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On families of traje
tories of an analyti
gradient ve
tor �eldby Adam Dzedzej and Zbigniew Szafraniec (Gda«sk)To the memory of Professor Stanisªaw �ojasiewi
zAbstra
t. For an analyti
 fun
tion f : Rn, 0 → R, 0 having a 
riti
al point at theorigin, we des
ribe the topologi
al properties of the partition of the family of traje
tories ofthe gradient equation ẋ = ∇f(x) attra
ted by the origin, given by 
hara
teristi
 exponentsand asymptoti
 
riti
al values.1. Introdu
tion. Let f : Rn, 0 → R, 0 be an analyti
 fun
tion de�nedin a neighbourhood of the origin, having a 
riti
al point at 0. We 
onsiderthe traje
tories of the gradient ve
tor �eld ẋ = ∇f(x). Take y > 0 su
hthat −y is a regular value of f . One 
an show that there exists a 
losedset Γ ⊂ f−1(−y) su
h that a non-trivial traje
tory of the gradient �eld isattra
ted by the origin if and only if it interse
ts f−1(−y) transversally at apoint belonging to Γ . Thus one may equip the set of non-trivial traje
toriesattra
ted by 0 with the topology indu
ed from Γ .By [18℄, the �e
h�Alexander 
ohomology groups Ȟ∗(Γ ) are isomorphi
 tothe 
ohomology groups H∗(Fy) of the real Milnor �bre Fy = {x ∈ f−1(−y) |
|x| ≤ d}, where 0 < y ≪ d ≪ 1. A more general version 
on
erning analyti
fun
tions on manifold is presented in [19℄.By [8℄, if n = 3 and f is harmoni
 then Γ may be strati�ed.Kurdyka et al. [11℄, in the 
ourse of proving Thom's 
onje
ture, showedin parti
ular that to ea
h traje
tory attra
ted by 0 (and so to ea
h pointin Γ ) one may asso
iate an element of a �nite subset L′ ⊂ Q+ × R−. Thisway we obtain a natural partition

Γ =
⋃

(l,a)∈L′

Γ (l, a).
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In Q+×R− we may introdu
e the lexi
ographi
 order, so we may enumer-ate the elements of L′ a

ording to this order: L′ = {(l1, a1), . . . , (lj, aj), . . . ,
(ls, as)}.We will show that

Γ (l1, a1) ⊂ · · · ⊂
i⋃

j=1

Γ (lj , aj) ⊂ · · · ⊂
s⋃

j=1

Γ (lj , aj) = Γis a �ltration of Γ by 
losed sets, and that there are regular values 0 < z1 <
· · · < zi < · · · < zs of the distan
e fun
tion |x| restri
ted to the Milnor�bre Fy su
h that ea
h in
lusion

i⋃

j=1

Γ (lj , aj) →֒ {x ∈ Fy | |x| ≤ zi}

indu
es isomorphism of �e
h�Alexander 
ohomology groups. Hen
e one mayapply te
hniques of di�erential topology to investigate the topology of thepartition {Γ (li, ai)} of the set of traje
tories attra
ted by the origin.Among the referen
es we list several papers [2�7, 9, 10, 12, 13, 15, 17,20�22℄ devoted to geometri
 and topologi
al properties of solutions of thegradient equation.2. Preliminaries. Let f : Rn, 0 → R, 0 be an analyti
 fun
tion de�nedin a neighbourhood of the origin, having a 
riti
al point at 0. We 
onsiderthe gradient ∇f of f . We will denote by x(t) a traje
tory of this ve
tor �eld,that is, a 
urve satisfying
ẋ(t) = ∇f(x(t)).It is easy to see that d

dtf(x(t)) > 0 unless x(t) is 
onstant, that is, f isin
reasing along the traje
tory x(t). For x with f(x) ≤ 0 and su�
iently
lose to the origin, we denote by τx the set of points on the traje
tory pass-ing through x belonging to {y | f(y) ≥ f(x)}. Denote by ω(x) ∈ f−1(0)either the interse
tion point of τx and f−1(0) or the limit point of the tra-je
tory if it tends to f−1(0). It is well known that ω is a strong deformationretra
tion.There is a neighbourhood U0 of the origin, 0 < ̺ < 1 and c̺, cf > 0 su
hthat
|∇f(x)| ≥ c̺|f(x)|̺,(2.1)
|x| |∇f(x)| ≥ cf |f(x)|,(2.2)for x ∈ U0. Inequality (2.1) is due to �ojasiewi
z (see [14℄), and (2.2) isknown as the Bo
hnak��ojasiewi
z inequality (see [1℄). In parti
ular as a
onsequen
e of (2.1) we have ∇f−1(0) ⊆ f−1(0).



