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Reent progress on the Jaobian Conjetureby Michiel de Bondt and Arno van den Essen (Nijmegen)In memory of S. �ojasiewizAbstrat. We desribe some reent developments onerning the Jaobian Conje-ture (JC). First we desribe Dru»kowski's result in [6℄ whih asserts that it su�es to studythe JC for Dru»kowski mappings of the form x + (Ax)∗3 with A2 = 0. Then we desribethe authors' result of [2℄ whih asserts that it su�es to study the JC for so-alled gradientmappings, i.e. mappings of the form x−∇f , with f ∈ k[n] homogeneous of degree 4. Usingthis result we explain Zhao's reformulation of the JC whih asserts the following: for everyhomogeneous polynomial f ∈ k[n] (of degree 4) the hypothesis ∆m(fm) = 0 for all m ≥ 1implies that ∆m−1(fm) = 0 for all large m (∆ is the Laplae operator). In the last setionwe desribe Kumar's formulation of the JC in terms of smoothness of a ertain family ofhypersurfaes.Introdution. Sine the �rst appearane of the JC in [12℄ various pa-pers have been published onerning this onjeture. One of the milestonesis undoubtedly the lassial 1982 paper [1℄ of Bass, Connell and Wright.This paper gave an impulse to the �eld of polynomial automorphisms, whihis now �ourishing as never before. To mention a few highlights: the oun-terexample to the real Jaobian Conjeture by Pinhuk in [14℄, 1994, proofsof the 2-dimensional Markus�Yamabe Conjeture by Glutsuk, Fessler andGutierrez in [9℄, [8℄ and [10℄, the polynomial ounterexamples to the Markus�Yamabe Conjeture in all dimensions ≥ 3 by Cima, van den Essen, Gasull,Hubbers and Mañosas in [4℄, 1995, the proof of the linearization onjeturefor C
∗-ations on C

3 by Kaliman, Koras, Makar-Limanov and Russell in[11℄ and reently the negative solution of the tame generators onjeture byShestakov and Umirbaev in [15℄. However, sine the famous redution the-orems of Bass, Connell, Wright/Yagzhev [16℄ and Dru»kowski [5℄, not muhprogress has been made towards the Jaobian Conjeture.The aim of this paper is to report on some surprising new redutiontheorems, whih go far beyond the lassial redutions mentioned before. The2000 Mathematis Subjet Classi�ation: Primary 14R15.Key words and phrases: Jaobian Conjeture, Hessian Conjeture, Laplae operator.[1℄



2 M. de Bondt and A. van den Essentwo most important papers in this respet are [2℄ and [17℄. In the authors'paper [3℄ a survey is given of various results related to the paper [2℄. Thereforein this paper we will fous our attention on Zhao's paper [17℄ (see Setion 3).First we reall in Setion 2 the main result of [2℄, on whih Zhao's result isbased. Finally, in the last setion we desribe one more onsequene of themain theorem of [2℄: namely a reformulation of the JC, due to Mohan Kumar,in terms of smoothness of a family of hypersurfaes.1. The lassial redution theorems and Dru»kowski's reent re-dution. Throughout this paper k denotes an algebraially losed �eld ofharateristi zero, and by k[n] or k[x] we denote the n-variable polynomialring k[x1, . . . , xn]. Reall that the Jaobian Conjeture asserts that a poly-nomial map F : kn → kn is invertible if detJF ∈ k∗, where JF = (∂Fi/∂xj)denotes the Jaobian matrix of F .In [1℄ Bass, Connell and Wright and in [16℄ Yagzhev showed that it su�esto investigate the JC for all n ≥ 1 and all polynomial maps of the form
F = x + H, where H = (H1, . . . , Hn) is homogeneous (of degree 3) and
JH nilpotent (in fat they show that for suh homogeneous maps H theondition detJF ∈ k∗ is equivalent to JH being nilpotent). A little laterDru»kowski in [5℄ showed that one may even assume that eah Hi is of theform L3

i , where Li is a linear form. In other words it su�es to study theJC for polynomial maps of the form x + (Ax)∗3, where A ∈ Mn(k) and
(v1, . . . , vn)∗3 denotes the vetor (v3

