ANNALES
POLONICI MATHEMATICI
87 (2005)

On families of trajectories of an analytic
gradient vector field
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To the memory of Professor Stanistaw fojasiewicz

Abstract. For an analytic function f : R",0 — R,0 having a critical point at the
origin, we describe the topological properties of the partition of the family of trajectories of
the gradient equation = V f(z) attracted by the origin, given by characteristic exponents
and asymptotic critical values.

1. Introduction. Let f : R", 0 — R,0 be an analytic function defined
in a neighbourhood of the origin, having a critical point at 0. We consider
the trajectories of the gradient vector field & = V f(z). Take y > 0 such
that —y is a regular value of f. One can show that there exists a closed
set I' C f~!(—y) such that a non-trivial trajectory of the gradient field is
attracted by the origin if and only if it intersects f~!(—y) transversally at a
point belonging to I'. Thus one may equip the set of non-trivial trajectories
attracted by 0 with the topology induced from I'.

By [18], the Cech-Alexander cohomology groups H*(I") are isomorphic to
the cohomology groups H*(F,) of the real Milnor fibre F, = {z € f~!(—y) |
|x| < d}, where 0 < y < d < 1. A more general version concerning analytic
functions on manifold is presented in [19].

By [8], if n = 3 and f is harmonic then I" may be stratified.

Kurdyka et al. [11], in the course of proving Thom’s conjecture, showed
in particular that to each trajectory attracted by 0 (and so to each point
in I') one may associate an element of a finite subset L' C Q" x R_. This
way we obtain a natural partition

r=J raoa).
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100 A. Dzedzej and Z. Szafraniec

In Q" x R_ we may introduce the lexicographic order, so we may enumer-
ate the elements of L according to this order: L' = {(l1,a1), ..., (}j,a;),...,
(Is, as)}.

We will show that

7 s
F(ll,al) c---C UF(lj,aj) c---C UF(lj,aj) =TI
j=1 j=1
is a filtration of I" by closed sets, and that there are regular values 0 < 21 <
- <z < -+ < zg of the distance function |z| restricted to the Milnor
fibre F, such that each inclusion

U, a) —{xeFy || <2}
j=1

induces isomorphism of Cech—Alexander cohomology groups. Hence one may
apply techniques of differential topology to investigate the topology of the
partition {I'(l;,a;)} of the set of trajectories attracted by the origin.

Among the references we list several papers [2-7, 9, 10, 12, 13, 15, 17,
20-22| devoted to geometric and topological properties of solutions of the
gradient equation.

2. Preliminaries. Let f:R"”,0 — R,0 be an analytic function defined
in a neighbourhood of the origin, having a critical point at 0. We consider
the gradient V f of f. We will denote by z() a trajectory of this vector field,
that is, a curve satisfying

(t) =V f(x(t))-

It is easy to see that 4 f(x(t)) > O unless x(t) is constant, that is, f is
increasing along the trajectory x(t). For x with f(x) < 0 and sufficiently
close to the origin, we denote by 7, the set of points on the trajectory pass-
ing through z belonging to {y | f(y) > f(z)}. Denote by w(z) € f~1(0)
either the intersection point of 7, and f~1(0) or the limit point of the tra-
jectory if it tends to f~1(0). It is well known that w is a strong deformation
retraction.

There is a neighbourhood Uy of the origin, 0 < ¢ < 1 and ¢,, ¢y > 0 such
that

(2.1) IVf(@)] 2 cof f(2)]%,
(2.2) |z [V ()] = ¢l f ()],

for © € Up. Inequality (2.1) is due to Lojasiewicz (see [14]), and (2.2) is
known as the Bochnak—t.ojasiewicz inequality (see [1]). In particular as a
consequence of (2.1) we have Vf~1(0) C f~1(0).



