
H(fx1x1).The �rst row of this matrix is ∇(R(t, 1)−x1) and thus ∇(R(t, 1)) is the �rstrow of the invertible matrix In − H(f(x1 + t, x∗)), whi
h implies that thehypersurfa
e R(t, 1) = 0 has no singularities.A
knowledgements. The �rst author is sponsored by NWO, theDut
h Organisation for S
ienti�
 Resear
h.
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