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In memory of S. Lojasiewicz

Abstract. We describe some recent developments concerning the Jacobian Conjec-
ture (JC). First we describe Druzkowski’s result in [6] which asserts that it suffices to study
the JC for Druzkowski mappings of the form x + (Az)*® with A% = 0. Then we describe
the authors’ result of [2] which asserts that it suffices to study the JC for so-called gradient
mappings, i.e. mappings of the form z — V f, with f € k™ homogeneous of degree 4. Using
this result we explain Zhao’s reformulation of the JC which asserts the following: for every
homogeneous polynomial f € k™ (of degree 4) the hypothesis A™(f™) =0 for all m > 1
implies that A™~'(f™) = 0 for all large m (A is the Laplace operator). In the last section
we describe Kumar’s formulation of the JC in terms of smoothness of a certain family of
hypersurfaces.

Introduction. Since the first appearance of the JC in [12] various pa-
pers have been published concerning this conjecture. One of the milestones
is undoubtedly the classical 1982 paper [1| of Bass, Connell and Wright.
This paper gave an impulse to the field of polynomial automorphisms, which
is now flourishing as never before. To mention a few highlights: the coun-
terexample to the real Jacobian Conjecture by Pinchuk in [14], 1994, proofs
of the 2-dimensional Markus—Yamabe Conjecture by Glutsuk, Fessler and
Gutierrez in [9], [8] and [10], the polynomial counterexamples to the Markus—
Yamabe Conjecture in all dimensions > 3 by Cima, van den Essen, Gasull,
Hubbers and Mariosas in [4], 1995, the proof of the linearization conjecture
for C*-actions on C3 by Kaliman, Koras, Makar-Limanov and Russell in
[11] and recently the negative solution of the tame generators conjecture by
Shestakov and Umirbaev in [15]. However, since the famous reduction the-
orems of Bass, Connell, Wright/Yagzhev [16] and Druzkowski [5], not much
progress has been made towards the Jacobian Conjecture.

The aim of this paper is to report on some surprising new reduction
theorems, which go far beyond the classical reductions mentioned before. The
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two most important papers in this respect are [2] and [17]. In the authors’
paper [3] a survey is given of various results related to the paper [2]. Therefore
in this paper we will focus our attention on Zhao’s paper [17] (see Section 3).
First we recall in Section 2 the main result of [2], on which Zhao’s result is
based. Finally, in the last section we describe one more consequence of the
main theorem of [2]: namely a reformulation of the JC, due to Mohan Kumar,
in terms of smoothness of a family of hypersurfaces.

1. The classical reduction theorems and Druzkowski’s recent re-
duction. Throughout this paper k£ denotes an algebraically closed field of
characteristic zero, and by k" or k[z] we denote the n-variable polynomial
ring k[z1,...,zy). Recall that the Jacobian Conjecture asserts that a poly-
nomial map F' : k™ — k™ is invertible if det JF' € k*, where JF = (0F;/0x;)
denotes the Jacobian matrix of F.

In [1] Bass, Connell and Wright and in [16] Yagzhev showed that it suffices
to investigate the JC for all n > 1 and all polynomial maps of the form
F = z+ H, where H = (Hy,...,H,) is homogeneous (of degree 3) and
JH nilpotent (in fact they show that for such homogeneous maps H the
condition det JF' € k* is equivalent to JH being nilpotent). A little later
Druzkowski in [5] showed that one may even assume that each H; is of the
form L?, where L; is a linear form. In other words it suffices to study the
JC for polynomial maps of the form x + (Ax)*3, where A € M, (k) and

3 3

(v1,...,v,)* denotes the vector (v3,...,v3). More recently Druzkowski in

[6] obtained the following improvement of his reduction theorem.

THEOREM 1.1 (Druzkowski, 2000). It suffices to investigate the JC' for
alln > 1 and all polynomial maps of the form x+ (Ax)*® with the additional
property that A? = 0.

Proof. Let 3
F:=x+4 (Az)” : k" — k"

and let i € k satisfy 2 = —1. Put F, := x + 2i(Az)*3. Observe that F, =
2F(z712), where 22 = 1/2i. So F is invertible iff F, is invertible iff

F = (F,,y) = (x + 2i(Az)*3,y) : k" — k"
is invertible. Now put
Q= (z+iy,y + (A(x +iy))*®) and S := (z —iy,y).