Trajectories of an analytic gradient vector field 101

The gradient V f(z) splits into its radial component g—{(:n)i and the

]

spherical one V'f(z) = Vf(z) — g—{(x)i We shall denote z/|x| by 0/0r

||

and Of/0r by O, f. We will also often write r instead of |z|. Then
0
Vf=V'f+0f
or
and
IVI? = IV + 10,12,

Now let y,d be such that 0 < y < d < 1, and —y € R is a regular value
of f. We call the set F,, = {z | |z| < d, f(z) = —y} the real Milnor fibre
of f. It is either an (n — 1)-dimensional compact manifold with boundary or
an empty set (see [16]). If f(z) < —y and 0 € 7, then 7, N f~(~y) # 0,
because the function is increasing along the trajectory. The intersection is
transversal and consists exactly of one point. This justifies

DEFINITION. ['={r € F, |0€7,} ={x € F, | w(z) = 0}.

Nowel and the second-named author showed that each trajectory at-
tracted by the origin intersects Fj, at a point in I" and the topology of the
set I" is related to the topology of the Milnor fibre. We have (see [18])

THEOREM 1. The inclusion I' — F, induces an isomorphism
H*(I') ~ H*(Fy),

where H* denotes the Cech-Alezander cohomology groups.

3. Invariants associated with trajectories. In order to say more
about the topology of the set I, we need some notions introduced in [11].
For € > 0 define

We={z| f(x) #0, elV'f] < |0-fl}.
Kurdyka et al. have defined the characteristic exponents, which are charac-

terised by the following proposition ([11, Proposition 4.2]).

PROPOSITION 2. There ezists a finite subset of positive rationals L C Q%
such that for any sequence W€ > x — 0 there is a subsequence W¢ > 2’ — 0
and | € L such that

/ /
10.S)
f)
In particular, as a germ at the origin, each W¢ is the disjoint union
we = Jwr,
leL
where 5
Wy = {x e we _\x]fo — z‘ < |x|5},
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for 6 > 0 sufficiently small. Moreover, there exist constants 0 < c. < C,
which depend on e, such that

c: <—<C. onW.

Fix [ > 0, not necessarily in L, and consider F' = f/|z|' defined in the
complement of the origin. We say that a € R is an asymptotic critical value
of F' at the origin if there exists a sequence x — 0, x # 0, such that

(a) || [VF ()] — 0,
(b) F(z) — a.
By [11, Propositions 5.1 and 5.4] we have

PROPOSITION 3. The set of asymptotic critical values of F = f/|x|' is
finite. The real number a # 0 is an asymptotic critical value if and only if
there exists a sequence x — 0, x # 0, such that

, Vi@l
@) o7 "
(b) F(z) — a.

By the above proposition, the set
L'={(l,a) |l € L,a < 0 is an asymptotic critical value of f/|z|'}

is a finite subset of QT x R_. For a given characteristic exponent [ € L there
can be more than one asymptotic critical value a. By Section 6 of [11] we
have

THEOREM 4. For every trajectory z(t) — 0 of the gradient vector field
there exists a unique pair (I,a) € L' such that ril(:v(t)) — a.

4. Partition of the set of trajectories

DEFINITION. There is a natural partition of I' associated with L’
Namely for (I,a) € L',
I'(l,a) = {x e I'| f(x(t))/|z(t)]' = a on the trajectory 7,}.
DEFINITION. In the set QT x R_ we may introduce the lexicographic

order
(l,a) < (I';d') ifl<l',orl=1and a<d.

It is obvious that (I,a) < (I',a’) if and only if a|z|' < a’|z|" near the origin.
We enumerate the elements of L’ according to this order.