1 , . . . , v
3
n). More reently Dru»kowski in[6℄ obtained the following improvement of his redution theorem.Theorem 1.1 (Dru»kowski, 2000). It su�es to investigate the JC forall n ≥ 1 and all polynomial maps of the form x+(Ax)∗3 with the additionalproperty that A2 = 0.Proof. Let

F := x + (Ax)∗3 : kn → knand let i ∈ k satisfy i2 = −1. Put F∗ := x + 2i(Ax)∗3. Observe that F∗ =
zF (z−1x), where z2 = 1/2i. So F is invertible i� F∗ is invertible i�

F̂ := (F∗, y) = (x + 2i(Ax)∗3, y) : k2n → k2nis invertible. Now put
Q := (x + iy, y + (A(x + iy))∗3) and S := (x − iy, y).Then G := S ◦ F̂ ◦Q is invertible i� F̂ is invertible. Furthermore, one readilyveri�es that G = (x, y) + (N(x, y))∗3, where

N :=

(
−iA A

A iA

)

satis�es N2 = 0.



Reent progress on the Jaobian Conjeture 32. Redution to the symmetri ase. Let JH be a Jaobian matrix.Then one easily veri�es that JH is symmetri i� H is a gradient mapping,i.e. H = ∇f (= (fx1 , . . . , fxn
)) for some f ∈ k[x]. The main result of [2℄asserts that it su�es to investigate the JC for all n ≥ 2 and all F : kn → knof the form F = x + ∇f (with J(∇f) nilpotent). More preisely, we haveTheorem 2.1 (de Bondt and van den Essen, 2003). If the JC is true forall polynomial maps F : k2n → k2n of the form x+∇f , with J(∇f) nilpotent(and homogeneous), then the JC is true for all polynomial maps of the form

x + H : kn → kn with JH nilpotent (and homogeneous).The proof of this result is based on the next lemma. Reall that
J(∇f) =

(
∂2f

∂xi∂xj

)
=: H(f)is the Hessian of f . The standard bilinear form on kn is denoted by 〈 , 〉.Lemma 2.2. Let H = (H1(x), . . . , Hn(x)) ∈ k[x]n and let y1, . . . , yn benew variables. Put

f := fH = (−i)〈H(x + iy), y〉.Then JH is nilpotent i� H(f) is nilpotent.Proof. (1) H(f) is nilpotent i� det(TI2n − H(f)) = T 2n. De�ne S :=
(x − iy, y) and let S0 be the orresponding matrix in M2n(k). Then g :=
f ◦ S = (−i)〈H(x), y〉 and(2) H(g) =

(
∗ (−i)(JH)t

(−i)JH 0

)
.Furthermore(3) H(g) = St

0H(f)|S(x,y)S0.Sine detS0 = 1 we infer from (1) and (3) that H(f) is nilpotent i�
detSt

0(TI2n −H(f))|S(x,y)S0 = T 2n i� det(TSt
0S0 −H(g)) = T 2n.Sine

St
0S0 =

(
In −iIn

−iIn 0

)
,we dedue from (2) that

H(f) is nilpotent i� det

(
∗ −iT In + i(JH)t

−iT In + iJH 0

)
= T 2n.Sine for n × n matries A and B we have

det

(
∗ −iA

−iB 0

)
= detAdet B



4 M. de Bondt and A. van den Essenwe see that H(f) is nilpotent i� det(TIn − (JH)t) det(TIn − JH) = T 2n i�
det(TIn − JH) = Tn i� JH is nilpotent.Proof of Theorem 2.1. Let H = (H1(x), . . . , Hn(x)) with JH nilpotent(and H homogeneous). Let f = fH be as in Lemma 2.2. Then H(f) isnilpotent (and f is homogeneous). So by our hypothesis