Then G := SoFo Q is invertible iff F is invertible. Furthermore, one readily
verifies that G = (z,y) + (N(z,y))*3, where

N oo —iA A
A A

satisfies N2 = 0.
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2. Reduction to the symmetric case. Let JH be a Jacobian matrix.
Then one easily verifies that JH is symmetric iff H is a gradient mapping,
ie. H=Vf (= (fzys---,fz,)) for some f € k[z]. The main result of [2]
asserts that it suffices to investigate the JC for all m > 2 and all F': k™ — k"
of the form F' =z + V f (with J(V f) nilpotent). More precisely, we have

THEOREM 2.1 (de Bondt and van den Essen, 2003). If the JC is true for
all polynomial maps F : k> — k" of the form x+V f, with J(V f) nilpotent
(and homogeneous), then the JC' is true for all polynomial maps of the form

3

x4+ H : k"™ — k™ with JH nilpotent (and homogeneous).
The proof of this result is based on the next lemma. Recall that
190) = (L) =40
al‘ial‘j
is the Hessian of f. The standard bilinear form on k" is denoted by ().

LEMMA 2.2. Let H = (Hy(z),...,Hy(z)) € k[z]" and let y1,...,yn be
new variables. Put

fi= T = (=i)(H(z +1iy),y).
Then JH is nilpotent iff H(f) is nilpotent.

Proof. (1) H(f) is nilpotent iff det(T Iy, — H(f)) = T?". Define S :=
(x —iy,y) and let Sp be the corresponding matrix in My, (k). Then g :=
fo8=(=i)(H(x),y) and

_ * (—i)(JH)"
) Hlg) = ( Comn )
Furthermore

Since det Sy = 1 we infer from (1) and (3) that H(f) is nilpotent iff
det Sé(TIQn — H(f))|5(x7y)50 =T iff det(TSéSO —H(g)) = 2",

Since
1 —l,

S§S0 = " ",
o ( —il, 0 >

we deduce from (2) that
—iTI, +i(JH)
H(f) is nilpotent iff det< . * . ! +i(JH) > =T,

—iTI, +1JH 0

Since for n X n matrices A and B we have

det( o )zdetAdetB
_iB 0
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we see that H(f) is nilpotent iff det(T'I,, — (JH)') det(TI, — JH) = T?" iff
det(TI, — JH) =T" iff JH is nilpotent.

Proof of Theorem 2.1. Let H = (Hy(z),...,H,(x)) with JH nilpotent
(and H homogeneous). Let f = fg be as in Lemma 2.2. Then H(f) is
nilpotent (and f is homogeneous). So by our hypothesis

G = (xl + fl‘lv"wxn +f$n7y1 +fy17‘~ -y Un +fyn)
is invertible. Consequently, with S as in the proof of Lemma 2.2, S~toGo S
is also invertible. An easy calculation shows that

St oGoS = (x1+ Hy(x),...,2n0 + Hp(x),%,...,%).

Since this last map is invertible, the desired result follows from the next
lemma.

LEMMA 2.3. If F := (Fi(z),..., Fp(@),%,...,%) : k2" — k2 is invert-
ible, then F := (Fy(x),...,Fy(x)) : k™ — k™ is invertible.

Proof. Let (G1(z,y),...,Gn(z,y),*,...,*) be the inverse of F. Then in
particular

Fi(Gi(z,y),...,Gp(z,y)) = x; for all 4.

So F;(G1(x,0),...,Gn(x,0)) = x; for all 4, which means that F' is invertible
with inverse (G1(z,0),...,Gp(z,0)).

Combining Theorem 2.1 with the classical Bass—Connell-Wright / Yagzhev
reduction theorem we get

COROLLARY 2.4. The following statements are equivalent:

(i) The Jacobian Congecture.
(i1) The Jacobian Conjecture for polynomial maps of the form x + V f
with H(f) nilpotent and f homogeneous of degree 4.