Traje
tories of an analyti
 gradient ve
tor �eld 101The gradient ∇f(x) splits into its radial 
omponent ∂f
∂r (x) x

|x| and thespheri
al one ∇′f(x) = ∇f(x) − ∂f
∂r (x) x

|x| . We shall denote x/|x| by ∂/∂rand ∂f/∂r by ∂rf . We will also often write r instead of |x|. Then
∇f = ∇′f + ∂rf

∂

∂rand
|∇f |2 = |∇′f |2 + |∂rf |

2.Now let y, d be su
h that 0 < y ≪ d ≪ 1, and −y ∈ R is a regular valueof f . We 
all the set Fy = {x | |x| ≤ d, f(x) = −y} the real Milnor �breof f . It is either an (n− 1)-dimensional 
ompa
t manifold with boundary oran empty set (see [16℄). If f(x) ≤ −y and 0 ∈ τx then τx ∩ f−1(−y) 6= ∅,be
ause the fun
tion is in
reasing along the traje
tory. The interse
tion istransversal and 
onsists exa
tly of one point. This justi�es
Definition. Γ = {x ∈ Fy | 0 ∈ τx} = {x ∈ Fy | ω(x) = 0}.Nowel and the se
ond-named author showed that ea
h traje
tory at-tra
ted by the origin interse
ts Fy at a point in Γ and the topology of theset Γ is related to the topology of the Milnor �bre. We have (see [18℄)Theorem 1. The in
lusion Γ →֒ Fy indu
es an isomorphism

Ȟ∗(Γ ) ≃ H∗(Fy),where Ȟ∗ denotes the �e
h�Alexander 
ohomology groups.3. Invariants asso
iated with traje
tories. In order to say moreabout the topology of the set Γ , we need some notions introdu
ed in [11℄.For ε > 0 de�ne
W ε = {x | f(x) 6= 0, ε|∇′f | ≤ |∂rf |}.Kurdyka et al. have de�ned the 
hara
teristi
 exponents, whi
h are 
hara
-terised by the following proposition ([11, Proposition 4.2℄).Proposition 2. There exists a �nite subset of positive rationals L ⊂ Q+su
h that for any sequen
e W ε ∋ x → 0 there is a subsequen
e W ε ∋ x′ → 0and l ∈ L su
h that

|x′|∂rf(x′)

f(x′)
→ l.In parti
ular , as a germ at the origin, ea
h W ε is the disjoint union

W ε =
⋃

l∈L

W ε
l ,where

W ε
l =

{
x ∈ W ε

∣∣∣∣
∣∣∣∣
|x|∂rf

f
− l

∣∣∣∣ ≤ |x|δ
}

,
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for δ > 0 su�
iently small. Moreover , there exist 
onstants 0 < cε < Cε,whi
h depend on ε, su
h that
cε ≤

|f |

|x|l
≤ Cε on W ε

l .Fix l > 0, not ne
essarily in L, and 
onsider F = f/|x|l de�ned in the
omplement of the origin. We say that a ∈ R is an asymptoti
 
riti
al valueof F at the origin if there exists a sequen
e x → 0, x 6= 0, su
h that
|x| |∇F (x)| → 0,(a)

F (x) → a.(b) By [11, Propositions 5.1 and 5.4℄ we haveProposition 3. The set of asymptoti
 
riti
al values of F = f/|x|l is�nite. The real number a 6= 0 is an asymptoti
 
riti
al value if and only ifthere exists a sequen
e x → 0, x 6= 0, su
h that
|∇′f(x)|

|∂rf(x)|
→ 0,(a′)