G := (x1 + fx1 , . . . , xn + fxn
, y1 + fy1 , . . . , yn + fyn

)is invertible. Consequently, with S as in the proof of Lemma 2.2, S−1 ◦G◦Sis also invertible. An easy alulation shows that
S−1 ◦ G ◦ S = (x1 + H1(x), . . . , xn + Hn(x), ∗, . . . , ∗).Sine this last map is invertible, the desired result follows from the nextlemma.Lemma 2.3. If F̃ := (F1(x), . . . , Fn(x), ∗, . . . , ∗) : k2n → k2n is invert-ible, then F := (F1(x), . . . , Fn(x)) : kn → kn is invertible.Proof. Let (G1(x, y), . . . , Gn(x, y), ∗, . . . , ∗) be the inverse of F̃ . Then inpartiular

Fi(G1(x, y), . . . , Gn(x, y)) = xi for all i.So Fi(G1(x, 0), . . . , Gn(x, 0)) = xi for all i, whih means that F is invertiblewith inverse (G1(x, 0), . . . , Gn(x, 0)).Combining Theorem 2.1 with the lassial Bass�Connell�Wright/Yagzhevredution theorem we getCorollary 2.4. The following statements are equivalent :(i) The Jaobian Conjeture.(ii) The Jaobian Conjeture for polynomial maps of the form x + ∇fwith H(f) nilpotent and f homogeneous of degree 4.3. Zhao's Laplae operator formulation of the Jaobian Conje-ture. In the previous setion we saw that it su�es to investigate the JCfor polynomial maps of the form x + ∇f with H(f) (= J(∇f)) nilpotent(and we may even assume that f is homogeneous of degree 4).In [17℄ Zhao uses this result to obtain a remarkable reformulation of theJC. Reall that the Laplae operator, denoted ∆, is equal to ∂2
1 + · · · + ∂2

n(∂i := ∂/∂xi).Theorem 3.1 (Zhao, 2004). The JC is equivalent to eah of the followingstatements.(i) If f is a homogeneous polynomial of degree≥3 suh that ∆m(fm)=0for all m ≥ 1, then ∆m−1(fm) = 0 for all large m.(ii) If f is a homogeneous polynomial of degree 4 suh that ∆m(fm) = 0for all m ≥ 1, then ∆m−1(fm) = 0 for all large m.



Reent progress on the Jaobian Conjeture 5In the remainder of this setion we give a somewhat simpli�ed proof ofthis result. We start with some notations and generalities.If R is a ommutative ring, then R[[x]] denotes the ring R[[x1, . . . , xn]] offormal power series in x1, . . . , xn over R. The order of an element g of R[[x]],denoted o(g), is by de�nition the smallest degree of a monomial appearingin g if g 6= 0, and o(g) = ∞ if g = 0. More generally, if H = (H1, . . . , Hn) ∈
R[[x]]n then o(H) denotes the minimum of the o(Hi).Now let H ∈ k[[x]]n with o(H) ≥ 2. Then the formal map F = x − Hsatis�es detJF (0) = 1. So it has a formal inverse. To study this inverse theruial idea in [17℄ is to embed F in a family of suh maps. More preisely,let t be a new variable and let A := k[t]. Then de�ne

Ft := x − tH(x) ∈ A[[x]]n.Sine det(JxFt)(0) = 1 it follows from the formal inverse funtion theorem([7, 1.1.2℄) that Ft has a unique formal inverse, say Gt in A[[x]]n, whih isof the form x + Ut(x) with o(Ut) ≥ 2. Setting t = 0 in Ft(Gt(x)) = x we get
G0(x) = x. So Ut(x) = tNt(x) for some Nt(x) ∈ A[[x]]n. Hene

Gt(x) = x + tNt(x).Consequently, the equation Gt(Ft(x)) = x implies that
x − tH(x) + tNt(Ft(x)) = x,whene(4) Nt(Ft(x)) = H(x).By the hain rule we get JNt(Ft) · JFt = JH. Using JFt = I − tJH thisgives

