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Redution of semialgebrai onstrutible funtionsby Ludwig Bröcker (Münster)In memory of Stanisªaw �ojasiewiz (1926�2002)Abstrat. Let R be a real losed �eld with a real valuation v. A Z-valued semial-gebrai funtion on Rn is alled algebrai if it an be written as the sign of a symmetribilinear form over R[X1, . . . , Xn]. We show that the redution of suh a funtion withrespet to v is again algebrai on the residue �eld. This implies a orresponding result forlimits of algebrai funtions in de�nable families.Introdution. One of the most fundamental results in real algebraigeometry is the theorem of Tarski�Seidenberg, stating that if S ⊂ R
n issemialgebrai and f : R

n → R
k is a polynomial map, then f(S) is alsosemialgebrai.However, if S is algebrai, then in general f(S) is no longer so. Thesimplest example is where S = {x ∈ R

2 | x2
1 + x2

2 = 1}, the unit irle in
R

2, and f is the projetion onto the �rst oordinate in R
2. Then f(S) isthe unit ball {x ∈ R | x2 ≤ 1} in R whih is obviously not algebrai. Sothe onsideration of images is too rough in order to save information on thealgebraiity of S.Also, let ϕ : R

n → Z be a onstrutible funtion, that is, ϕ(Rn) is �niteand ϕ−1(z) is semialgebrai for all z ∈ Z. Let again f : R
n → R

k be apolynomial map. It is not a priori lear how to de�ne the image funtion
f∗ϕ : R

k → Z, but it turns out that a well behaved de�nition is
f∗ϕ(x) =

\
f−1(x)

ϕdχ,

where the right hand side is the so-alled Euler integral, to be explained inSetion 1. This extension of the lassial Euler harateristi to onstrutiblefuntions appeared in many ontexts.2000 Mathematis Subjet Classi�ation: 14P10, 12J25, 28A25.Key words and phrases: limits of semialgebrai funtions, redution with respet to avaluation, Euler integral. [27℄



28 L. BrökerNow let ϕ = 1S where S is algebrai. Then f∗ϕ is algebrai in the follow-ing sense. There exist �nitely many polynomials f1, . . . , fm ∈ R[X1, . . .Xk]suh that f∗ϕ(x) = sign f1(x)+· · ·+sign fm(x) for all x ∈ R
k. In the examplewhere S is the unit irle in R

2, we have f∗ϕ(x) = 2 for x2 < 1, f∗ϕ(x) = 1for x2 = 1 and f∗ϕ(x) = 0 for x2 > 1. Thus f∗ϕ = sign f1 + sign f2 for
f1 = 1 −X2 and f2 ≡ 1.More generally, a beautiful theorem of Parusi«ski�Szafranie [P-S℄ statesthat if ϕ : R

n → Z is algebrai, then so is f∗ϕ.We will show a orresponding result for limits in semialgebrai families,where one has a similar situation:Let S ⊂ R
n × R

k be semialgebrai. For t ∈ R
k let St := S ∩ R

n × {t}.Let (tm) ∈ R
k be a sequene suh that (Stn) tends to T in the Hausdor�sense. It is known that T is again semialgebrai [Br1℄, [Br2℄, whih holdsorrespondingly in the o-minimal ontext [L-S℄, [vdD1℄, [vdD2℄. Again, if Sis algebrai, this need not be the ase for T .For instane, onsider the family of ellipses Et ⊂ R

2 where
Et = {x ∈ R

2 | x2
1 + t2x2

2 = 1},and let (tn) → ∞. Then (Etn) → {x ∈ R
2 | x2

1 ≤ 1, x2 = 0}, whih is notalgebrai.So again, Hausdor� limits are not appropriate. In Setion 6 we will in-trodue a di�erent kind of onvergene using loal Euler integrals, whihextends to onstrutible funtions. Then we will show that the limit of asequene of onstrutible funtions in an algebrai family is again algebrai(Theorem 6.4). The main ingredient is our Theorem 5.1 whih expresses thesituation in terms of valuations and redution maps.
1. Euler integral. Let R be a real losed �eld and let ω be the lass ofall semialgebrai sets S ⊂ Rn for some n. A funtion ϕ : Rn → Z is alledonstrutible if the range of ϕ is �nite and ϕ−1(z) is semialgebrai for all

