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The �ojasiewiz gradient inequalityin a neighbourhood of the �breby Janusz Gwoździewicz (Kiele) and Stanisław Spodzieja (�ód¹)Abstrat. Some estimates of the �ojasiewiz gradient exponent at in�nity near any�bre of a polynomial in two variables are given. An important point in the proofs is a newCharzy«ski�Kozªowski�Smale estimate of ritial values of a polynomial in one variable.
1. Introdution. In this paper, e�etive estimates relating to the �o-jasiewiz gradient inequality at in�nity for polynomials in two variables aregiven. To ahieve them, we prove an estimate for ritial values of a poly-nomial in one variable (Theorem 2.1), whih is a version of the Charzy«ski�Kozªowski [2℄ and Smale [24℄ theorems. Namely, if P : C → C is a polynomialof degree d > 1, ϕ1, . . . , ϕd ∈ C and ξ1, . . . , ξd−1 ∈ C are all roots of P andof its derivative P ′, respetively, and a is the leading oe�ient of P , then

min
1≤k≤d−1

|P (ξk)| ≤ 4|a|−1/(d−1)[ min
1≤i≤d

|P ′(ϕi)|]
d/(d−1).The �rst result (Theorem 3.1) on the �ojasiewiz inequality is the fol-lowing generalisation of the Bohnak��ojasiewiz inequality ([1, Lemma 2℄,[25, Theorem 1℄); for a polynomial f : C

n → C, there exist C, ε > 0 suhthat
|f(z)| ≤ ε ⇒ |z| |grad f(z)| ≥ C|f(z)|,where | · | is a norm in C

n.From the above two inequalities, we obtain an estimate of the �oja-siewiz gradient exponent in a neighbourhood of the bifuration �bre of apolynomial. By de�nition, the �ojasiewiz exponent at in�nity L∞(F |X) ofa polynomial mapping F : C
n → C

m on an unbounded set X ⊂ C
n is the2000 Mathematis Subjet Classi�ation: 14E05, 14R25, 30C15.Key words and phrases: polynomial, �ojasiewiz inequality, bifuration point.Researh of J. Gwo¹dziewiz was partially supported by KBN Grant 2 PO3A 015 22.Researh of S. Spodzieja was partially supported by KBN Grant 2 PO3A 007 18.[151℄



152 J. Gwo¹dziewiz and S. Spodziejabest exponent ν in the inequality
|F (z)| ≥ C|z|ν as z ∈ X, z → ∞,for some onstant C > 0. In the ase F = grad f , where f is a polynomialin two variables, and X = {z ∈ C

2 : |f(z)| < ε} is a neighbourhood of
f−1(0), L∞(grad f |X) is equal to the exponent L∞,0(f) onsidered by Ha[8℄ and by Ch¡dzy«ski and Krasi«ski [5℄, provided ε > 0 is su�iently loseto 0. It is shown in Theorem 4.2 and Corollary 6.1 (f. [8, Theorem 1.3.2℄,[12, Theorem 3.1℄) that if 0 ∈ C is a bifuration point of f at in�nity (seeSetion 6), and d = deg f > 2, then for any neighbourhood X of f−1(0),(∗) L∞(grad f |X) ≤ −1 −

1

d− 2or equivalently
L∞(f, grad f) < 0.Estimate (∗) is sharp as regards the degree of f (see Remark 6.3). In par-tiular, we obtain the following result of Gwo¹dziewiz and Pªoski (see [7,Theorem 5.2℄): if the bifuration set of f at in�nity is nonempty, then

L∞(grad f) ≤ −1 − 1/(d− 2) (Corollary 6.2).Theorem 4.2 gives a sharper version of the Malgrange ondition (ondi-tion (m) in [15℄), namely the inequality
|z|α|grad f(z)| ≥ η as z → ∞ and f(z) → 0does not depend on the hoie of α suh that 0 ≤ α < 1+1/(d− 2) (Propo-sition 5.1).In Theorem 7.5 we prove the following separation ondition of grad f and

f (introdued by Pªoski and Tworzewski in [20℄, see also [25℄):(PT) |f(z)| ≤ ε ⇒ |grad f(z)| ≥ C|f(z)|qfor some C, ε, q > 0. Moreover one an take q = (d − 1)2. In the generalase, i.e. f : C
n → C, n > 2, ondition (PT) may not be satis�ed (see [25,Remark 2℄ and [21, Remark 9.1℄). The desription of polynomials for whih(PT) holds is given in Remark 7.6.2. The Charzy«ski�Kozªowski�Smale Theorem. In this setion wegive a version of the Charzy«ski�Kozªowski (see [2, Theorem 3℄) and Smale(see [24, p. 33℄) Theorem.Theorem 2.1. Let P : C → C be a polynomial of degree d > 1, and let

ϕ1, . . . , ϕd ∈ C and ξ1, . . . , ξd−1 ∈ C be all roots of P and P ′, respetively.Then(1) min
1≤k≤d−1

|P (ξk)| ≤ 4min
i6=j

|ϕi − ϕj | |P
′(ϕi)|.