Let (-, -) denote the standard inner product in R™. We have the following
LEMMA 5. If (I,a) € (Q" x R_) \ L’ then

(V(f = alz|)(2), V f(x)) > 0
for z € (f —alz[")~(0) \ {0} near 0.
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Proof. Suppose, contrary to our claim, that there is a sequence x — 0,
x # 0, such that f(z) — alz|' = 0 and

(43) 0> (V(f —al2l), Vf)
— 2 _ -1 ﬁ / 2
= V12 = (talel ™ LV 40 )
= V5P~ tar 0. f =951 - Loy

Using (2.2) we have
USHORf) = IV 12 2 el FIIV I

Hence

(4.4) LIviI <1041,

which means that € W¢/!, By Proposition 2, there are I! € L and a
subsequence x’ such that

|x/|87’f _ l/

All 2/ lie in V[/l(,:f/l, hence

f
c< ‘x/’l’

<C,

where ¢ = ¢,/ and C = C., ;. Since f(z') = alz’|', I = I' is a characteristic
exponent.

We shall now prove that a is an asymptotic critical value. Let us transform
the inequality (4.3):

Lf 0-f? Lf
> ! r2 2 ) — ! r12 2 o )
Hence
ik Lf
4. < |1-— .
(45) ’arf‘g N ro f
Since

rO, f |$,|8rf($,)
= S —
f f&")
the right-hand side of the inequality (4.5) tends to 0. So does the left-hand
side and we have

V'f]
|0 f]

By Proposition 3, a is an asymptotic critical value of f/r!. m

(z') - 0 and (@) =a

|2/
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Take (I,a) € QT x R_\ L' and y > 0 close to 0 such that —y is a regular

value of f. Define
O(l,a) = F, n{f —alz|' <0} = F, n{ja| < (y/(—a))"/"}.
We will show a relation between the cohomologies of ©(l,a) and
F(lbay= |J TI(ia), where (lj,a;) € L',
(li,ai)<(l,a)

THEOREM 6. For every (I,a) € QT x R_\ L' and every y > 0 small

enough, I'(l,a) is closed, and there is an inclusion

I(l,a) — 6(l,a),
which induces an isomorphism
H*(I'(1,a)) = H*(0(1,q)).
LEMMA 7. For every e > 0 there exists n = n(e) > 0 such that if || <n
then for every point y on 7, between x and w(x) we have |y| < e.

Proof. For a € 7, denote by ¢(z,a) the length of the trajectory between
x and a. From the Lojasiewicz inequality (2.1) it follows (see [11]) that for
x close to the origin

Uz, a) < (1= o) [If (@) = | (@)1,
As a — w(x) we get
Uz, w(@)) < co(1 = o) f ()78 = c1l f(2)]' 72
By continuity of f there exists 7, 0 < n < /2, such that for |z| <7,
(o, w(@)) < el f(@)] 72 < /2
That is, for 2/ between z and w(zx),
2| < |z| + £(z,2") < g+ % —cm

Define A< = {z | —y < f(z) < alz['} and A= = {z | —y < f(2) = alz['}.
If y is small enough then A< is bounded by A— and ©(l,a). By Corollary 6,
A— and O(l, a) intersect transversally.

If € O(l,a) then Vf(x) is normal to ©(l,a) and points into A<. If
x € A\ {0} then V(f — a|z|') is normal to A_ and points away from A<.

We consider a mapping v : ©(l,a) — A— such that y(z) is the point of
intersection of the trajectory 7, with the set A— or v(z) = w(z) = 0if 7,
does not intersect A—.

LEMMA 8. v is well defined, and v~1(0) = I'(l,a).

Proof. Consider trajectories starting from @(l, a). Some of them will stay
in the set A< and others will leave it forever. (A trajectory cannot get back to
A<, because for a point x € A_\ {0} we have (V(f — alz|')(z), Vf(x)) > 0.
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The angle between the gradients V(f —al|z|")(z) and V f(z) is less than /2,
so the trajectory passing through z leaves A<.)

Consider a trajectory 7, which stays in A<. By the Lojasiewicz inequality
(2.1), Vf does not vanish on A<\ {0}. Hence z(t) — 0, i.e. y(z) = w(z) =0
and z € I'. That is, we proved ~ is well defined. By Theorem 4 there is
(liya;) € L' such that f(z(t))/|z(t)|" — a;.

The trajectory stays inside A<, so

f(z(t) = alz() < 0.