3. Zhao’s Laplace operator formulation of the Jacobian Conjec-
ture. In the previous section we saw that it suffices to investigate the JC
for polynomial maps of the form = + Vf with H(f) (= J(Vf)) nilpotent
(and we may even assume that f is homogeneous of degree 4).

In [17] Zhao uses this result to obtain a remarkable reformulation of the
JC. Recall that the Laplace operator, denoted A, is equal to 8? + - -+ + 92

THEOREM 3.1 (Zhao, 2004). The JC'is equivalent to each of the following
statements.

(i) If f is a homogeneous polynomial of degree >3 such that A™(f™)=0
for all m > 1, then A™=Y(f™) =0 for all large m.

(i1) If f is a homogeneous polynomial of degree 4 such that A™(f™) =0
for all m > 1, then A™~Y(f™) =0 for all large m.
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In the remainder of this section we give a somewhat simplified proof of
this result. We start with some notations and generalities.

If R is a commutative ring, then R[[z]] denotes the ring R[[z1, ..., z,]] of
formal power series in z1, ..., x, over R. The order of an element g of R[[z]],
denoted o(g), is by definition the smallest degree of a monomial appearing
in g if g #0, and o(g) = oo if g = 0. More generally, if H = (Hy,..., H,) €
R[[z]]™ then o(H) denotes the minimum of the o(H;).

Now let H € k[[z]]" with o(H) > 2. Then the formal map F' =« — H
satisfies det JF'(0) = 1. So it has a formal inverse. To study this inverse the
crucial idea in [17] is to embed F in a family of such maps. More precisely,
let ¢ be a new variable and let A := k[t]. Then define

Fy:=x—tH(x) € Al[z]]"

Since det(J;F;)(0) = 1 it follows from the formal inverse function theorem
(7, 1.1.2]) that F; has a unique formal inverse, say G; in A[[z]]", which is
of the form x + U;(z) with o(U;) > 2. Setting t = 0 in Fi(G(x)) = = we get
Go(x) = x. So Uy(x) = tNy(x) for some Ny(x) € A[[z]]"™. Hence

Gi(x) = x + tN¢(x).
Consequently, the equation Gy(F(x)) = x implies that

x—tH(z) + tNi(Fy(z)) = =z,

whence
(4) Ni(Fi(z)) = H ().

By the chain rule we get JNy(F}) - JFy = JH. Using JF, = I — tJH this

gives
oo

IN(Fy) = JH - (I - JH)™' =Y (JH)!@)t".
k=1
Writing 9, for 9/0t we get

PROPOSITION 3.2. Ni(x) is the unique formal solution of the Cauchy
problem

(5) 8t(Nt) = JNt . Nt, Nt:()(.%‘) = H(x)

Proof. The initial condition follows directly from (4). Furthermore, dif-
ferentiating (4) with respect to ¢ gives 0¢(N¢)(F3) — (JN¢)H = 0. Composing
from the right with G; and using (4) gives the desired result.

From now on we assume that JH is symmetric. So H = V f for some
unique f € k[[z]] with o(f) > 3. It follows from (5) that JN;(F}) is symmetric
and hence so is JN¢(x). Consequently, there exists a unique Q; € A[[z]] with
o(Q¢) > 3 such that Ny(x) = VQ;. So Gi(z) = = + tV Q. Writing (,) for

the standard bilinear form we have



6 M. de Bondt and A. van den Essen

PROPOSITION 3.3. Q: is the unique solution of the Cauchy problem
(6) (Q1) = 3(VQ:,VQi), Qi=o= .
Proof. Using Ny = VQ; and 3.2 we get
V(0:(Qr)) = 0:(VQt) = JNt - V Q.
Also one easily verifies that
V(5{VQ:,VQ:) =H(Qr) - VQi = JN; - VQy.
So V(0,(Qy)) = V(%(VQt, VQy)). This implies the first equality in (6), since

the polynomials in this equation have no constant term. Finally, using (4)

we find that VQi—g = Ng = H = V f, which gives Q0 = f.

In order to investigate JC one should, according to 3.4 study polynomial
maps z — V[ with H(f) nilpotent. Therefore we call an element f € k[[z]]
for which the matrix H(f) is nilpotent, Hesse nilpotent, HN for short.