z ∈ Z.For any semialgebrai set S ⊂ Rn the Euler harateristi (with ompatsupports) χ(S) is de�ned. If S is semialgebraially isomorphi to an open
d-ell, then χ(S) = (−1)d. For arbitrary S, this allows us to ompute χ(S)from a ell deomposition, whih always exists, and it turns out that theomputation of χ(S) does not depend on the deomposition. One an extendthe Euler harateristi to onstrutible funtions as follows (ompare [V℄).Let ϕ =

∑
ai1Si

where the sum is �nite, ai ∈ Z and Rn ⊃ Si is semialgebrai.Then χ(ϕ) :=
∑
aiχ(Si). Again, this is independent of the representationof ϕ.



Redution of semialgebrai onstrutible funtions 29One also writes
χ(ϕ) =

\
ϕdχ =

\
Rn

ϕ(x) dχ(x),and if T ⊂ Rn is semialgebrai, then\
T

ϕdχ :=
\

Rn

1T · ϕdχ;this is alled Euler integration. This name is justi�ed by the following rules:(i) If ϕ, ψ : Rn → Z are onstrutible, then T(ϕ+ψ)dχ =
T
ϕdχ+

T
ψdχ.(ii) If, moreover, f : Rn → Rm is a ontinuous semialgebrai map, then\

Rn

ϕ(x) dχ(x) =
\

Rm

( \
f−1(y)

ϕ(x) dχ(x)
)
dχ(y)

(Fubini�Cavalieri).In the situation of (ii) we de�ne f∗ϕ : Rm → Z, y 7→
T
f−1(y) ϕ(x) dχ(x).Thus \

Rn

ϕ(x) dχ(x) =
\

Rm

f∗ϕ(y) dχ(y).

2. Algebrai funtions. Again, let R be a real losed �eld.Definition 2.1. A onstrutible funtion ϕ : Rn → Z is alled algebraiif there are �nitely many polynomials p1, . . . , pk ∈ R[X], X = (X1, . . . , Xn),suh that ϕ(x) = sign(p1(x)) + · · · + sign(pn(x)) for all x ∈ Rn.Example 2.2. Let V ⊂ Rn be a real algebrai set. Then 1V is algebrai.In fat, there is a positive polynomial p for V , that is, p(x) > 0 for x /∈ Vand p(x) = 0 for x ∈ V . Now 1V = sign(1) + sign(−p).Remark 2.3. Let ϕ, ψ : Rn → Z be algebrai. Then(a) ϕ+ ψ and ϕ · ψ are algebrai.(b) Let V ⊂ Rn be an algebrai subset. Then ζ is algebrai, where ζ(x) =
ϕ(x) for x /∈ V and ζ(x) = ψ(x) for x ∈ V .() Let S be a symmetri n× n matrix with oe�ients in R[X]. Then
x 7→ signx S (signature of S at x) is algebrai.Here (a) is obvious, (b) follows easily from (a) and Example 2.2, and ()follows from (b) by indution on the dimension, sine we an diagonalize Sover funtion �elds, that is, up to algebrai sets of smaller dimensions.The fundamental property of algebrai funtions is (see [P-S℄):Theorem 2.4 (Parusi«ski�Szafranie). Let f : Rn → Rm be a polyno-mial map. If ϕ : Rn → Z is algebrai, then so is f∗ϕ : Rm → Z.



30 L. BrökerWe are going to show a orresponding result for redution maps. Thisrequires more preparations (for more details see [B-C-R, Chap. 7℄, [A-B-R,Chap. 2℄):Let V = Spec(A) be an algebrai variety over R. Then Hom(A,R) =
V (R) is the variety of losed real points in V . We extend V (R) = Hom(A,R)to the spae Specr(A) = {α : A → Rα}/∼ alled the real spetrum of A,where Rα is real losed, α is a homomorphism and ∼ is generated by om-mutative triangles
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@