For every € > 0, if x(t) is sufficiently close to the origin we have
(a; = ()] < f@(t)) < ala ()]
Therefore I; <l or l; =1 and a; — € < a for every € > 0. Hence
(li7 a’i) < (l7 a)‘

Since (I,a) € L', (li;a;) < (1,a).

Now consider a trajectory 7, which leaves A<, i.e. y(x) # 0. Then for ¢
large enough we have f(z(t)) > alz(t)|". If 7, starts from I, then z(t) — 0
and there is (I;,a;) € L' such that f(z(t))/|z(t)|" — a;. For every € > 0,

(ai +&)|z()|" > f(z(t)) > alz(t)]
if z(t) is sufficiently close to the origin. Applying similar arguments to the
above we have (l;,a;) > (I, a). Similarly for a trajectory which starts from I"

outside ©(l,a): it cannot enter the set A< and hence (/;,a;) corresponding
to that trajectory is greater than (I,a). =

LEMMA 9. ~ is continuous, and ~y restricted to O(1,a)\ I'(l,a) is a hom-

eomorphism onto Im~ \ {0} = A_\ {0}. In particular, I'(l,a) is compact.

Proof. Consider x € O(l,a) such that y(z) # 0. Then 7, is transversal
to ©(l,a) at = and to A= at y(z), therefore  is a Poincaré mapping in some
neighbourhood of x. Hence « is a local homeomorphism at z.

Now take x such that y(x) = 0. Then 7, C A< and 0 € 7. Fix an e > 0.
There is 2’ € 7, such that |2/| < n/2, where n = n(g) comes from Lemma 7.
Now consider a neighbourhood V' of 2 of diameter 7/2 contained in A<.
Reversing trajectories we get an open neighbourhood W C ©(l,a) of x such
that |[y(y)| <eforye W. m

LEMMA 10. For every open neighbourhood U of I'(1,a) in O(1,a), v(U)
is an open neighbourhood of 0 in Im~y = A_.

Proof. Rewrite the proof of Lemma 9 in [18] substituting ©(l,a) for F,
and Im~ for Z,. »

Proof of Theorem 6. The inclusion f(l, a) € O(l,a) follows from the fact
that I'(l,a) = v~1(0) as stated in Lemma 8.
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In order to prove that the inclusion induces an isomorphism of Cech-
Alexander cohomology groups, we will construct a descending family ©(1, a)
=U; D Uy D -+ of open neighbourhoods of I'(l, a) in ©(l, a), which satisfies

(ul) every inclusion U,41 C U, is a homotopy equivalence,
(u2) for every neighbourhood U of I'(l,a) in ©(l,a) there is n such that
U,CU.
The set Iny = A— = {z | f = alz|’, |z| < (y/(—a))'/*}, for y small enough,
is homeomorphic to a cone with vertex at 0, so there is a descending family
A_ =V, D Vo D -+ of open neighbourhoods of 0 in A— such that every
inclusion is a homotopy equivalence and for every open neighbourhood V
of 0 in A_ there is n such that V;, C V. We put U, = v~ (V;,). Clearly
{U,} is a family of open neighbourhoods of I'(l,a) in (1, a). The mapping
~ restricted to ©(1,a)\I'(,a) is a homeomorphism onto A—\ {0}, hence (ul)
holds. If U is an open neighbourhood of f(l, a) then by Lemma 10, v(U) is
an open neighbourhood of 0. There is n such that V,, C v(U); then U,, C U,
o (u2) holds.
As the family {U,} is cofinal in the family of all open neighbourhoods of
I'(I,a) in O(1,a) ordered by D, we have an isomorphism of direct limits
lim 7*(U) = lim H*(Uy) = H*(I'(l,a)).
U Un
Since H*(Uy,) =2 H*(O(l,a)) by (ul), the theorem holds. m

For given | € Q* and y, (y/(—a))"/* is a regular value of |2]|F, , for almost
all a € R_. In that case ©(l,a) is either void or a compact (n — 1)-manifold
with boundary.

