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Non-uniruledness and the 
an
ellation problemby Robert Dryło (Kraków)To the memory of Professor Stanisªaw �ojasiewi
zAbstra
t. Using the notion of uniruledness we indi
ate a 
lass of algebrai
 varietieswhi
h have a stronger version of the 
an
ellation property. Moreover, we give an a�rmativesolution to the stable equivalen
e problem for non-uniruled hypersurfa
es.Introdu
tion. An algebrai
 variety X has the strong 
an
ellation prop-erty if every isomorphism f : Y × C
m → X × C

m, where Y is an algebrai
variety, satis�es the 
ondition: for ea
h y ∈ Y there exists x ∈ X su
hthat f({y} × C
m) = {x} × C

m (then 
learly f indu
es an isomorphism be-tween X and Y ). Iitaka and Fujita proved in [3℄ that an algebrai
 varietyof non-negative logarithmi
 Kodaira dimension has the strong 
an
ellationproperty.Using mainly the notion of uniruledness we will give some other 
ondi-tions guaranteeing this property. Namely, we will show that an a�ne varietynone of whose 
omponents is C-uniruled has the strong 
an
ellation property(Theorem 1); in parti
ular, a�ne irredu
ible varieties with two non-uniruled
omponents at in�nity (Corollary 1) and a�ne unirational varieties with anon-uniruled 
omponent at in�nity have this property (Theorem 2).We will also deal with the stable equivalen
e problem.As in [7℄, a�ne varieties X, Y in C
n are said to be equivalent if there existsa polynomial automorphism of C

n 
arrying X onto Y . Moreover, X, Y aresaid to be stably equivalent if for some m ∈ N the 
ylinders X × C
m and

Y × C
m are equivalent (in C

n+m).Makar-Limanov, van Rossum, Shpilrain and Yu in [7℄ stated and solvedfor 
urves in C
2 (in fa
t they proved a general result for polynomials of twovariables over an arbitrary �eld of 
hara
teristi
 zero) the following

Stable equivalence problem. Are two stably equivalent hypersur-fa
es in C
n equivalent?2000 Mathemati
s Subje
t Classi�
ation: Primary 14R10; Se
ondary 14E05.Key words and phrases: uniruled variety, 
an
ellation property, stable equivalen
e.[93℄



94 R. DryªoShpilrain and Yu in [10℄ solved this problem when one of the hypersur-fa
es is the set of zeros of a so-
alled test polynomial (see [1, 5℄).We give an a�rmative answer when one of the hypersurfa
es is non-uniruled (Corollary 2).Now we give some basi
 de�nitions.An irredu
ible variety X of dimension n > 0 is said to be uniruled ifthere exists a variety W of dimension n − 1 and a dominant rational map
W × C → X. A redu
ible a�ne variety is said to be uniruled if all itsirredu
ible 
omponents are uniruled.It is well known that a variety is uniruled if and only if through its generi
point passes a rational 
urve.A generi
 hypersurfa
e in C

n of degree d > n is an example of a non-uniruled variety (see [4℄).A similar notion is that of C-uniruledness introdu
ed by Jelonek in [6℄.An a�ne irredu
ible variety X of dimension n > 0 is said to be C-uniruledif there exists a variety W of dimension n − 1 and a dominant polynomialmap W × C → X. A redu
ible a�ne variety is said to be C-uniruled if allits irredu
ible 
omponents are C-uniruled.The C-uniruledness means exa
tly that through a generi
 point of thevariety passes an a�ne parametri
 line (see [6℄).By a hypersurfa
e in an irredu
ible algebrai
 variety we mean an algebrai
subvariety of pure 
odimension one.Main results. We begin by introdu
ing the notion of verti
ality. Let
X, Y be algebrai
 varieties. A regular mapping f : Y ×C

m → X×C
m is 
alledverti
al over a ∈ Y if there exists b ∈ X su
h that f({a}×C

m) ⊂ {b}×C
m.Moreover, we say that f is verti
al over a subset Z of Y if it is verti
al overea
h point of Z.We de�ne Zf = {y ∈ Y | f is verti
al over y}. It is a Zariski-
losed subsetof Y . Indeed, we 
an suppose that X, Y ⊂ C

n. If f = (f1, . . . , fn+m) then
Zf = {y ∈ Y | f1(y, ·), . . . , fn(y, ·) are 
onstant on C

m}

=

n⋂

i=1

⋂

z,t∈Cm

{y ∈ Y | fi(y, z) − fi(y, t) = 0}.Obviously the strong 
an
ellation property for a variety X is equivalent tosaying that Zf = Y for every variety Y and every isomorphism f : Y ×C
m →