�ojasiewiz gradient inequality 153In partiular ,(2) min
1≤k≤d−1

|P (ξk)| ≤ 4|a|−1/(d−1)[ min
1≤i≤d

|P ′(ϕi)|]
d/(d−1),where a ∈ C is the leading oe�ient of P .Proof. If A ⊂ C and b ∈ C, we put A − b = {a − b : a ∈ A} and

bA = {ab : a ∈ A}. For a ∈ C and r > 0, we denote by D(a, r) the dis withentre at a and radius r.Let
R = min

1≤k≤d−1
|P (ξk)|.It su�es to onsider the ase R > 0. Then obviously ϕi 6= ϕj for i 6= j.Let G = P−1(D(0, R)). Sine P |G : G → D(0, R) has no ritial values,it is a d-sheeted overing. As D(0, R) is a simply onneted domain, G =

G1 ∪ · · · ∪Gd, where G1, . . . , Gd are domains suh that P |Gi
: Gi → D(0, R)is a biholomorphism, i = 1, . . . , d. Write fi = (P |Gi

)−1 : D(0, R) → Gi. Wemay renumber fi so that ϕi = fi(0), i = 1, . . . , d. Take any i ∈ {1, . . . , d}and put
gi(w) =

1

Rf ′i(0)
[fi(wR) − ϕi], w ∈ D(0, 1).Eah gi is an injetive holomorphi funtion suh that gi(0) = 0 and g′i(0) = 1.Therefore, by the Koebe Theorem (see [10℄), D(0, 1/4) ⊂ gi(D(0, 1)). Inonsequene,

D(0, R|f ′i(0)|/4) ⊂ Rf ′i(0)gi(D(0, 1)) = fi(D(0, R)) − ϕi.Hene,
D(ϕi, R|f

′
i(0)|/4) ⊂ fi(D(0, R)) = Gi.Sine ϕj 6∈ Gi for i 6= j, by the above we have

R

4|P ′(ϕi)|
=
R|f ′i(0)|

4
≤ |ϕi − ϕj |, i 6= j.Hene (1) follows. From (1) we see that

min
1≤k≤d−1

|P (ξk)| ≤ 4|ϕi − ϕj | |P
′(ϕi)| for any j 6= i.Thus, from P ′(ϕi) = a

∏
j 6=i(ϕi − ϕj), we dedue (2).The inequality (1) annot be improved, exept for the onstant 4. Namelywe haveProposition 2.2. Let P : C → C be a polynomial of degree d > 1, andlet ϕ1, . . . , ϕd ∈ C and ξ1, . . . , ξd−1 ∈ C be all roots of P and P ′, respetively.Then(3) 2d−2

3d
min
i6=j

|ϕi − ϕj | |P
′(ϕi)| ≤ min

1≤k≤d−1
|P (ξk)|.



154 J. Gwo¹dziewiz and S. SpodziejaProof. Let r = mini6=j |ϕi −ϕj | |P
′(ϕi)|. Under the notation of the proofof Theorem 2.1, it su�es to onsider the ase R > 0. For any i ∈ {1, . . . , d},let ji ∈ {1, . . . , d} be suh that |ϕi − ϕji

| = mini6=j |ϕi − ϕj |, and let ri =
(1/2)|ϕi − ϕji

|, Mi = (3/2)d−1ri|P
′(ϕi)|. Set Di = D(ϕi, ri), i = 1, . . . , d.Then for any z ∈ Di we easily obtain

|P (z)| = |z − ϕi| |a|
∏

j 6=i

|z − ϕj | ≤
1

2
|ϕi − ϕji

| |a|
∏

j 6=i

(
3

2
|ϕi − ϕj |

)
= Mi.Hene, by [23, Ch. VII, Theorem 12.7℄,

D

(
0,
r2i |P

′(ϕi)|
2

6Mi

)
⊂ P (Di), i = 1, . . . , d.For any i ∈ {1, . . . , d}, from the de�nition of r, ri and Mi, we have