@
@

@
β
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RβFrom the model ompleteness of the theory of real losed �elds it is learthat elementary objets and properties in V (R) and Specr(A) orrespondto eah other. For instane, a onstrutible (algebrai) funtion ϕ on V (R)extends uniquely to a onstrutible (algebrai) funtion ϕ̃ on Specr(A).Let α ∈ Specr(A). Then Ker(α) =: supp(α) (support of α) is a primeideal of A. We de�ne dim(α) := dim(A/supp(α)). One de�nes Specr(A)orrespondingly for any ommutative ring with unit, and also onstrutibleand algebrai funtions. For instane, if A = K is a �eld, then Specr(K) isthe spae of all orderings of K. The representation theorem [Be-Br℄ providesa riterion for the algebraiity of a onstrutible funtion ϕ : Specr(K) → Z.For general A one has
Specr(A) =

⋃

p∈Spec(A)

Specr(k(p))

where k(p) is the residue �eld of p ∈ Spec(A). This allows us to reduequestions about V (R), via Specr(A), to features and tools of the real algebraof �elds. We will follow this path in the next setions.
3. The redution map. Throughout this setion we �x a real losed�eld R together with a real valuation v : R → Γ ∪∞, where Γ is the valuegroup. We denote by B ⊂ R the valuation ring, by m the maximal ideal andby R the residue �eld. Note that v is henselian, Γ is divisible and R is againreal losed. The residue map ̺ : B → R, b 7→ ̺(b) =: b, admits a setion

σ : R → B whih we �x in the following. So we onsider R as a sub�eld of
R. We denote by ̺ also the map Bn → Rn, xi 7→ ̺(xi), i = 1, . . . , n. Onehas [Br1, Th. 1.7℄



Redution of semialgebrai onstrutible funtions 31Proposition 3.1. Let S ⊂ Bn be de�nable in the language of valuedordered �elds. Then ̺(S) ⊂ Rn is semialgebrai.Again, we want to extend ̺ to onstrutible funtions. For this, let ϕ :
Rn → Z be onstrutible, as in Setion 1, and let a ∈ Bn. For λ ∈ R, λ > 0let

D(a, λ) := {x ∈ Rn | (a− x)i < λ for i = 1, . . . , n}and
χ(a, λ)(ϕ) :=

\
D(a,λ)

ϕdχ.

The map ]0,∞[ → Z, λ 7→ χ(a, λ)(ϕ), is onstrutible. Hene there exist
0 < λ1 < λ2, λ1 ∈ m, λ2 ∈ B \ m, suh that χ(a, λ)(ϕ) is onstant on
]λ1, λ2[, so we de�ne

χ(a,m)(ϕ) :=
\

̺−1(a)

ϕdχ :=
\

D(a,λ)

ϕdχ

for λ ∈ ]λ1, λ2[ and a = ̺(a). Then we getProposition 3.2. Let ϕ : Rn → Z be onstrutible. Then so is ̺∗ϕ :
Rn → Z, where for a ∈ Rn,

̺∗ϕ(a) :=
\

̺−1(a)

ϕdχ.

Proof. For all z ∈ Z the set {a ∈ Bn | χ(a,m)(ϕ) = z} =: e(z, ϕ) isde�nable in the language of valued �elds. By Hardt's theorem [Ha℄ it is alsolear that χ(a,m)(ϕ) is bounded for �xed ϕ and a ∈ Bn. So we an write
χ(a,m)(ϕ) =

∑
zi1e(zi,ϕ)where the sum is �nite. Clearly every funtion 1e(zi,ϕ) is onstant on the�bers of ̺. Hene

̺∗ϕ =
∑

zi1̺(e(zi,ϕ)),whih by Proposition 3.1 is onstrutible.4. The redution map on the real spetrum. In Setion 2 we sawthat to every onstrutible funtion ϕ : Rn → Z there orresponds a on-strutible funtion ϕ̃ : Specr(A) → Z, where A = R[X1, . . . , Xn]. If, inpartiular, S is semialgebrai and ϕ = 1S then ϕ̃ = 1
S̃
, the onstrutible set

S̃ ⊂ Specr(A) being de�ned by the same equations as S. The set Bn ⊂ Rnis not semialgebrai. Nevertheless, we de�ne
B̃n = {α ∈ Specr(A) | ∀f ∈ A with α(f) > 0 ∃x ∈ Bn with f(x) > 0}.