F (x) → a.(b) By the above proposition, the set
L′ = {(l, a) | l ∈ L, a < 0 is an asymptoti
 
riti
al value of f/|x|l}is a �nite subset of Q+×R−. For a given 
hara
teristi
 exponent l ∈ L there
an be more than one asymptoti
 
riti
al value a. By Se
tion 6 of [11℄ wehaveTheorem 4. For every traje
tory x(t) → 0 of the gradient ve
tor �eldthere exists a unique pair (l, a) ∈ L′ su
h that f

rl (x(t)) → a.4. Partition of the set of traje
tories
Definition. There is a natural partition of Γ asso
iated with L′.Namely for (l, a) ∈ L′,

Γ (l, a) = {x ∈ Γ | f(x(t))/|x(t)|l → a on the traje
tory τx}.

Definition. In the set Q+ × R− we may introdu
e the lexi
ographi
order
(l, a) ≤ (l′, a′) if l < l′, or l = l′ and a ≤ a′.It is obvious that (l, a) ≤ (l′, a′) if and only if a|x|l ≤ a′|x|l

′ near the origin.We enumerate the elements of L′ a

ording to this order.Let 〈·, ·〉 denote the standard inner produ
t in Rn. We have the followingLemma 5. If (l, a) ∈ (Q+ × R−) \ L′ then
〈∇(f − a|x|l)(x),∇f(x)〉 > 0for x ∈ (f − a|x|l)−1(0) \ {0} near 0.



Traje
tories of an analyti
 gradient ve
tor �eld 103Proof. Suppose, 
ontrary to our 
laim, that there is a sequen
e x → 0,
x 6= 0, su
h that f(x) − a|x|l = 0 and

0 ≥ 〈∇(f − a|x|l),∇f〉(4.3)
= |∇f |2 −

〈
la|x|l−1 ∂

∂r
,∇′f + ∂rf

∂

∂r

〉

= |∇f |2 − larl−1∂rf = |∇f |2 −
lf

r
∂rf.Using (2.2) we have

l|f | |∂rf | ≥ r|∇f |2 ≥ cf |f | |∇f |.Hen
e(4.4) cf

l
|∇f | ≤ |∂rf |,whi
h means that x ∈ W cf /l. By Proposition 2, there are l′ ∈ L and asubsequen
e x′ su
h that
|x′|∂rf

f
→ l′.All x′ lie in W

cf /l
l′ , hen
e

c ≤
f

|x′|l′
≤ C,where c = ccf /l and C = Ccf /l. Sin
e f(x′) = a|x′|l, l = l′ is a 
hara
teristi
exponent.We shall now prove that a is an asymptoti
 
riti
al value. Let us transformthe inequality (4.3):

0 ≥ |∇′f |2 + |∂rf |
2 −

lf

r

|∂rf |
2

∂rf
= |∇′f |2 + |∂rf |

2

(
1 −

lf

r∂rf

)
.Hen
e(4.5) |∇′f |2

|∂rf |2
≤

∣∣∣∣1 −
lf

r∂rf

∣∣∣∣.Sin
e
r∂rf

f
=

|x′|∂rf(x′)

f(x′)
→ l′ = l,the right-hand side of the inequality (4.5) tends to 0. So does the left-handside and we have

|∇′f |

|∂rf |
(x′) → 0 and f(x′)

|x′|l
= a.By Proposition 3, a is an asymptoti
 
riti
al value of f/rl.
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Take (l, a) ∈ Q+ ×R− \L′ and y > 0 
lose to 0 su
h that −y is a regularvalue of f . De�ne
Θ(l, a) = Fy ∩ {f − a|x|l ≤ 0} = Fy ∩ {|x| ≤ (y/(−a))1/l}.We will show a relation between the 
ohomologies of Θ(l, a) and

Γ̃ (l, a) =
⋃

(li,ai)<(l,a)

Γ (li, ai), where (li, ai) ∈ L′.