LEMMA 3.4. Let f € k[[z]] with o(f) > 3. Then f is HN iff AQ: = 0.

Proof. Observe that JN; = J(VQ;) = H(Q:), whence

Tr JNt = TI‘H(Qt) = AQt

Since H = V f we also have JH = H(f). Then it follows from (5) by taking
traces that

(7) (AQy)(Fy) = ZTrH £t

Finally, f is HN iff Tr H(f)* = 0 for all k > 1 iff (AQ,)(F;) = 0iff AQ; = 0.

Now we are able to give Zhao’s main theorem, which gives a beautiful
formula for Q¢ (and hence for the formal inverse Gy = x 4+ V@) in case f is
HN. In fact his theorem gives the following more general result.

THEOREM 3.5 (Zhao, 2004). Let f € k[[x]]™ with o(f) > 3 and HN. Then
tm

(8) QF =k > —————= A™(f™*) forall k> 1.
! mzoz m!(m+ k)!

Proof. Introduce a new variable s and consider the generating function
of the sequence {QF/k!}, i.e. U := exp(sQy).

CLAIM. U 1is the unique solution of the Cauchy problem
1
(9) o(U) = % AU, U(t=0) =exp(sf).

To prove this claim observe that, using (6), we get

(10) O(U) = 5 (VQ,VQ)U and U(t = 0) = exp(s/).
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Furthermore,

(11) AU = sZ&i(&-(Qt)U) = sA(Qt)U—kszZ&-(Qt)zU

= 82<th7 th>U7
since AQ¢ = 0 by 3.4. From (10) and (11) we get (9). However, also the

formal series
oo k

> Gyl lesp(sr)
k=0

is a solution of the Cauchy problem (9), as one easily verifies. So by unique-
ness this series is equal to exp(sQ;). Comparing the coefficients of s* for all
k > 1 we obtain (8).

As an immediate consequence of (8) we get

COROLLARY 3.6. Let f € k[[x]] with o(f) > 3 and f HN. Then A™(f™)
=0 for allm > 1.

Proof. By 3.4, AQ; = 0. Then use (8) with k = 1.

Now we show that the converse holds as well:

THEOREM 3.7. Let f € k[[z]] with o(f) > 3. Then f is HN iff A™(f™)
=0 forallm>1iff A"(f™) =0 for all1 <k <n.

This follows directly from the next result with k = n, using the fact that
an n X n matrix A over a domain is nilpotent iff TrAF =0 forall 1 <k <n.

PROPOSITION 3.8. Let vy, (f) := A™(f™) and upm,(f) := TrH(f)™ for all
m > 1. Letk > 1. Ifvi(f) =---=wv(f) =0, thenuy (f) =--- = ur(f) =0.

The proof of this result is based on the following lemma in which we use
the symbol “*” to denote a non-zero constant in k.

LEMMA 3.9. Letk > 1 andui(f) =--- = ug(f) =0. Then for allm > 1,
(12) QM =+ A'QMH (mod t* V7Y for all 1 <1< k.
Proof. By induction on [. For the case [ = 1, observe that
OQ = mQO(Q) = Q" HVQL VQr)  (by (6)).

So we need to show that QT_I(VQt, VQ:) = A( ;”‘H) (mod t¥). To see this
observe that

AQT) = «Q"AQs + +Q7' YV Q:, VQy).
Since by (7) and the hypothesis AQ; = 0 (modt*), the case [ = 1 follows.

Now assume (12) holds for some [ with 1 <[ < k. Applying 0; to (12)
gives

(13) 8£+1Q§” = *Alat(Q;nH) (mod t(k"'l)_(l"‘l)).
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From the case [ = 1 with m 4+ [ instead of m we get
QT =« AQT T (mod t*).
Combining this with (13) gives the desired result for [ + 1.