X × C
m. Now we are ready to proveTheorem 1. An a�ne variety none of whose 
omponents is C-uniruledhas the strong 
an
ellation property.Proof. Let a variety X satisfy the assumptions. We 
an take X to beirredu
ible. Suppose that Zf 6= Y for some variety Y and some isomorphism
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f : Y ×C

m → X ×C
m. Put V = πX(f(Zf ×C

m)), where πX : X ×C
m → Xis the proje
tion. For ea
h y ∈ Zf we have f({y}×C

m) = {πX(f(y))}×C
m.This means that V × C

m = f(Zf × C
m) is 
losed, hen
e V is 
losed. More-over V 6= X be
ause dimV = dim f(Zf × C

m) − m = dimZf < dim Y =
dimX. Hen
e X \ V =

⋃
y∈Y \Zf

πX(f({y} × C
m)) is a union of a�ne para-metri
 lines, whi
h is impossible.Before stating the next results let us explain that the phrase an a�nevariety X has k non-uniruled 
omponents at in�nity means that there existsa 
ompa
ti�
ation X̂ of X su
h that the variety X̂ \ X 
ontains at least

k non-uniruled 
omponents. (It is well known that for an a�ne variety Xand its 
ompa
ti�
ation X̂ the set X̂ \X is a hypersurfa
e in X̂.) It 
an beshown (see [6℄ or Lemma 1 below) that an irredu
ible C-uniruled variety hasat most one non-uniruled 
omponent at in�nity. Hen
e we haveCorollary 1. An irredu
ible a�ne variety with two non-uniruled 
om-ponents at in�nity has the strong 
an
ellation property.An irredu
ible a�ne variety with one non-uniruled 
omponent at in�nitymay not have the strong 
an
ellation property, sin
e we have an isomorphism
(W × C) × C ∋ ((x, y), z) 7→ ((x, z), y) ∈ (W × C) × C. However, if we addthe unirationality assumption, we haveTheorem 2. Let X be an a�ne variety of dimension n > 1. Supposethat X is unirational and has a non-uniruled 
omponent at in�nity. Then Xhas the strong 
an
ellation property.
Remark. It is well known that a�ne 
urves have the 
an
ellation prop-erty. Furthermore, every a�ne 
urve not isomorphi
 to C has the strong
an
ellation property.Re
all that an n-dimensional algebrai
 variety X is unirational if thereexists a rational dominant mapping f : P

n
99K X.We will use the following 
orollary from Hironaka's Theorem [2℄ (seealso [4℄):Lemma 1. Let X be a smooth irredu
ible algebrai
 variety with a smooth
ompa
ti�
ation X̂ su
h that X̂ \ X is a hypersurfa
e in X̂. Let Y be ana�ne variety with a 
ompa
ti�
ation Ŷ and let f : X → Y be a regular ,dominant and generi
ally-�nite mapping. Then the number of non-uniruled
omponents of the variety Ŷ \ Y is not greater than the number of non-uniruled 
omponents of the variety X̂ \ X.In parti
ular , if a�ne varieties X, Y are smooth and isomorphi
 thenthe numbers of non-uniruled 
omponents of the varieties X̂ \ X and Ŷ \ Y



96 R. Dryªoare equal , where X̂, Ŷ are smooth 
ompa
ti�
ations of X and Y respe
-tively.Proof. The idea of this proof is due to Z. Jelonek [4℄. Applying Hironaka'sTheorem to the rational mapping f : X̂ 99K Ŷ we obtain a mapping σ :

B → X̂, whi
h is a 
omposition of a sequen
e of blowing-ups along smooth
enters su
h that the mapping f ◦σ : B → Ŷ is regular on B. An elementaryproperty of a blowing-up is that the ex
eptional divisor E of σ (i.e. E is ahypersurfa
e in B su
h that dimσ(E) < dimE and σ : B \E → X̂ \σ(E) isan isomorphism) is uniruled. Be
ause Ŷ \Y ⊂ cl(f(X̂ \X))∪(f ◦σ)(E), ea
hnon-uniruled 
omponent of Ŷ \Y is dominated by a non-uniruled 
omponentof X̂ \ X. This 
on
ludes the proof.Proof of Theorem 2. Let f : Y × C
m → X × C

m be an isomorphismand πX : X × C
m → X, πY : Y × C

m → Y denote the proje
tions.For ea
h unirational variety H properly 
ontained in Y and ea
h a�nesubspa
e L ⊂ C
m su
h that dim H + dimL = n, the mapping πX ◦ f :

H ×L → X is not dominant. Indeed, if d = dimH then we have a dominantmapping f1 : P
d