Theorem 6. For every (l, a) ∈ Q+ × R− \ L′ and every y > 0 smallenough, Γ̃ (l, a) is 
losed , and there is an in
lusion
Γ̃ (l, a) →֒ Θ(l, a),whi
h indu
es an isomorphism

Ȟ∗(Γ̃ (l, a)) ∼= H∗ (Θ(l, a)) .Lemma 7. For every ε > 0 there exists η = η(ε) > 0 su
h that if |x| < ηthen for every point y on τx between x and ω(x) we have |y| < ε.Proof. For a ∈ τx denote by ℓ(x, a) the length of the traje
tory between
x and a. From the �ojasiewi
z inequality (2.1) it follows (see [11℄) that for
x 
lose to the origin

ℓ(x, a) ≤ c̺(1 − ̺)−1[|f(x)|1−̺ − |f(a)|1−̺].As a → ω(x) we get
ℓ(x, ω(x)) ≤ c̺(1 − ̺)−1|f(x)|1−̺ = c1|f(x)|1−̺.By 
ontinuity of f there exists η, 0 < η < ε/2, su
h that for |x| < η,

ℓ(x, ω(x)) ≤ c1|f(x)|1−̺ < ε/2.That is, for x′ between x and ω(x),
|x′| ≤ |x| + ℓ(x, x′) <

ε

2
+

ε

2
= ε.De�ne A≤ = {x | −y ≤ f(x) ≤ a|x|l} and A= = {x | −y ≤ f(x) = a|x|l}.If y is small enough then A≤ is bounded by A= and Θ(l, a). By Corollary 6,

A= and Θ(l, a) interse
t transversally.If x ∈ Θ(l, a) then ∇f(x) is normal to Θ(l, a) and points into A≤. If
x ∈ A= \ {0} then ∇(f − a|x|l) is normal to A= and points away from A≤.We 
onsider a mapping γ : Θ(l, a) → A= su
h that γ(x) is the point ofinterse
tion of the traje
tory τx with the set A= or γ(x) = ω(x) = 0 if τxdoes not interse
t A=.Lemma 8. γ is well de�ned , and γ−1(0) = Γ̃ (l, a).Proof. Consider traje
tories starting from Θ(l, a). Some of them will stayin the set A≤ and others will leave it forever. (A traje
tory 
annot get ba
k to
A≤, be
ause for a point x ∈ A= \ {0} we have 〈∇(f − a|x|l)(x),∇f(x)〉 > 0.



Traje
tories of an analyti
 gradient ve
tor �eld 105The angle between the gradients ∇(f −a|x|l)(x) and ∇f(x) is less than π/2,so the traje
tory passing through x leaves A≤.)Consider a traje
tory τx whi
h stays in A≤. By the �ojasiewi
z inequality(2.1), ∇f does not vanish on A≤ \{0}. Hen
e x(t) → 0, i.e. γ(x) = ω(x) = 0and x ∈ Γ . That is, we proved γ is well de�ned. By Theorem 4 there is
(li, ai) ∈ L′ su
h that f(x(t))/|x(t)|li → ai.The traje
tory stays inside A≤, so

f(x(t)) − a|x(t)|l ≤ 0.For every ε > 0, if x(t) is su�
iently 
lose to the origin we have
(ai − ε)|x(t)|li < f(x(t)) ≤ a|x(t)|l.Therefore li < l or li = l and ai − ε < a for every ε > 0. Hen
e