Proof of 3.8. By induction on k. The case k = 1 is obvious since v (f) =
u1(f). So assume 3.8 for £ > 1 and let us prove it for k+1. So we assume that
vi(f) = -+ = vg41(f) = 0. In particular the induction hypothesis implies
that ui(f) =+ =uk(f) = 0. So by (7),

AQt = urr1 ()" (mod ¢*+1).
Consequently,
up1(f) = %af(AQt)t:O-
Furthermore, applying A to (12) with [ = k and m = 1 we get
I (AQy) = *xAF1QF! (mod t).
So, using Qo = f (by (6)), we get
Uk+1(f) = *AkHQ’SH = *Akﬂflngl = Vgy1 = 0,

as desired.

Now we are finally able to give

Proof of Theorem 3.1. Let f be homogeneous of degree 4. Substituting
t =1 in (8) with £ = 1 we see that the formal inverse of x — V f is of the
form x + VQ, where

1

_ OO— B
Q_n;)2mm!(m+1)!A (f™ .

Since H(f) being nilpotent is equivalent to the conditions described in 3.7,
the desired result follows readily from 2.4.

4. Kumar’s formulation of the Jacobian Conjecture. We conclude
this paper with an observation of Mohan Kumar ([13]) which describes the
Jacobian Conjecture as a problem concerning the smoothness of some hy-
persurfaces.

THEOREM 4.1 (Kumar, 2004). The Jacobian Conjecture is equivalent to
the following statement:

(S)  For every homogeneous HN polynomial f of degree 4, every 1 <i<mn
and every t € k*, the hypersurface S(t,i) = 0, where
: t t2

has no singularities.
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Proof. (i) First assume (S). Let f be a homogeneous HN polynomial of
degree 4. According to 2.4 and [7, 4.2.1] it suffices to show that F := 2+ V f
is injective. Therefore suppose that F'(a) = F(a+ b) for some a,b € k" with
b # 0. Choose an orthogonal matrix 7" such that T7-!b = (¢,0,...,0) for some
tck* Putg:=foT.Then G:=2+Vg=a+T'oVfoT =T 'oFoT
and G(T~'a) = G(T'a + T~ 'b). So replacing F by G and f by g we may
assume that b = (¢,0,...,0) for some t € k*.

(ii) Now consider the assumption

(14) (z+Vf)(a+(t0,...,0) = (z+ Vf)(a).
Put a. := (ag,...,a,). Then looking at the first component of (14) we get

a1 +t+ fo, (a1 +t,ax) = a1 + fo, (a). Expanding f,, (a1 +¢, ax) in its Taylor
series we deduce that

t? ¢3
(15) t+tfo(a) + 9 foroia (@) + 6 fore1212: (@) = 0.
For 2 < ¢ < n, looking at the ith component of (14) gives
t? ¢
(16) tfwiwl (a) + 5 fwiwlml (a) + E fﬁfimlrlml (a) = 0.

Dividing by t € k* we deduce from (15) and (16) that the hypersurface
S(t,1) = 0 has a singularity at a, contradiction.

(iii) Conversely, assume that the JC holds. If for some homogeneous HN
polynomial f of degree 4, some 1 <7 < n and some ¢t € k* the hypersurface
S(t,i) = 0 has a singularity, say at a € k", then reading backwards the
argument in (ii) we find from (14) that the map = + V f is not injective. In
particular  + V f is not invertible, contradicting the JC since f is HN, i.e.
J(V f) is nilpotent.

To conclude this paper we give the following interesting observation, also
due to Kumar.

PROPOSITION 4.2. Let f be a homogeneous HN polynomial of degree 4.
Then for every i < i < n and everyt € k the hypersurface R(t,i) = 0, where

: t2

has no singularities.
Proof. We may assume that ¢ = 1. Let b := (¢,0,...,0) and x, :=
(x2,...,2y,). Since H(f) is nilpotent, so is
H(f) (1 +t2e) = H(f (21 + £, 30)).

Using Taylor’s expansion we get
2
f(l'l +t7x*) - f(x) +tfrl(x) + Efrﬂl(x) +o
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Since “taking the Hessian” of a polynomial is additive, we see that

2
M1+ 1,22)) = RO + 07 (Fa) + = H o)

The first row of this matrix is V(R(¢,1) —z1) and thus V(R(¢,1)) is the first
row of the invertible matrix I, — H(f(x1 + ¢, x4)), which implies that the
hypersurface R(t,1) = 0 has no singularities.
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