JNt(Ft) = JH · (I − JH)−1 =
∞∑

k=1

(JH)k(x)tk−1.Writing ∂t for ∂/∂t we getProposition 3.2. Nt(x) is the unique formal solution of the Cauhyproblem(5) ∂t(Nt) = JNt · Nt, Nt=0(x) = H(x).Proof. The initial ondition follows diretly from (4). Furthermore, dif-ferentiating (4) with respet to t gives ∂t(Nt)(Ft)− (JNt)H = 0. Composingfrom the right with Gt and using (4) gives the desired result.From now on we assume that JH is symmetri. So H = ∇f for someunique f ∈ k[[x]] with o(f) ≥ 3. It follows from (5) that JNt(Ft) is symmetriand hene so is JNt(x). Consequently, there exists a unique Qt ∈ A[[x]] with
o(Qt) ≥ 3 suh that Nt(x) = ∇Qt. So Gt(x) = x + t∇Qt. Writing 〈 , 〉 forthe standard bilinear form we have



6 M. de Bondt and A. van den EssenProposition 3.3. Qt is the unique solution of the Cauhy problem(6) ∂t(Qt) = 1
2〈∇Qt,∇Qt〉, Qt=0 = f.Proof. Using Nt = ∇Qt and 3.2 we get

∇(∂t(Qt)) = ∂t(∇Qt) = JNt · ∇Qt.Also one easily veri�es that
∇
(

1
2〈∇Qt,∇Qt〉

)
= H(Qt) · ∇Qt = JNt · ∇Qt.So ∇(∂t(Qt)) = ∇

(
1
2〈∇Qt,∇Qt〉

). This implies the �rst equality in (6), sinethe polynomials in this equation have no onstant term. Finally, using (4)we �nd that ∇Qt=0 = N0 = H = ∇f , whih gives Qt=0 = f .In order to investigate JC one should, aording to 3.4 study polynomialmaps x −∇f with H(f) nilpotent. Therefore we all an element f ∈ k[[x]]for whih the matrix H(f) is nilpotent, Hesse nilpotent, HN for short.Lemma 3.4. Let f ∈ k[[x]] with o(f) ≥ 3. Then f is HN i� ∆Qt = 0.Proof. Observe that JNt = J(∇Qt) = H(Qt), whene
TrJNt = TrH(Qt) = ∆Qt.Sine H = ∇f we also have JH = H(f). Then it follows from (5) by takingtraes that(7) (∆Qt)(Ft) =

∞∑

k=1

TrH(f)ktk−1.Finally, f is HN i� TrH(f)k = 0 for all k ≥ 1 i� (∆Qt)(Ft) = 0 i� ∆Qt = 0.Now we are able to give Zhao's main theorem, whih gives a beautifulformula for Qt (and hene for the formal inverse Gt = x +∇Qt) in ase f isHN. In fat his theorem gives the following more general result.Theorem 3.5 (Zhao, 2004). Let f ∈ k[[x]]n with o(f) ≥ 3 and HN. Then(8) Qk
t = k!

∞∑

m=0

tm

2mm!(m + k)!
∆m(fm+k) for all k ≥ 1.Proof. Introdue a new variable s and onsider the generating funtionof the sequene {Qk

t /k!}, i.e. U := exp(sQt).
Claim. U is the unique solution of the Cauhy problem(9) ∂t(U) =

1

2s
∆U, U(t = 0) = exp(sf).To prove this laim observe that, using (6), we get(10) ∂t(U) =

s

2
〈∇Qt,∇Qt〉U and U(t = 0) = exp(sf).