2d−2

3d
r ≤

r2i |P
′(ϕi)|

2

6Mi
.In onsequene for r̃ = 2d−2r/3d, we obtain D(0, r̃) ⊂ P (Di), i = 1, . . . , d.Sine Di ∩ Dj = ∅ for i 6= j, for any w ∈ D(0, r̃) we have #P−1(w) = d.Summing up, P has no ritial values in D(0, r̃), so R ≥ r̃ and we get (3).Remark 2.3. From Theorem 2.1 and Proposition 2.2, it is easy to provethe Kuo and Lu formula for the �ojasiewiz gradient exponent of a holomor-phi funtion at zero [11℄ and the Ha formula for the �ojasiewiz gradientexponent at in�nity of a polynomial [8℄ as is shown in [26℄.3. The �ojasiewiz gradient inequality. Let f : C

n → C be a poly-nomial in z1, . . . , zn and let grad f = (∂f/∂z1, . . . , ∂f/∂zn) : C
n → C

n. Wewill prove the following version of the Bohnak��ojasiewiz inequality [1℄(f. the main result of [25℄).Theorem 3.1. Let f : C
n → C be a polynomial. Then there exist C, ε > 0suh that

|f(z)| ≤ ε ⇒ |z| |grad f(z)| ≥ C|f(z)|.We begin with a de�nition. A urve ϕ : (r,∞) → R
k, r ∈ R, is alledmeromorphi at ∞ if ϕ is the sum of a Laurent series of the form

ϕ(t) = αpt
p + αp−1t

p−1 + · · · , αi ∈ R
k, p ∈ Z.If ϕ 6= 0, then we may assume that αp 6= 0. Then the number p is alled thedegree of ϕ and denoted by degϕ. Additionally we put deg 0 = −∞.Proof of Theorem 3.1. As in [25℄, we use Hörmander's method. The �o-jasiewiz inequality does not depend on a partiular norm in C

n, so we shalluse the Eulidean norm ‖ · ‖. Assume to the ontrary that for any ε > 0there exists z ∈ C
n suh that |f(z)| ≤ ε and ‖grad f(z)‖‖z‖ < ε|f(z)|. Then



�ojasiewiz gradient inequality 155there exists z0 ∈ C ∪ {∞} suh that (z0, 0) is an aumulation point of thesemi-algebrai set
X = {(z, ε) ∈ C

n × R : ε > 0 ∧ |f(z)| ≤ ε ∧ ‖z‖ ‖grad f(z)‖ < ε|f(z)|}.Thus, by the Curve Seletion Lemma ([13, Lemma 3.1℄), there exists a urve
ψ = (ϕ,ϕn+1) : (r,∞) → X meromorphi at ∞, suh that limt→∞ ψ(t) =
(z0, 0). Hene, degϕn+1 < 0. By the de�nition of X we have

deg((grad f) ◦ ϕ) + degϕ ≤ degϕn+1 + deg f ◦ ϕ < deg f ◦ ϕand deg f ◦ ϕ 6= 0. This is impossible, beause, for ϕ = (ϕ1, . . . , ϕn), we get
deg f ◦ ϕ = 1 + deg(f ◦ ϕ)′ = 1 + deg

( n∑

i=1

∂f

∂zi
(ϕ)ϕ′

i

)

≤ deg((grad f) ◦ ϕ) + degϕ.Remark 3.2. From Theorem 3.1 we easily obtain the analogous �o-jasiewiz inequality for a real polynomial f : R
n → R.

4. The �ojasiewiz exponent of the gradient. Let us start fromthe preise de�nition of the �ojasiewiz exponent. Let F : C
2 → C

m be apolynomial mapping, and let X ⊂ C
2 be an unbounded set. Put

N(F |X) := {ν ∈ R : ∃A,B>0 ∀z∈X (|z| ≥ B ⇒ A|z|ν ≤ |F (z)|)}.By the �ojasiewiz exponent at in�nity of F on X we mean L∞(F |X) =
supN(F |X) if N(F |S) 6=∅, and L∞(F |X)=−∞ if N(F |X)=∅. If X=C

2,we write L∞(F ) and all it the �ojasiewiz exponent at in�nity of F .Let U ⊂ C be a neighbourhood of in�nity, i.e. the omplement of aompat set. Analogously to the real ase, a mapping h : U → C
m is alledmeromorphi at in�nity if h is the sum of a Laurent series of the form

h(t) = αpt
p + αp−1t

p−1 + · · · , t ∈ U, αi ∈ C
m, p ∈ Z.If m = 1, then h is alled a funtion meromorphi at in�nity.Throughout the remainder of this setion, let f : C

2 → C be a polynomialin z = (x, y), and let d = deg f ≥ 2. Let V = {z ∈ C
2 : f(z) = 0} and

Vx =

{
z ∈ C

2 :
∂f

∂x
(z) = 0

}
, Vy =

{
z ∈ C

2 :
∂f

∂y
(z) = 0

}
.If deg f = degy f then, by the Puiseux Theorem at in�nity (see [3, Lem-mas 4.1 and 4.2℄), there exist N ∈ Z, N > 0, a ∈ C, and funtions

ϕ1, . . . , ϕd, ξ1, . . . , ξd−1 : U → C meromorphi at in�nity suh that(4) f(tN , y) = a
d∏

i=1

(y − ϕi(t)),
∂f

∂y
(tN , y) = ad

d−1∏

k=1

(y − ξk(t)).



