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Non-uniruledness and the cancellation problem
by ROBERT DRYLO (Krakow)

To the memory of Professor Stanistaw fojasiewicz

Abstract. Using the notion of uniruledness we indicate a class of algebraic varieties
which have a stronger version of the cancellation property. Moreover, we give an affirmative
solution to the stable equivalence problem for non-uniruled hypersurfaces.

Introduction. An algebraic variety X has the strong cancellation prop-
erty if every isomorphism f : Y x C"™ — X x C™, where Y is an algebraic
variety, satisfies the condition: for each y € Y there exists x € X such
that f({y} x C™) = {x} x C™ (then clearly f induces an isomorphism be-
tween X and Y'). litaka and Fujita proved in [3] that an algebraic variety
of non-negative logarithmic Kodaira dimension has the strong cancellation
property.

Using mainly the notion of uniruledness we will give some other condi-
tions guaranteeing this property. Namely, we will show that an affine variety
none of whose components is C-uniruled has the strong cancellation property
(Theorem 1); in particular, affine irreducible varieties with two non-uniruled
components at infinity (Corollary 1) and affine unirational varieties with a
non-uniruled component at infinity have this property (Theorem 2).

We will also deal with the stable equivalence problem.

As in [7], affine varieties X, Y in C" are said to be equivalent if there exists
a polynomial automorphism of C” carrying X onto Y. Moreover, X,Y are
said to be stably equivalent if for some m € N the cylinders X x C™ and
Y x C™ are equivalent (in C"*™).

Makar-Limanov, van Rossum, Shpilrain and Yu in [7] stated and solved
for curves in C? (in fact they proved a general result for polynomials of two
variables over an arbitrary field of characteristic zero) the following

STABLE EQUIVALENCE PROBLEM. Are two stably equivalent hypersur-
faces in C™ equivalent?
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Shpilrain and Yu in [10] solved this problem when one of the hypersur-
faces is the set of zeros of a so-called test polynomial (see [1, 5]).

We give an affirmative answer when one of the hypersurfaces is non-
uniruled (Corollary 2).

Now we give some basic definitions.

An irreducible variety X of dimension n > 0 is said to be uniruled if
there exists a variety W of dimension n — 1 and a dominant rational map
W x C — X. A reducible affine variety is said to be wuniruled if all its
irreducible components are uniruled.

It is well known that a variety is uniruled if and only if through its generic
point passes a rational curve.

A generic hypersurface in C" of degree d > n is an example of a non-
uniruled variety (see [4]).

A similar notion is that of C-uniruledness introduced by Jelonek in [6].
An affine irreducible variety X of dimension n > 0 is said to be C-uniruled
if there exists a variety W of dimension n — 1 and a dominant polynomial
map W x C — X. A reducible affine variety is said to be C-uniruled if all
its irreducible components are C-uniruled.

The C-uniruledness means exactly that through a generic point of the
variety passes an affine parametric line (see [6]).

By a hypersurface in an irreducible algebraic variety we mean an algebraic
subvariety of pure codimension one.

Main results. We begin by introducing the notion of verticality. Let
X, Y be algebraic varieties. A regular mapping f : Y xC™ — X xC™ is called
vertical over a € Y if there exists b € X such that f({a} x C™) C {b} x C™.
Moreover, we say that f is vertical over a subset Z of Y if it is vertical over
each point of Z.

We define Z;y = {y € Y | f is vertical over y}. It is a Zariski-closed subset
of Y. Indeed, we can suppose that X, Y C C". If f = (f1,..., fa+m) then

Zr={yeY | fi(y,"),..., fnly,-) are constant on C"}

n
= ) {weY|fily.2) - fily.t) =0}.
i=1z,teCm
Obviously the strong cancellation property for a variety X is equivalent to
saying that Z; =Y for every variety Y and every isomorphism f : ¥ xC™ —
X x C™. Now we are ready to prove

THEOREM 1. An affine variety none of whose components is C-uniruled
has the strong cancellation property.