Reent progress on the Jaobian Conjeture 7Furthermore,
∆U = s

∑

i

∂i(∂i(Qt)U) = s∆(Qt)U + s2
∑

i

∂i(Qt)
2U(11)

= s2〈∇Qt,∇Qt〉U,sine ∆Qt = 0 by 3.4. From (10) and (11) we get (9). However, also theformal series
∞∑

k=0

tk

(2s)kk!
∆k(exp(sf))is a solution of the Cauhy problem (9), as one easily veri�es. So by unique-ness this series is equal to exp(sQt). Comparing the oe�ients of sk for all

k ≥ 1 we obtain (8).As an immediate onsequene of (8) we getCorollary 3.6. Let f ∈ k[[x]] with o(f) ≥ 3 and f HN. Then ∆m(fm)
= 0 for all m ≥ 1.Proof. By 3.4, ∆Qt = 0. Then use (8) with k = 1.Now we show that the onverse holds as well:Theorem 3.7. Let f ∈ k[[x]] with o(f) ≥ 3. Then f is HN i� ∆m(fm)
= 0 for all m ≥ 1 i� ∆m(fm) = 0 for all 1 ≤ k ≤ n.This follows diretly from the next result with k = n, using the fat thatan n×n matrix A over a domain is nilpotent i� Tr Ak = 0 for all 1 ≤ k ≤ n.Proposition 3.8. Let vm(f) := ∆m(fm) and um(f) := TrH(f)m for all
m ≥ 1. Let k ≥ 1. If v1(f) = · · · = vk(f) = 0, then u1(f) = · · · = uk(f) = 0.The proof of this result is based on the following lemma in whih we usethe symbol �∗� to denote a non-zero onstant in k.Lemma 3.9. Let k ≥ 1 and u1(f) = · · · = uk(f) = 0. Then for all m ≥ 1,(12) ∂l

tQ
m
t ≡ ∗∆lQm+l

t (mod t(k+1)−l) for all 1 ≤ l ≤ k.Proof. By indution on l. For the ase l = 1, observe that
∂tQ

m
t = mQm−1

t ∂t(Qt) = ∗Qm−1
t 〈∇Qt,∇Qt〉 (by (6)).So we need to show that Qm−1

t 〈∇Qt,∇Qt〉 ≡ ∆(Qm+1
t ) (mod tk). To see thisobserve that

∆(Qm+1
t ) = ∗Qm

t ∆Qt + ∗Qm−1
t 〈∇Qt,∇Qt〉.Sine by (7) and the hypothesis ∆Qt ≡ 0 (mod tk), the ase l = 1 follows.Now assume (12) holds for some l with 1 ≤ l ≤ k. Applying ∂t to (12)gives(13) ∂l+1

t Qm
t ≡ ∗∆l∂t(Q

m+l
t ) (mod t(k+1)−(l+1)).



8 M. de Bondt and A. van den EssenFrom the ase l = 1 with m + l instead of m we get
∂t(Q

m+l
t ) ≡ ∗∆Qm+l+1

t (mod tk).Combining this with (13) gives the desired result for l + 1.Proof of 3.8. By indution on k. The ase k = 1 is obvious sine v1(f) =
u1(f). So assume 3.8 for k ≥ 1 and let us prove it for k+1. So we assume that
v1(f) = · · · = vk+1(f) = 0. In partiular the indution hypothesis impliesthat u1(f) = · · · = uk(f) = 0. So by (7),

∆Qt ≡ uk+1(f)tk (mod tk+1).Consequently,
uk+1(f) =

1

k!
∂k

t (∆Qt)t=0.Furthermore, applying ∆ to (12) with l = k and m = 1 we get
∂k

t (∆Qt) ≡ ∗∆k+1Qk+1
t (mod t).So, using Q0 = f (by (6)), we get

uk+1(f) = ∗∆k+1Qk+1
0 = ∗∆k+1fk+1 = vk+1 = 0,as desired.Now we are �nally able to giveProof of Theorem 3.1. Let f be homogeneous of degree 4. Substituting

t = 1 in (8) with k = 1 we see that the formal inverse of x − ∇f is of theform x + ∇Q, where
Q =

∞∑

m=0

1

2mm!(m + 1)!
∆m(fm+1).Sine H(f) being nilpotent is equivalent to the onditions desribed in 3.7,the desired result follows readily from 2.4.4. Kumar's formulation of the Jaobian Conjeture. We onludethis paper with an observation of Mohan Kumar ([13℄) whih desribes theJaobian Conjeture as a problem onerning the smoothness of some hy-persurfaes.Theorem 4.1 (Kumar, 2004). The Jaobian Conjeture is equivalent tothe following statement :(S) For every homogeneous HN polynomial f of degree 4, every 1 ≤ i ≤ nand every t ∈ k∗, the hypersurfae S(t, i) = 0, where

S(t, i) := xi + fxi
+

t

2
fxixi

+
t2

6
fxixixi

,has no singularities.