156 J. Gwo¹dziewiz and S. SpodziejaFrom (2) in Theorem 2.1 we immediately obtain (f. [5, Theorem 3.3℄).Proposition 4.1. Under the above assumptions,
L∞(f |Vy) ≤

d

d− 1
L∞(grad f |V ).Proof. It is easy to see that

L∞(f |Vy) =
1

N
min

1≤k≤d−1
deg f(tN , ξk(t))and

1

N
min

1≤i≤d
deg

∂f

∂y
(tN , ϕi(t)) ≤ L∞(grad f |V ).Hene and from (2) in Theorem 2.1 the assertion follows.Let us state a generalisation of the Ha Theorem (f. [8, Theorem 1.3.2℄,[12, Theorem 3.1℄, [5, Corollary 3.5℄).Theorem 4.2. For every polynomial f : C

2 → C with d = deg f > 2,the following onditions are equivalent :(i) L∞(f, grad f) < 0,(ii) L∞(f, grad f) ≤ −1/(d− 2),(iii) L∞(grad f |X) ≤ −1− 1/(d− 2) for any X = {z ∈ C
2 : |f(z)| < ε},where ε > 0.Proof. The impliation (iii)⇒(i) follows from Theorem 3.1, and (ii)⇒(i)is trivial.Assume (i). We prove (ii) and (iii). Sine L∞(grad f) and L∞(f, grad f)do not depend on the hoie of the oordinate system, after a linear hangeof oordinates one an assume that deg f = degx f = degy f . Moreoverone an assume that f has no multiple fators and (4) holds. Take any

X = {z ∈ C
2 : |f(z)| < ε}, where ε > 0. By [4, Theorem 1℄ and (i),

min

{
L∞(grad f |V ), L∞

((
f,
∂f

∂x

) ∣∣∣∣Vy

)
, L∞

((
f,
∂f

∂y

) ∣∣∣∣Vx

)}

= L∞(f, grad f) < 0.If L∞(grad f |V ) = L∞(f, grad f), then, by Proposition 4.1, L∞(f |Vy)
< 0. So, by [7, Theorem 2.9℄,(5) L∞(f |Vy) ≤ −

1

d− 2
.Moreover, there exists k0 ∈ {1, . . . , d−1} suh that (1/N) deg f(tN , ξk0

(t)) =
L∞(f |Vy), and, for some R ≥ r, Y = {(tN , ξk0

(t)) ∈ C
2 : |t| ≥ R1/N} is an



�ojasiewiz gradient inequality 157unbounded subset of Vy ∩X. Therefore,
L∞(grad f |Y ) =

1

N
deg

∂f

∂x
(tN , ξk0

(t)) ≤ −1 +
1

N
deg f(tN , ξk0

(t))(6)
= −1 + L∞(f |Vy),and (5) gives (ii) in this ase. Moreover, by (6),

L∞(grad f |X) ≤ L∞(grad f |Y ) ≤ −1 −
1

d− 2
.This gives (iii) in this ase.If L∞(f, ∂f

∂x |Vy) = L∞(f, grad f), then L∞(f |Vy) < 0 and as above wededue (ii) and (iii).If L∞(f, ∂f
∂y |Vx) = L∞(f, grad f), then, by exhanging the roles of xand y, from the seond ase we obtain (ii) and (iii) in this ase. This endsthe proof.Remark 4.3. The omitted ase deg f ≤ 2 in Theorem 4.2 is not essential.Indeed, for deg f = 1, the gradient of f is a onstant mapping. For deg f = 2,either f is a square funtion of a linear polynomial or L∞(grad f) > 0.From the proof of Theorem 4.2 we obtain the following version of Theo-rem 3.4 in [5℄.Corollary 4.4. If L∞(f, grad f) < 0, then