32 L. BrökerWe are going to study a redution
˜̺ : B̃n → Specr(A),where A = R[X1, . . . , Xn]. The onstrutions and results below are takenfrom [Br1, �3℄. Let α ∈ B̃n. Reall that α orresponds to an ultra�lter,say ϕ(α), of semialgebrai sets in Rn. Then the sets ̺(S ∩ Bn | S ∈ ϕ(α))generate a unique ultra�lter ϕ′ of semialgebrai sets in Rn. So we de�ne ˜̺(α)to be the orresponding element in Specr(A), that is, ϕ′ = ϕ(˜̺(α)).Now let V ⊂ Rn be a losed integral algebrai subvariety with dim(V )

= k, and let V1, . . . , Vr be the irreduible omponents of clz ̺(V ∩Bn) (where
clz denotes the Zariski losure), for whih dimVi = k. For eah i = 1, . . . , r weshall de�ne a set vij of valuations of R(V ) whih extend the given valuation
v on R in a natural way. For this let

B[V ] := {f + I(V ) ∈ R[V ] | f ∈ B(X)}and
pi := {f + I(V ) ∈ R[V ] | f ∈ B[X] and f(x) = 0 ∀x ∈ Vi}.Here X = (X1, . . . , Xn), x = (x1, . . . , xn) and f is the omponentwise re-dution of f . Then pi is a prime ideal in B[V ] and B[V ]/pi ≃ R[Vi]. Let

Ai = B[V ]pi
and Ã the integral losure of Ai in R(V ). In general, Ai 6= Ãiand also Ãi is possibly not a valuation ring in R(V ). However, one hasProposition 4.1. Under the above notations, Ãi is semiloal with max-imal ideals mij, j = 1, . . . , s(i), where mij ∩ B[V ] = pi. The loalization

(Ãi)mij
is the valuation ring of a valuation vij of R(V ) extending v. Theresidue �eld of vij is a �nite extension of R(Vi) and the value group of vijis divisible for j = 1, . . . , s(i).Quite generally, an ordering α of a �eld K is alled ompatible with avaluation v of K if the valuation ring of v is onvex with respet to α.In that ase α indues an ordering v(α) on the residue �eld. With thesenotations we have moreover:Proposition 4.2. The ordering α ∈ Specr(R(V )) is ompatible withone of the valuations vij if and only if α ∈ B̃n and dim(˜̺(α)) = dim(α) =

dim(V ). In that ase ˜̺(α) ∈ Specr(R(Vi)) and vij(α) extends ˜̺(α).Finally, in the above situation, we would like to have some information onthe number of those α ∈ Specr(R(V )) for whih ˜̺(α) = α ∈ Specr(R(Vi)).Here we haveProposition 4.3. Under the above notations, for i = 1, . . . , r thereexists a nondegenerate quadrati form ϕi over R(Vi) suh that for all α ∈



Redution of semialgebrai onstrutible funtions 33
Specr(R(Vi)) one has

#{α ∈ Specr(R(V )) | ˜̺(α) = α} = signα(ϕi).In fat , ϕi is the trae form of Ãi/piÃi over R(Vi).More generally, let g ∈ B[V ] and for x, y ∈ Ãi/piÃi let ϕi(g)(x, y) :=

tr gxy, where tr is again the trae of Ãi/piÃi over R(Vi).Proposition 4.4. For α ∈ Specr(R(Vi)) one has
signα(ϕi(g)) = #{α ∈ Specr(R(V )) | ˜̺(α) = α, α(g) > 0}