PROPOSITION 11. For each (I,a) € (QT x R_)\ L' and each y > 0 small
enough, z = (y/(—a))/* is a regular value for 2|\, and the inclusion

Fa)= |J I'(ia)— Fn{zl <z}
(li,ai)<(l,a)

induces an isomorphism of Cech—Alezander cohomology groups.

Proof. Consider the set of critical values of |x]|Fy For a given y we have
finitely many critical values wi(y),...,w,(y). We can treat w;(y) as a real
function. The graph of w; is a subanalytic set. Since it lies in the plane,
it is semianalytic. Hence we can write the Puiseux expansion for each wj;
(see [14]):

wi(y) =by" +---  (b>0,me Q).
We will show that (1/m, —b~/™) e L.

By the curve selection lemma we can choose a curve £(r) of critical points

corresponding to w;. We parametrize the curve by the distance to the origin.
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Put y(r) = —f(&(r)). That is, £(r) € F, () is a critical point of ’:E“F(y(r))
such that

(4.6) r=18(r)] = wi(y(r)) = bly(r)™ +---

We can also write a Puiseux expansion of f along this curve,

flE@r) =—art+--- (a>0,q€Qy).

Thus

(4.7) y(r) = oard 4 -

By (4.7) and (4.6) we get

(4.8) r=blar))™ 4 .. = ba™r?™ 4 ...
along the curve (7). Hence ¢gm = 1 and ba™ = 1. That is,
(4.9) FE(r)) = =b~Ympl/m 4.

The curve (r) consists of critical points of |z|f, , and therefore on £(r)
we have |[V'f| =0, |Vf| = |0,f]. For every e > 0 we have ¢|V'f| < |0,f],
and that means the curve ¢ lies in every W€, so there exists a characteristic
exponent !’ such that £ lies in Wj.

Since f(£(r))/[€(r)|Y™ — —b=1/™ it follows that I’ = 1/m € L by the
last statement of Proposition 2. By Proposition 3, —b~ /™ is the correspond-
ing asymptotic critical value for f/r'/™. In particular, (1/m,—b""™) e L.
Assume that (1, a) ¢ L'. If y is small enough, then (y/(—a))/! = (—a)~V/iy!/!
is different from any w;(y). Hence it is a regular value for |z|f, .

Now it is enough to apply Theorem 7. u

The proof above gives us even more:
THEOREM 12. Let f : R™, 0 — R,0 be an analytic function defined in a
neighbourhood of the origin, having a critical point at 0. For each y small

enough there is a finite sequence 0 < z1 < -+ < z; < -+ < zg of reqular
values of |z||r, such that
% s
F(ll,al) c---C UF(lj,aj) c---C UF(lj,aj) =T
J=1 J=1
1s a filtration of I' by closed sets, and the inclusions

U W, a) = {z € Fy | 2] < =}
j=1

nduce isomorphisms of Cech—Alezander cohomology groups. One can take
zi = (y/(—a)'', where (i, a;) < (I,a) < (lix1, @ir1)-

Proof. Let s be the cardinality of L. As we have seen in the proof of
Corollary 11, if (I,a) & L' then (y/(—a))"/" is a regular value of |||, Since
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L' is totally ordered by the lexicographic ordering, for every ¢ we can choose
a pair (/,a) such that

(li;ai) < (I, a) < (lit1, aiy1),
where (Is11,as11) is greater than any pair in L'. Set z(y) = (y/(—a))"/!.
One can easily see that z; < z;41 and z;(y) # w;(y) for sufficiently small y.

_ By Proposition 11, the vertical inclusions induce isomorphisms of the
Cech—Alexander cohomology groups. m

The above theorem shows that applying well known methods of differ-
ential topology and Morse theory to the distance function |z| on the Milnor
fibre may provide important information about the topology of families of
trajectories of an analytic gradient vector field with given characteristic ex-
ponent and asymptotic critical value.
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