Proof. Let a variety X satisfy the assumptions. We can take X to be
irreducible. Suppose that Z; # Y for some variety Y and some isomorphism
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[:YxC" = XxC™ Put V =mnx(f(Z;xC™)), where mx : X xC™ — X
is the projection. For each y € Z; we have f({y} xC™) = {nx(f(y))} xC™.
This means that V' x C™ = f(Z; x C™) is closed, hence V is closed. More-
over V # X because dimV = dim f(Z; x C™) —m = dimZ; < dimY =
dim X. Hence X \ V = Uer\Zf mx(f({y} x C™)) is a union of affine para-
metric lines, which is impossible. =

Before stating the next results let us explain that the phrase an affine
variety X has k non-uniruled components at infinity means that there exists
a compactification X of X such that the variety X \ X contains at least
k non-uniruled components. (It is well known that for an affine variety X
and its compactification X the set X \ X is a hypersurface in )/(\') It can be
shown (see [6] or Lemma 1 below) that an irreducible C-uniruled variety has
at most one non-uniruled component at infinity. Hence we have

COROLLARY 1. An irreducible affine variety with two non-uniruled com-
ponents at infinity has the strong cancellation property. =

An irreducible affine variety with one non-uniruled component at infinity
may not have the strong cancellation property, since we have an isomorphism
(WxC)xC> ((z,v),2) — ((x,2),y) € (W x C) x C. However, if we add

the unirationality assumption, we have

THEOREM 2. Let X be an affine variety of dimension n > 1. Suppose
that X is unirational and has a non-uniruled component at infinity. Then X
has the strong cancellation property.

REMARK. It is well known that affine curves have the cancellation prop-
erty. Furthermore, every affine curve not isomorphic to C has the strong
cancellation property.

Recall that an n-dimensional algebraic variety X is unirational if there
exists a rational dominant mapping f : P --» X.
We will use the following corollary from Hironaka’s Theorem [2]| (see

also [4]):

LEMMA 1. Let X be a smooth irreducible algebraic variety with a smooth
compactification X such that X \ X is a hypersurface in X. Let Y be an
affine variety with a compactification Y and let f: X — Y be a regular,
dominant and generically-finite mapping. Then the number of non-uniruled
components of the variety Y \ Y is not greater than the number of non-
uniruled components of the variety X \ X.

In particular, if affine varieties X, Y are smooth and isomorphic then
the numbers of non-uniruled components of the varieties X \ X and Y \Y
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are equal, where )?, Y are smooth compactifications of X and Y respec-
tively.

Proof. The idea of this proof is due to Z. Jelonek [4]. Applying Hironaka’s
Theorem to the rational mapping f : X --» Y we obtain a mapping o :
B — )?, which is a composition of a sequence of blowing-ups along smooth
centers such that the mapping foo : B — Y is regular on B. An elementary
property of a blowing-up is that the exceptional divisor E of o (i.e. E is a

hypersurface in B such that dimo(E) < dim E and o : B\ E — X \ o(E) is
an isomorphism) is uniruled. Because XA/\Y C cl(f()?\X)) U(foo)(E), each
non-uniruled component of ?\Y is dominated by a non-uniruled component
of X \ X. This concludes the proof. m

Proof of Theorem 2. Let f :' Y x C"™ — X x C™ be an isomorphism
and 7x : X xC" — X, 7y : Y x C"™ — Y denote the projections.
For each unirational variety H properly contained in Y and each affine
subspace L. C C™ such that dim H 4+ dim L = n, the mapping wx o f :
H x L — X is not dominant. Indeed, if d = dim H then we have a dominant
mapping fi : P? --» H which is regular on an open set D in P?. Hence we
have the regular mapping mx o fo(f; xid) : D x L — X which by Lemma 1
cannot be dominant (since (P4 x L)\ (D x L) is uniruled, where L is the
projective closure of L).