L∞(grad f |X) = L∞(f, grad f) − 1,where X = {z ∈ C
2 : |f(z)| < ε} and ε > 0 is su�iently lose to 0.Proof. By Theorem 3.1 we have L∞(grad f |X) ≥ L∞(f, grad f) − 1. Asin the proof of Theorem 4.2 we dedue L∞(grad f |X) ≤ L∞(f, grad f)−1.Remark 4.5. We de�ne

l(f) =
1

N
min
i6=j

(
deg(ϕi(t) − ϕj(t)) + deg

∂f

∂y
(tN , ϕi(t))

)
.Then, by Theorem 2.1, we obtain L∞(f |Vy) = l(f) and L∞(grad f |Vy) ≤

l(f) − 1, so
L∞((f, grad f)|Vy) = l(f)(f. [7, B.2℄, [5, Proposition 2.3℄, [22, Proposition 2℄). If L∞(f, grad f) < 0,then by [5, Theorem 3.3℄ and Corollary 4.4,

L∞(f, grad f) = L∞(f |Vy) = l(f)(f. [8, Theorem 1.4.1℄).5. The Fedoryuk and Malgrange onditions. From Theorem 4.2 weeasily obtain the following proposition (f. [8, Theorem 1.3.2℄, [12, Theorem3.1℄).



158 J. Gwo¹dziewiz and S. SpodziejaProposition 5.1. Let f : C
2 → C be a polynomial with d = deg f > 2,and let λ ∈ C and 0 < α < 1 + 1/(d− 2). Then the following onditions areequivalent :(i) there exist η,R, ε > 0 suh that(F) |z| ≥ R ∧ |f(z) − λ| ≤ ε ⇒ |grad f(z)| ≥ η,(ii) there exist η,R, ε > 0 suh that(M) |z| ≥ R ∧ |f(z) − λ| ≤ ε ⇒ |z|α|grad f(z)| ≥ η.Conditions (F) and (M) are alled the Fedoryuk ondition (see [6℄) andthe Malgrange ondition (f. [17℄), respetively. Denote by K∞(f) the set of

λ ∈ C for whih ondition (F) fails, and by K̃∞(f) the set of λ for whih(M) with α = 1 fails.Using Proposition 5.1 and the known fat that K̃∞(f) is �nite (f. [9,Theorem 1.1℄, see also [25, Corollary 4℄) we dedue the following known fat.Corollary 5.2. If f : C
2 → C is a polynomial , then K∞(f) is �nite.6. The �ojasiewiz exponent and bifuration points. Let f :

C
n → C be a polynomial. The smallest set B(f) ⊂ C suh that f is a�bration outside B(f) is alled the bifuration set of f . The smallest set

B∞(f) ⊂ C suh that f is a �bration at in�nity outside B∞(f) is alledthe bifuration set of f at in�nity. More preisely, λ 6∈ B∞(f) if there existsa ompat H ⊂ C
n suh that f |Cn\H : C

n \ H → C is a trivial �brationover a neighbourhood U ⊂ C of λ. It is known that B∞(f) ⊂ K̃∞(f), and
B(f) ⊂ K0(f) ∪ K̃∞(f), where K0(f) is the set of ritial values of f ([15,Lemma 1.2 and Remark 1.3℄). In the ase n = 2 we have B∞(f) = K̃∞(f)([15, Theorem 1.4℄).From Theorem 4.2 we immediately obtain (f. [25, Corollary 4℄)Corollary 6.1. Let f : C

2 → C be a polynomial with d = deg f > 2.The following onditions are equivalent :(i) λ ∈ B∞(f),(ii) L∞(f − λ, grad f) < 0,(iii) L∞(f − λ, grad f) ≤ −1/(d− 2),(iv) L∞(grad f |X) ≤ −1 − 1/(d− 2) for any X = {z ∈ C
2 : |f(z) − λ|

≤ ε}, ε > 0.Proof. Sine B∞(f) = K̃∞(f), it follows that λ ∈ B∞(f) if and only ifthere exists a sequene {zm}⊂C
2 with zm →∞ suh that (f, grad f)(zm) →

(λ, 0, 0). Thus λ ∈ B∞(f) if and only if L∞(f−λ, grad f) < 0. This gives theequivalene (i)⇔(ii). The remaining equivalenes immediately follow fromTheorem 4.2.