(li, ai) ≤ (l, a).Sin
e (l, a) 6∈ L′, (li, ai) < (l, a).Now 
onsider a traje
tory τx whi
h leaves A≤, i.e. γ(x) 6= 0. Then for tlarge enough we have f(x(t)) > a|x(t)|l. If τx starts from Γ , then x(t) → 0and there is (li, ai) ∈ L′ su
h that f(x(t))/|x(t)|li → ai. For every ε > 0,
(ai + ε)|x(t)|li > f(x(t)) > a|x(t)|lif x(t) is su�
iently 
lose to the origin. Applying similar arguments to theabove we have (li, ai) > (l, a). Similarly for a traje
tory whi
h starts from Γoutside Θ(l, a): it 
annot enter the set A≤ and hen
e (li, ai) 
orrespondingto that traje
tory is greater than (l, a).Lemma 9. γ is 
ontinuous, and γ restri
ted to Θ(l, a)\ Γ̃ (l, a) is a hom-eomorphism onto Im γ \ {0} = A= \ {0}. In parti
ular , Γ̃ (l, a) is 
ompa
t.Proof. Consider x ∈ Θ(l, a) su
h that γ(x) 6= 0. Then τx is transversalto Θ(l, a) at x and to A= at γ(x), therefore γ is a Poin
aré mapping in someneighbourhood of x. Hen
e γ is a lo
al homeomorphism at x.Now take x su
h that γ(x) = 0. Then τx ⊂ A≤ and 0 ∈ τx. Fix an ε > 0.There is x′ ∈ τx su
h that |x′| < η/2, where η = η(ε) 
omes from Lemma 7.Now 
onsider a neighbourhood V of x′ of diameter η/2 
ontained in A≤.Reversing traje
tories we get an open neighbourhood W ⊂ Θ(l, a) of x su
hthat |γ(y)| < ε for y ∈ W .Lemma 10. For every open neighbourhood U of Γ̃ (l, a) in Θ(l, a), γ(U)is an open neighbourhood of 0 in Im γ = A=.Proof. Rewrite the proof of Lemma 9 in [18℄ substituting Θ(l, a) for Frand Im γ for Zr.Proof of Theorem 6. The in
lusion Γ̃ (l, a) ⊆ Θ(l, a) follows from the fa
tthat Γ̃ (l, a) = γ−1(0) as stated in Lemma 8.
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In order to prove that the in
lusion indu
es an isomorphism of �e
h�Alexander 
ohomology groups, we will 
onstru
t a des
ending family Θ(l, a)

= U1 ⊃ U2 ⊃ · · · of open neighbourhoods of Γ̃ (l, a) in Θ(l, a), whi
h satis�es(u1) every in
lusion Un+1 ⊂ Un is a homotopy equivalen
e,(u2) for every neighbourhood U of Γ̃ (l, a) in Θ(l, a) there is n su
h that
Un ⊂ U .The set Im γ = A= = {x | f = a|x|l, |x| ≤ (y/(−a))1/l}, for y small enough,is homeomorphi
 to a 
one with vertex at 0, so there is a des
ending family

A= = V1 ⊃ V2 ⊃ · · · of open neighbourhoods of 0 in A= su
h that everyin
lusion is a homotopy equivalen
e and for every open neighbourhood Vof 0 in A= there is n su
h that Vn ⊂ V . We put Un = γ−1(Vn). Clearly
{Un} is a family of open neighbourhoods of Γ̃ (l, a) in Θ(l, a). The mapping
γ restri
ted to Θ(l, a)\Γ̃ (l, a) is a homeomorphism onto A=\{0}, hen
e (u1)holds. If U is an open neighbourhood of Γ̃ (l, a) then by Lemma 10, γ(U) isan open neighbourhood of 0. There is n su
h that Vn ⊂ γ(U); then Un ⊂ U ,so (u2) holds.As the family {Un} is 
o�nal in the family of all open neighbourhoods of
Γ̃ (l, a) in Θ(l, a) ordered by ⊇, we have an isomorphism of dire
t limits

lim
−→
U

H∗(U) ∼= lim
−→
Un

H∗(Un) = Ȟ∗(Γ̃ (l, a)).Sin
e H∗(Un) ∼= H∗(Θ(l, a)) by (u1), the theorem holds.For given l ∈ Q+ and y, (y/(−a))1/l is a regular value of |x||Fy
, for almostall a ∈ R−. In that 
ase Θ(l, a) is either void or a 
ompa
t (n− 1)-manifoldwith boundary.Proposition 11. For ea
h (l, a) ∈ (Q+×R−)\L′ and ea
h y > 0 smallenough, z = (y/(−a))1/l is a regular value for |x||Fy

and the in
lusion
Γ̃ (l, a) =

⋃

(li,ai)<(l,a)