− #{α ∈ Specr(R(V )) | ˜̺(α) = α, α(g) < 0}.Remark 4.5. Propositions 4.3 and 4.4 also hold if V is not neessarilyintegral, but merely redued. Consider the following situation: W ⊂ Rn isan irreduible variety. If we �x a setion R →֒ R, then W orresponds toa subvariety W , again irreduible, of Rn. Consider R ×W ⊂ Rn (possiblyreplae n by n+1), let f ∈ R[R×W ] and let V = Z(f) be the zero set of f .Assume that W oinides with one of the Vi, say W = V1. Assume further,for simpliity, that f , regarded as a polynomial over R(W ), is separable. Nowlet α ∈ Specr(R(W )). There is a unique α ∈ Specr(R(W )) with ˜̺(α) = α.Consider the orresponding real losed �eld Rα ⊃ R(W ) and the valuationring Bα ⊂ Rα where
Bα = {x ∈ Rα | ∃b ∈ B : x ≤ b}.Also let mα be the orresponding maximal ideal. Then the zeros of f in Bαorrespond to those α ∈ Specr(R(V )) whih are ompatible with a valuation

vij and for whih ˜̺(α) = α. Moreover, α ∈ mα if and only if α is ompatiblewith a valuation v1j .5. Redution of algebrai funtions. In this setion we show ourmain result:Theorem 5.1. Let ϕ : Rn → Z be algebrai. Then so is ̺∗ϕ : Rn → Z.Here we use the notations of Setion 3. For the proof we will need severalsteps and the lemma below whih is essentially [P-S, Lemma 6℄, but note thatunlike that artile we always onsider the Euler harateristi with ompatsupports.Lemma 5.2. Let R be a real losed �eld , a < b ∈ R and f = adX
d + · · ·

+a0, ad 6= 0, a polynomial suh that f(a), f(b) 6= 0. Moreover , for 2 ≤ k ≤ dlet
Vk := {x ∈ R | f(x) = · · · = f (k−1)(x) = 0}and

Zk,a,b :=
∑

x∈Vk, a<x<b

sign(f (k)(x)).



34 L. BrökerThen \
]a,b[

sign(f)dχ = −
1

2
(sign(f(a)) + sign(f(b))) −

∑

2≤2k≤d

Z2k,a,b.Proof of Theorem 5.1. First of all, we may assume that ϕ(x) = sign(f(x))for all x ∈ Rn, where f is a polynomial ∈ R[X1, . . . , Xn].1. Without hanging ϕ = sign(f) we may assume that f ∈ B[X1, . . . , Xn],but f /∈ m[X1, . . . , Xn]. Let f ∈ R[X1, . . . , Xn] be the omponentwise redu-tion of f , so f 6= 0. Clearly, ̺∗ϕ(y) = sign f(y) for all those y ∈ Rn for whih
f(y) 6= 0. In other words, ̺∗ϕ is algebrai up to a set of smaller dimension.2. Now let W ′ ⊂ Rn be an algebrai variety suh that the following hold:

• There is an algebrai funtion ϕ′ : Rn → Z with ̺∗ϕ = ϕ′ on Rn\W ′.
• W ′ is of minimal dimension and has a minimal number of omponentssubjet to the above property.We want to show that W ′ = ∅. Assume W ′ 6= ∅. So let W be a omponentof W ′ with dimW = dimW ′. We will show3. ̺∗ϕ is generially algebrai on W (algebrai up to a set of smallerdimension). By Remark 2.3 this would ontradit W ′ 6= ∅. As before, we �xa setion R →֒ B. Thus W orresponds to a subvariety W of Rn. Let N bethe normal bundle of W in Rn:

N = {(x, a) | x ∈ Rn, a ∈W, x⊥ TaW}.Here TaW is the tangent spae of W at a. (If a is a singular point, then
TaW = Rn.) Similarly, we have

N = {(y, b) | y ∈ Rn, b ∈W, y ⊥ TbW}.Let r : W → R be a polynomial map suh that r(b) > 0 if b is nonsingularand r(b) = 0 if b is singular. Let
U r := {(y, b) ∈ N | 〈y, y〉 < r(b)},

Ur := {(x, a) ∈ N | 〈x, x〉 < r(a)},where 〈 , 〉 denotes the usual salar produt and where, by the identi�ationof R with a sub�eld of R, we may onsider r as a polynomial map r on W .Let
π : N → Rn, (x, a) 7→ x+ a,

π : N → Rn, (y, b) 7→ y + b.We may hoose r in suh a way that π and π map U = Ur (and U = Ur)isomorphially onto a neighbourhood of Wreg (and W reg respetively). Wehave
r∗ϕ(y) =

\
r−1(y)

ϕdχ =
\

π−1r−1(y)∩U

π∗ϕdχ for y ∈W.