�ojasiewiz gradient inequality 159Corollary 6.1 implies the following result Gwo¹dziewiz and Pªoski (see[7, Theorem 5.2℄):Corollary 6.2. Let f : C
2 → C be a polynomial with d = deg f > 2. If

B∞(f) 6= ∅, then L∞(grad f) ≤ −1 − 1/(d− 2).Proof. Sine B∞(f) = K̃∞(f), it follows that there exist λ ∈ C and asequene {zm} ⊂ C
2 with zm → ∞ suh that (f, grad f)(zm) → (λ, 0, 0).Thus L∞(f − λ, grad f) < 0, and by Corollary 6.1 we get the assertion.Remark 6.3. The estimate in Corollary 6.1(iv) annot be improved asregards the degree. Indeed, for the polynomial f(x, y) = yd + xyd−1 + y,

d > 2 and λ = 0 equality holds (see [5, Example 4.11(b)℄).Remark 6.4. In Theorem 4.2 and Corollary 6.1, we require no speialform of the polynomial f . Under an additional assumption on the form of f ,i.e. f(x, y) = yd+a1(x)y
d−1+· · ·+ad(x), where d = deg f > 2, one an obtainCorollary 6.1 and Theorem 4.2 from [7, Theorem 2.9℄ and [5, Theorem 3.3 andCorollary 3.5℄. Indeed, if 0 is a bifuration point of f at in�nity then one anprove that L∞(f, grad f) = L∞(f, ∂f/∂y) and L∞(f, ∂f/∂y) ≤ −1/(d− 2).Hene, we easily obtain the assertions of the above-mentioned theorems.7. Separation of the gradient. In this setion we show that in thetwo-dimensional ase the gradient of a polynomial and the polynomial areseparated. We begin with de�nitions and general properties.Let F : C

n → C
m be a polynomial mapping and let f : C

n → C be apolynomial. We say that F and f are separated at in�nity (see [20℄) if thereexist C,R > 0 and q ∈ R suh that
|f(z)| ≥ R ⇒ |F (z)| ≥ C|f(z)|q.The basi haraterisation of separation at in�nity is given in [20℄.

Proposition 7.1 ([20, Proposition 1.1℄). Let F : C
n → C

m be a poly-nomial mapping and let f : C
n → C be a polynomial. Then the followingonditions are equivalent :(i) F and f are separated at in�nity ,(ii) {0} × C 6⊂ (F, f)(Cn),(iii) there is a polynomial P : C

m × C → C suh that P (F, f) = 0 and
P |{0}×C 6= 0.We shall say that F and f are separated in a neighbourhood of the �bre

f−1(λ), where λ ∈ C, if there exist C, ε > 0 and q ∈ R suh that
|f(z) − λ| ≤ ε ⇒ |F (z)| ≥ C|f(z)|q.From Proposition 7.1, it is easy to see that the above two de�nitions ofseparation are equivalent. Namely we have



160 J. Gwo¹dziewiz and S. SpodziejaProposition 7.2. Let F : C
n → C

m be a polynomial mapping and let
f : C

n → C be a polynomial. Then the following onditions are equivalent :(i) F and f are separated at in�nity ,(ii) F and f are separated in a neighbourhood of the �bre f−1(0),(iii) F and f are separated in a neighbourhood of any �bre f−1(λ), λ ∈ C.Aording to Proposition 7.2, we shall all F and f separated if F and fare separated at in�nity or in a neighbourhood of the �bre of f .Let us pass to a separation ondition for the gradient.Proposition 7.3. Let f : C
n → C be a polynomial and let d = deg f

> 0. Then the following onditions are equivalent :(i) grad f and f are separated ,(ii) there exist R,C > 0 suh that
|f(z)| ≥ R ⇒ |grad f(z)| ≥ C|f(z)|−(d−1)n

,(iii) for any λ ∈ C, there exist C, ε > 0 suh that
|f(z) − λ| ≤ ε ⇒ |grad f(z)| ≥ C|f(z) − λ|(d−1)n

,The above proposition is a generalisation of Theorem 2 in [25℄. The proofwill be preeded by a lemma.Lemma 7.4. Let f : C
n → C be a polynomial with d = deg f > 1. If

grad f and f are separated , then there exists a polynomial P ∈ C[y1, . . . , yn, t]suh that P (grad f, f) = 0, P |{0}×C 6= 0 and degt P ≤ (d− 1)n.Proof. We shall use the method developed in [18℄ (see proof of the mainresult). Let V = (grad f, f)(Cn) ⊂ C
n ×C and k = dimV . Obviously k ≤ n.Then, by Proposition 6.1, {0} × C 6⊂ V . Without loss of generality, we mayassume that (0, 0) 6∈ V . Then there exists a linear mapping L : C

n × C →
C

k+1 suh that L|V is a proper mapping and L(0, 0) = 0 6∈ L(V ). Afteromposition of L with some linear automorphism C
k+1 → C

k+1 we mayassume that for G = L ◦ (grad f, f) we have deg gi ≤ d − 1, i = 1, . . . , k,and deg gk+1 ≤ d, where G = (g1, . . . , gk+1). Thus there exists a polynomial
P̃ : C

k+1 → C suh that L(V ) = {y ∈ C
k+1 : P̃ (y) = 0} and P̃ (0) 6= 0.It is easy to see that there exists an a�ne subspae M ⊂ C

n with
dimM = k suh that V = (grad f, f)(M), so L(V ) = G(M). In onse-quene, by the Perron Theorem ([16, Satz 57℄) there exists a nonzero poly-nomial Q ∈ C[y1, . . . , yk+1] of the form