Γ (li, ai) →֒ Fy ∩ {|x| ≤ z}

indu
es an isomorphism of �e
h�Alexander 
ohomology groups.Proof. Consider the set of 
riti
al values of |x||Fy
. For a given y we have�nitely many 
riti
al values w1(y), . . . , wp(y). We 
an treat wj(y) as a realfun
tion. The graph of wj is a subanalyti
 set. Sin
e it lies in the plane,it is semianalyti
. Hen
e we 
an write the Puiseux expansion for ea
h wj(see [14℄):

wj(y) = bym + · · · (b > 0, m ∈ Q+).We will show that (1/m,−b−1/m) ∈ L′.By the 
urve sele
tion lemma we 
an 
hoose a 
urve ξ(r) of 
riti
al points
orresponding to wj . We parametrize the 
urve by the distan
e to the origin.
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tories of an analyti
 gradient ve
tor �eld 107Put y(r) = −f(ξ(r)). That is, ξ(r) ∈ Fy(r) is a 
riti
al point of |x||F (y(r))su
h that(4.6) r = |ξ(r)| = wj(y(r)) = b(y(r))m + · · · .We 
an also write a Puiseux expansion of f along this 
urve,
f(ξ(r)) = −αrq + · · · (α > 0, q ∈ Q+).Thus(4.7) y(r) = αrq + · · ·By (4.7) and (4.6) we get(4.8) r = b(αrq)m + · · · = bαmrqm + · · ·along the 
urve ξ(r). Hen
e qm = 1 and bαm = 1. That is,(4.9) f(ξ(r)) = −b−1/mr1/m + · · · .The 
urve ξ(r) 
onsists of 
riti
al points of |x||Fy(r)

and therefore on ξ(r)we have |∇′f | ≡ 0, |∇f | = |∂rf |. For every ε > 0 we have ε|∇′f | < |∂rf |,and that means the 
urve ξ lies in every W ε, so there exists a 
hara
teristi
exponent l′ su
h that ξ lies in W ε
l′ .Sin
e f(ξ(r))/|ξ(r)|1/m → −b−1/m, it follows that l′ = 1/m ∈ L by thelast statement of Proposition 2. By Proposition 3, −b−1/m is the 
orrespond-ing asymptoti
 
riti
al value for f/r1/m. In parti
ular, (1/m,−b−1/m) ∈ L′.Assume that (l, a) 6∈ L′. If y is small enough, then (y/(−a))1/l = (−a)−1/ly1/lis di�erent from any wj(y). Hen
e it is a regular value for |x||Fy

.Now it is enough to apply Theorem 7.The proof above gives us even more:Theorem 12. Let f : Rn, 0 → R, 0 be an analyti
 fun
tion de�ned in aneighbourhood of the origin, having a 
riti
al point at 0. For ea
h y smallenough there is a �nite sequen
e 0 < z1 < · · · < zi < · · · < zs of regularvalues of |x||Fy
su
h that

Γ (l1, a1) ⊂ · · · ⊂
i⋃

j=1

Γ (lj , aj) ⊂ · · · ⊂
s⋃

j=1

Γ (lj , aj) = Γis a �ltration of Γ by 
losed sets, and the in
lusions
i⋃

j=1

Γ (lj , aj) →֒ {x ∈ Fy | |x| ≤ zi}indu
e isomorphisms of �e
h�Alexander 
ohomology groups. One 
an take
zi = (y/(−a))1/l, where (li, ai) < (l, a) < (li+1, ai+1).Proof. Let s be the 
ardinality of L′. As we have seen in the proof ofCorollary 11, if (l, a) 6∈ L′ then (y/(−a))1/l is a regular value of |x||Fy

. Sin
e
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L′ is totally ordered by the lexi
ographi
 ordering, for every i we 
an 
hoosea pair (l, a) su
h that

(li, ai) < (l, a) < (li+1, ai+1),where (ls+1, as+1) is greater than any pair in L′. Set zi(y) = (y/(−a))1/l.One 
an easily see that zi < zi+1 and zi(y) 6= wj(y) for su�
iently small y.By Proposition 11, the verti
al in
lusions indu
e isomorphisms of the�e
h�Alexander 
ohomology groups.The above theorem shows that applying well known methods of di�er-ential topology and Morse theory to the distan
e fun
tion |x| on the Milnor�bre may provide important information about the topology of families oftraje
tories of an analyti
 gradient ve
tor �eld with given 
hara
teristi
 ex-ponent and asymptoti
 
riti
al value.A
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