Observe that X dominates Y and hence Y is unirational. Indeed, for
y € Y we can find a polynomial mapping p : X — C™ whose graph meets
f({y} x C™) at some isolated points (if X C CV then p is, for example,
the restriction to X of a suitable affine mapping CV — C™). Therefore the
mapping X 3 z +— 7y (f~}(x,p(z))) € Y has a component of dimension zero
in the fiber over y and hence is dominant.

Let g : P® --» Y be a dominant rational mapping. It is easy to see that
there exists a non-empty Zariski-open subset U of Y such that g : g~ *(U) — U
is a proper mapping and a local biholomorphism. Observe that for each vari-
ety V. C Y and a € VNU there exists a unirational variety H C Y such that
dim H + dim V = n and H intersects V isolatedly at a. Indeed, we can find
an (n — dim V')-dimensional subspace H' of P" such that H' N g~'(a) # 0
and H' meets g~1(V) isolatedly at each point from H’'Ng~!(a). The variety
H = g(H') fulfils our conditions.

To prove the theorem it is enough to show that f~! is vertical over all
points from 7x (f(U x C™)). Suppose that there exists z € mx(f(U x C™))
such that the dimension of 7y (W) is positive, where W = f~1({z} x C™).
Let 7 : W — C™ be the projection. Three cases are possible:

CASE 1: 7 is dominant. It is easy to see that we can choose a line L in C™
such that 7= (L) = L'UT, where L' is an irreducible curve, L'N(U xC™) # (),
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Tisclosed, L' ¢ T and dim7y (L) = 1. Let a € (L'\T)N(U xC™) and H be
a unirational hypersurface in Y which intersects my (L) isolatedly at 7y (a).
Hence {a} is a component of (H x L) N W. This means that the mapping
wx o f: H X L — X has in the fiber over x a component of dimension zero
so it is dominant; a contradiction.

CASE 2: S = (W) has dimension s < m and a fiber of 7 over a generic
point of S has the dimension strictly smaller than n. Choose z € S such
that dim7~1(2) = m — s and my (7~ 1(2)) NU # . For a € my (7~ 1(2)) NU
let H be an (n —m + s)-dimensional unirational subvariety of Y intersecting
my (7 ~1(z)) isolatedly at a. Moreover, choose an (m — s)-dimensional affine
subspace L C C™ such that {z} is a component of L N S. We come to a
contradiction as in Case 1, since (H x L) N W has components of dimension
Zero.

CASE 3: All fibers of 7 : W — 7(W) have dimension n. Take a € Y
such that dim(my|w )~ (a) = m — n. Since W is isomorphic to C™ we can
find a variety C C W which is isomorphic to C" and (7y|w) '(a) N C
has dimension zero. Thus the projection 7y : C — Y is dominant. This
contradicts Lemma 1 because Y dominates X.

The proof is complete. »

COROLLARY 2. Two stably equivalent hypersurfaces in C™ are equivalent
if one of them is non-uniruled. w

COROLLARY 3. Let X C C™ be a hypersurface which has only non-
uniruled components. If Y C C" is a hypersurface such that for some m € N
the cylinders (C"\ X) x C™ and (C"\Y) x C™ are isomorphic then X,Y
are equivalent.

Proof. By Theorem 3 we have an induced isomorphism f : C"\ X —
C™\ Y. By Lemma 1 the varieties X and Y have the same number of non-
uniruled components. Using Hironaka’s Theorem we can extend f to a reg-
ular mapping f C"\ Z — C", where Z C C™ has codimension at least 2
(compare the proof of Lemma 2). Once again we can extend fvto a regular
mapping f C™ — C™. Obviously f does not have exceptional divisors so by
the Zariski Main Theorem (see [8, 9]), f : C" — f((C") is an isomorphism.
Moreover f(C") is Zariski-open in C" and dim(C™\ f(C")) < n—2 (because
on f((C”) each invertible regular function is constant). Hence ffl is regular
on C". Obviously f(X) =Y.
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