Q =
∑

(ν1+···+νk)(d−1)+νk+1d≤(d−1)kd

cν1,...,νk+1
yν1

1 · · · yνk

k y
νk+1

k+1

suh that Q(g1, . . . , gk+1) = 0. Sine dimL(V ) = k and Q|L(V ) = P̃ |L(V ) = 0,the polynomials Q and P̃ have a ommon divisor R suh that R(G) = 0.



�ojasiewiz gradient inequality 161Moreover, by the de�nition of Q, degyk+1
R ≤ degyk+1

Q ≤ (d− 1)n. Putting
P = R ◦ L : C

n × C → C we easily get the assertion.Proof of Proposition 7.3. If d = 1, then the assertion is trivial. Assumethat d > 1.Assume that (i) holds. By Lemma 7.4 there exists a polynomial P ∈
C[y1, . . . , yn, t] suh that P (grad f, f) = 0, P{0}×C 6= 0 and degt P ≤ (d−1)n.Hene, by Lemma 3.1 in [19℄, we get (ii). By using an analogous method, weshall prove (iii). Take any λ∈C and put P̃ (y1, . . . , yn, t)=P (y1, . . . , yn, t+λ).Then P̃ (grad f, f−λ) = 0 and P̃ |{0}×C 6= 0. If P̃ (0) 6= 0, then (iii) is obvious.Assume that P̃ (0) = 0. Then P is t-regular. Thus, by the Weierstrass Prepa-ration Theorem, there exist neighbourhoods Ω = {y ∈ C

m : |y| ≤ η}, ∆ =
{t ∈ C : |t| ≤ ε}, η, ε > 0, of the origins and a distinguished pseudopolyno-mial g in t, 0 < N = degt g ≤ (d−1)n of the form g = tN +g1t

N−1+ · · ·+gN ,where gi : Ω → C are holomorphi, i = 1, . . . , N , suh that
{(y, t) ∈ Ω ×∆ : P (y, t) = 0} = {(y, t) ∈ Ω ×∆ : g(y, t) = 0}.Diminishing η and ε if neessary, we may assume that ε(d−1)n

≤ η < 1. Thenfor any |f(z)| ≤ ε, we have
|f(z)| ≤ 2 max

i=1,...,N
|gi(grad f(z))|1/i ≤ C1|grad f(z)|1/(d−1)n

for some C1 > 0. This gives (iii). The impliations (iii)⇒(i), (ii)⇒(i) areobvious.Let us give the main result of this setion.Theorem 7.5. Let f : C
2 → C be a polynomial with d = deg f > 0.Then(i) there exist C, R > 0 suh that

|f(z)| ≥ R ⇒ |grad f(z)| ≥ C|f(z)|−(d−1)2,(ii) for any λ ∈ C there exist C, ε > 0 suh that
|f(z) − λ| ≤ ε ⇒ |grad f(z)| ≥ C|f(z) − λ|(d−1)2.Proof. By [25, Theorem 2℄ and Proposition 7.2 we know that the set

K∞(f) is �nite if and only if grad f and f are separated. Then by Corol-lary 5.2 and Proposition 7.3 we obtain the assertion.Remark 7.6. As in Proposition 5.1 we may de�ne the Fedoryuk on-dition (F) for a polynomial f in several variables. In this ase the set ofvalues for whih (F) fails is also denoted by K∞(f). By [25, Theorem 2℄ andProposition 7.2 we onlude that grad f and f are separated if and only ifthe set K∞(f) is �nite.
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f : R

2 → R, grad f and f are separated.Aknowledgements. We are deeply grateful to Jaek Ch¡dzy«ski,Arkadiusz Pªoski and Tadeusz Krasi«ski for their valuable omments andadvie.
Referenes[1℄ J. Bohnak and S. �ojasiewiz,A onverse of the Kuiper�Kuo theorem, in: Pro. Liv-erpool Singularities Symposium I (1969/70), Leture Notes in Math. 192, Springer,Berlin, 1971, 254�261.[2℄ Z. Charzy«ski and A. Kozªowski, Geometry of polynomials (II), Bull. So. Si. Lett.�ód¹ 28 (1978), 1�10.[3℄ J. Ch¡dzy«ski and T. Krasi«ski, Exponent of growth of polynomial mappings of