Reent progress on the Jaobian Conjeture 9Proof. (i) First assume (S). Let f be a homogeneous HN polynomial ofdegree 4. Aording to 2.4 and [7, 4.2.1℄ it su�es to show that F := x+∇fis injetive. Therefore suppose that F (a) = F (a + b) for some a, b ∈ kn with
b 6= 0. Choose an orthogonal matrix T suh that T−1b = (t, 0, . . . , 0) for some
t ∈ k∗. Put g := f ◦ T . Then G := x + ∇g = x + T t ◦ ∇f ◦ T = T−1 ◦ F ◦ Tand G(T−1a) = G(T−1a + T−1b). So replaing F by G and f by g we mayassume that b = (t, 0, . . . , 0) for some t ∈ k∗.(ii) Now onsider the assumption(14) (x + ∇f)(a + (t, 0, . . . , 0)) = (x + ∇f)(a).Put a∗ := (a2, . . . , an). Then looking at the �rst omponent of (14) we get
a1 + t + fx1(a1 + t, a∗) = a1 + fx1(a). Expanding fx1(a1 + t, a∗) in its Taylorseries we dedue that(15) t + tfx1x1(a) +

t2

2
fx1x1x1(a) +

t3

6
fx1x1x1x1(a) = 0.For 2 ≤ i ≤ n, looking at the ith omponent of (14) gives(16) tfxix1(a) +

t2

2
fxix1x1(a) +

t3

6
fxix1x1x1(a) = 0.Dividing by t ∈ k∗ we dedue from (15) and (16) that the hypersurfae

S(t, 1) = 0 has a singularity at a, ontradition.(iii) Conversely, assume that the JC holds. If for some homogeneous HNpolynomial f of degree 4, some 1 ≤ i ≤ n and some t ∈ k∗ the hypersurfae
S(t, i) = 0 has a singularity, say at a ∈ kn, then reading bakwards theargument in (ii) we �nd from (14) that the map x + ∇f is not injetive. Inpartiular x + ∇f is not invertible, ontraditing the JC sine f is HN, i.e.
J(∇f) is nilpotent.To onlude this paper we give the following interesting observation, alsodue to Kumar.Proposition 4.2. Let f be a homogeneous HN polynomial of degree 4.Then for every i ≤ i ≤ n and every t ∈ k the hypersurfae R(t, i) = 0, where

R(t, i) := xi + fxi
+ tfxixi

+
t2

2
fxixixi

,has no singularities.Proof. We may assume that i = 1. Let b := (t, 0, . . . , 0) and x∗ :=
(x2, . . . , xn). Sine H(f) is nilpotent, so is

H(f)(x1 + t, x∗) = H(f(x1 + t, x∗)).Using Taylor's expansion we get
f(x1 + t, x∗) = f(x) + tfx1(x) +

t2

2
fx1x1(x) + · · · .



10 M. de Bondt and A. van den EssenSine �taking the Hessian� of a polynomial is additive, we see that
H(f(x1 + t, x∗)) = H(f) + tH(fx1) +

t2

2
H(fx1x1).The �rst row of this matrix is ∇(R(t, 1)−x1) and thus ∇(R(t, 1)) is the �rstrow of the invertible matrix In − H(f(x1 + t, x∗)), whih implies that thehypersurfae R(t, 1) = 0 has no singularities.Aknowledgements. The �rst author is sponsored by NWO, theDuth Organisation for Sienti� Researh.
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