99K H whi
h is regular on an open set D in P
d. Hen
e wehave the regular mapping πX ◦ f ◦ (f1× id) : D×L → X whi
h by Lemma 1
annot be dominant (sin
e (Pd × L) \ (D × L) is uniruled, where L is theproje
tive 
losure of L).Observe that X dominates Y and hen
e Y is unirational. Indeed, for

y ∈ Y we 
an �nd a polynomial mapping p : X → C
m whose graph meets

f({y} × C
m) at some isolated points (if X ⊂ C

N then p is, for example,the restri
tion to X of a suitable a�ne mapping C
N → C

m). Therefore themapping X ∋ x 7→ πY (f−1(x, p(x))) ∈ Y has a 
omponent of dimension zeroin the �ber over y and hen
e is dominant.Let g : P
n

99K Y be a dominant rational mapping. It is easy to see thatthere exists a non-empty Zariski-open subset U of Y su
h that g : g−1(U)→Uis a proper mapping and a lo
al biholomorphism. Observe that for ea
h vari-ety V ⊂ Y and a ∈ V ∩U there exists a unirational variety H ⊂ Y su
h that
dimH + dimV = n and H interse
ts V isolatedly at a. Indeed, we 
an �ndan (n − dimV )-dimensional subspa
e H ′ of P

n su
h that H ′ ∩ g−1(a) 6= ∅and H ′ meets g−1(V ) isolatedly at ea
h point from H ′ ∩ g−1(a). The variety
H = g(H ′) ful�ls our 
onditions.To prove the theorem it is enough to show that f−1 is verti
al over allpoints from πX(f(U × C

m)). Suppose that there exists x ∈ πX(f(U × C
m))su
h that the dimension of πY (W ) is positive, where W = f−1({x} × C
m).Let π : W → C

m be the proje
tion. Three 
ases are possible:
Case 1: π is dominant. It is easy to see that we 
an 
hoose a line L in C

msu
h that π−1(L) = L′∪T , where L′ is an irredu
ible 
urve, L′∩(U×C
m) 6= ∅,
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T is 
losed, L′ 6⊂ T and dimπY (L′) = 1. Let a ∈ (L′\T )∩(U×C

m) and H bea unirational hypersurfa
e in Y whi
h interse
ts πY (L′) isolatedly at πY (a).Hen
e {a} is a 
omponent of (H × L) ∩ W . This means that the mapping
πX ◦ f : H × L → X has in the �ber over x a 
omponent of dimension zeroso it is dominant; a 
ontradi
tion.
Case 2: S = π(W ) has dimension s < m and a �ber of π over a generi
point of S has the dimension stri
tly smaller than n. Choose z ∈ S su
hthat dimπ−1(z) = m − s and πY (π−1(z)) ∩ U 6= ∅. For a ∈ πY (π−1(z)) ∩ Ulet H be an (n−m+s)-dimensional unirational subvariety of Y interse
ting

πY (π−1(z)) isolatedly at a. Moreover, 
hoose an (m − s)-dimensional a�nesubspa
e L ⊂ C
m su
h that {z} is a 
omponent of L ∩ S. We 
ome to a
ontradi
tion as in Case 1, sin
e (H ×L)∩W has 
omponents of dimensionzero.

Case 3: All �bers of π : W → π(W ) have dimension n. Take a ∈ Ysu
h that dim(πY |W )−1(a) = m − n. Sin
e W is isomorphi
 to C
m we 
an�nd a variety C ⊂ W whi
h is isomorphi
 to C

n and (πY |W )−1(a) ∩ Chas dimension zero. Thus the proje
tion πY : C → Y is dominant. This
ontradi
ts Lemma 1 be
ause Y dominates X.The proof is 
omplete.Corollary 2. Two stably equivalent hypersurfa
es in C
n are equivalentif one of them is non-uniruled.Corollary 3. Let X ⊂ C

n be a hypersurfa
e whi
h has only non-uniruled 
omponents. If Y ⊂ C
n is a hypersurfa
e su
h that for some m ∈ Nthe 
ylinders (Cn \ X) × C

m and (Cn \ Y ) × C
m are isomorphi
 then X, Yare equivalent.Proof. By Theorem 3 we have an indu
ed isomorphism f : C

n \ X →
C

n \ Y . By Lemma 1 the varieties X and Y have the same number of non-uniruled 
omponents. Using Hironaka's Theorem we 
an extend f to a reg-ular mapping f̃ : C
n \ Z → C

n, where Z ⊂ C
n has 
odimension at least 2(
ompare the proof of Lemma 2). On
e again we 
an extend f̃ to a regularmapping f̃ : C

n → C
n. Obviously f̃ does not have ex
eptional divisors so bythe Zariski Main Theorem (see [8, 9℄), f̃ : C

n → f̃(Cn) is an isomorphism.Moreover f̃(Cn) is Zariski-open in C
n and dim(Cn \ f̃(Cn)) ≤ n−2 (be
auseon f̃(Cn) ea
h invertible regular fun
tion is 
onstant). Hen
e f̃−1 is regularon C

n. Obviously f̃(X) = Y .A
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