C
2 into C

2, in: Singularities, S. �ojasiewiz (ed.), Banah Center Publ. 20, PWN,Warszawa, 1988, 147�160.[4℄ �, �, A set on whih the �ojasiewiz exponent at in�nity is attained, Ann. Polon.Math. 67 (1997), 191�197.[5℄ �, �, The gradient of a polynomial at in�nity , Kodai Math. J. 26 (2003), 317�339.[6℄ M. V. Fedoryuk, Asymptoti behaviour of the Fourier transform of the exponentialof a polynomial , Dokl. Akad. Nauk SSSR 227 (1976), 580�583 (Russian); Englishtransl.: Soviet Math. Dokl. (2) 17 (1976), 486�490.[7℄ J. Gwo¹dziewiz and A. Pªoski, Formulae for the singularities at in�nity of planealgebrai urves, Univ. Iagel. Ata Math. 39 (2001), 109�133.[8℄ H. V. Ha, Nombres de �ojasiewiz et singularités à l'in�ni des polyn�mes de deuxvariables omplexes, C. R. Aad. Si. Paris 311 (1990), 429�432.[9℄ Z. Jelonek and K. Kurdyka, On asymptoti ritial values of a omplex polynomial ,J. Reine Angew. Math. 565 (2003), 1�11.[10℄ P. Koebe, Über die Uniformisierung beliebiger analytisher Kurven, Göttinger Nahr.1907, 198�207; 1909, 68�76.[11℄ T. C. Kuo and Y. C. Lu, On analyti funtion germs of two omplex variables,Topology 16 (1977), 299�310.[12℄ T. C. Kuo and A. Parusi«ski, Newton polygon relative to an ar, in: J. W. Brueand F. Tari (eds.), Real and Complex Singularities (São Carlos, 1998), 76�93.[13℄ J. Milnor, Singular Points of Complex Hypersurfaes, Ann. of Math. Stud. 61,Prineton Univ. Press, Prineton, NJ, and Univ. of Tokyo Press, Tokyo, 1968.[14℄ D. Mumford, Algebrai Geometry I. Complex Projetive Varieties, Springer, Berlin,1976.[15℄ A. Parusi«ski, On the bifuration set of omplex polynomial with isolated singulari-ties at in�nity , Compos. Math. 97 (1995), 369�384.[16℄ O. Perron, Algebra I. Die Grundlagen, de Gruyter, Berlin, 1932.[17℄ F. Pham, La desente des ols par les onglets de Lefshetz, ave vues sur Gauss�Manin, in: Systèmes di�érentiels et singularitiés, Juin-Juillet 1983, Astérisque 130(1985), 11�47.[18℄ A. Pªoski, On the growth of proper polynomial mappings, Ann. Polon. Math. 45(1985), 297�309.[19℄ �, An inequality for polynomial mappings, Bull. Polish Aad. Si. Math. 40 (1992),265�269.



�ojasiewiz gradient inequality 163[20℄ A. Pªoski and P. Tworzewski, A separation ondition for polynomial mappings, ibid.44 (1996), 327�331.[21℄ P. J. Rabier, Ehresmann's �brations and Palais�Smale onditions for morphisms ofFinsler manifolds, Ann. of Math. 146 (1997), 647�691.[22℄ T. Rodak, The �ojasiewiz exponent of the gradient in the ring of formal powerseries, preprint, 2002; Faulty of Mathematis Univ. of �ód¹, http://www.math.uni.lodz.pl/preprints.[23℄ S. Saks and A. Zygmund, Analyti Funtions, PWN, Warszawa 1965.[24℄ S. Smale, The fundamental theorem of algebra and omplexity theory , Bull. Amer.Math. So. 4 (1981), 1�36.[25℄ S. Spodzieja, �ojasiewiz inequality at in�nity for the gradient of a polynomial , Bull.Polish Aad. Si. Math. 50 (2002), 273�281.[26℄ �, Koebe overing theorem and singularities of holomorphi funtions, in: Pro.XXIV Instrutional Conf. in Complex Analyti and Algebrai Geometry, �ód¹ Univ.Press, 2003, 45�56 (in Polish).Department of MathematisTehnial UniversityAl. Tysi¡leia Pa«stwa Polskiego 725-314 Kiele, PolandE-mail: matjg�tu.kiele.pl
Faulty of MathematisUniversity of �ód¹Banaha 2290-238 �ód¹, PolandE-mail: spodziej�imul.uni.lodz.plReçu par la Rédation le 24.5.2004Révisé le 5.10.2005 (1620)