Redution of semialgebrai onstrutible funtions 35Next, onsider the map
d : N → R×W, (x, a) 7→ (〈x, x〉, a).By [P-S℄ (f. Theorem 2.4) the funtion d∗π

∗ϕ is algebrai. Therefore, weare redued to the situation that ϕ lives on R×W , and it remains to showthat r∗ϕ is generially algebrai on W .4. As before, we also onsider R×W . We may assume that ϕ = sign(f)with f ∈ R[W ][X]. Sine we need only show that r∗ϕ is generially algebraion W , instead of looking at real points on W we look at orderings α ∈
Specr(R(W )), that is, we will show that r∼∗ ϕ| Spec(R(W )) is algebrai. Asin step 1 we take f to be de�ned over B but with oe�ients not all in m,and onsider f ∈ R[W ][X]. We write f = Xkg suh that g does not vanishidentially on W . If f = g, then r∗ϕ = sign(g) on W , up to a set of smallerdimension. So, in this ase, we are done. Now, if k > 0, onsider an ordering
α ∈ Specr(R(W )). Reall the situation of Remark 4.5. There is a uniqueordering α ∈ Specr(R(W )) suh that ˜̺(α) = α. Consider the �eld Rα ⊃ Rand its valuation ring

Bα := {x ∈ Rα | ∃b ∈ B : x ≤ b}.Let mα be the orresponding maximal ideal. Let f = f1f
2
2 , where f1, f2are mutually prime and square free (as elements of R(W )[X]). With thesenotations we have

(−1)dim(W )̺∼∗ ϕ(α) =
\

mα

sign(f1) dχ− #{x ∈ mα | f2(x) = 0}.By Proposition 4.3 and Remark 4.5 the seond summand is algebrai on
Specr(R(W )). For the �rst summand, we assume that f = f1 and write
f = Xkg as above. Then, by Lemma 5.2,\

mα

sign(f) dχ = −g(α) −
∑

2≤2k≤deg(f)

Z2k,α,where
Zi,α :=

∑

x∈mα∩Vk,α

sign(f (i)(x)),

Vk,α := {x ∈ Rα | f(x) = · · · = f (k−1)(x) = 0}.Now learly g(α) is algebrai on Specr(R(W )) and by Proposition 4.4 andRemark 4.5 this also holds for the funtions α 7→ Z2k,α.6. Limits. For x ∈ R
n and r ∈ R, r > 0, let Bn(x, r) := {y ∈ R

n |
‖y − x‖ < r}, where ‖ ‖ denotes the eulidean norm.Notation 6.1. For a onstrutible funtion ϕ : R

n → Z we denote by
ϕ̂ : R

n → Z the funtion
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x 7→ lim

r→0

\
Bn(x,r)

ϕdχ.

Clearly, ϕ̂ is again onstrutible. Moreover, it is well known that ̂̂ϕ = ϕ (see[Br3℄) and if ϕ is algebrai, then so is ϕ̂. The latter follows, for instane,from [P-S℄ and Hardt's Theorem [Ha℄ (see also [MC-P℄). Now let (ϕm)m∈Nbe a sequene of onstrutible funtions ϕm : R
n → Z.Definition 6.2. We say that (ϕm) tends to ψ : R

n → Z and write
(ϕm) → ψ if for all x ∈ R

n one has
ψ̂(x) = lim

r→0
lim

m→∞

\
Bn(x,p)

ϕm dχ.

For harateristi funtions of losed onvex sets this is the same as Haus-dor� onvergene, but in general, this is not true.Example 6.3. Consider the sequene of ellipses
Em = {x ∈ R

2 | x2
1 +m2x2

2 = 1},whih get more and more �at for inreasing m. The Hausdor� limit of (Em)is the interval I = {x ∈ R
2 | x2

1 ≤ 1, x2 = 0}. Now let ϕm = 1Em
. Then

(ϕm) → ψ where
ψ(x) =





2 for x2
1 < 1, x2 = 0,

1 for x2
1 = 1, x2 = 0,

0 else.Note that the ϕm are algebrai and so is ψ, but 1I is not algebrai. This isa speial ase of a general result.Consider R
n+k = R

n × R
k as a family of spaes R

n with parametersin R
k. We denote the variables in R

n by X = (X1, . . . , Xn) and those in
R

k by T = (T1, . . . , Tk). For t ∈ R
k let R

n
t := R

n × {t} ⊂ R
n+k. Nowlet ϕ : R

n × R
k → Z be onstrutible. Again we onsider ϕ as a family

{ϕt | t ∈ R
k} of onstrutible funtions R

n → Z where ϕt(x) := ϕ(x, t).More generally, let α ∈ Specr(R[T ]). Reall that we may represent α by ahomomorphism α : R[T ] → Rα where R ⊂ Rα is a real losed �eld. By modelompleteness of the theory of real losed �elds, ϕ indues a onstrutiblefuntion ϕα : Rn
α → Z.It may be helpful to �visualize� this. It is well known and used before thatto α there orresponds an ultra�lter A of semialgebrai sets S ⊂ R

n. Then
Rα is represented by semialgebrai funtions f̃ : S → R for S ∈ A where twosuh funtions f̃ and g̃ are identi�ed if they oinide on some T ∈ A. Now,



Redution of semialgebrai onstrutible funtions 37given ϕ : R
n × R

k → Z it is lear that ϕ assigns eventually a well de�nedvalue to an n-tuple f = (f1, . . . , fn) ∈ Rn
α.The anonial valuation ring Bα of Rα is represented by those f̃ whihare bounded on some T ∈ A, and the maximal ideal mα by those f̃ whihare arbitrarily small on some T ∈ A. We may also write

Bα = {f ∈ Rα | ∃r ∈ R : |f | ≤ r},

mα = {f ∈ Rα | ∀r ∈ R, r > 0 : |f | ≤ r}.Note that the residue �eld is isomorphi to R.Now let (tm) be a sequene in R
k. Then we get a sequene (ϕm) := (ϕtm)of onstrutible funtions ϕm : R

n → Z. So this is a sequene of onstrutiblefuntions in the family R
n × R

k. In this situation we haveTheorem 6.4.(a) There is an element α ∈ Specr(R[T ]) with orresponding ultra�lter
A suh that for all semialgebrai sets S ∈ A one has tm ∈ S forin�nitely many m.(b) Assume that (ϕm) → ψ and let α be as in (a). Then ψ̂ = ̺∗ϕα, where
̺ is the redution map aording to the real losed �eld Rα with thevaluation ring Bα. In partiular , ψ is onstrutible.() If ϕ is algebrai, then so is ψ.Proof. (a) The olletion of all semialgebrai sets S ⊂ R

k for whih
tm ∈ S for almost all m ∈ Z forms a �lter F . Let A ⊃ F be any ultra�lterof semialgebrai sets in R

k and α the orresponding element in Specr(R[T ]).Then learly α has the required property.(b) Let x ∈ R
n and f ∈ Rα. Then f − x ∈ mα if and only if for all

r > 0, all S ∈ A and all representatives f̃i : S → R for fi there exists T ⊂ Swith T ∈ A suh that f̃(t) ∈ B(x, r) for all t ∈ T . In partiular, there arein�nitely many tm suh that f̃(tm) ∈ B(x, r). We have
̺∗ϕ(x) =

\
f−x∈mα

ϕα(f) dχ.We may ompute the right hand side by a �nite proedure, say, a ell de-omposition whih still works on representatives de�ned over some T ∈ A. Ifwe speialize the omputation at some t ∈ T we get the same value ̺∗ϕ(x)for the Euler integral on the one hand, but on the other hand, sine thereare in�nitely many tm ∈ T for all T ∈ A we get the value
lim
r→0

lim
m→∞

\
Bn(x,r)

ϕm dχ.Thus ̺∗ϕ(x) = ψ̂(x).() This follows from (b) and Theorem 5.1.



38 L. BrökerRemark 6.5. In the preeding theorem, the statement that the limit ψof the sequene ϕn is again onstrutible should also be true in the o-minimalontext.
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