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Nash cohomology of smooth manifolds

by W. KucHARZ (Albuquerque, NM)

In memory of Professor Stanistaw f.ojasiewicz

Abstract. A Nash cohomology class on a compact Nash manifold is a mod 2 coho-
mology class whose Poincaré dual homology class can be represented by a Nash subset. We
find a canonical way to define Nash cohomology classes on an arbitrary compact smooth
manifold M. Then the Nash cohomology ring of M is compared to the ring of algebraic co-
homology classes on algebraic models of M. This is related to three conjectures concerning
algebraic cohomology classes.

1. Introduction. Let X be a compact nonsingular real algebraic set (in
R™ for some n). A cohomology class in H¥(X,7Z/2) is said to be algebraic
if its Poincaré dual homology class in H,.(X,Z/2) can be represented by

an algebraic subset of X. The set Hflg(X, Z/2) of all algebraic cohomology
classes in H*(X,Z/2) is a subgroup, while the direct sum H}), (X, Z/2) of the
Hflg(X, Z]2), for k > 0, forms a subring of the cohomology ring H*(X,Z/2).
The reader can find a survey of properties and applications of glg(—, 7]2)
in [6].

Each compact smooth (of class C°°) manifold M has an algebraic model,
that is, M is diffeomorphic to a nonsingular real algebraic set [19] (cf. also
[5, Theorem 14.1.10] and, for a weaker but influential result, [15]). We say
that a subset E of H*(M,Z/2) admits an algebraic realization if there ex-
ist an algebraic model X of M and a smooth diffeomorphism ¢ : X — M
such that ¢*(E) C Hy,(X,Z/2) (when E = {v} consists of one element,
we simply say that v admits an algebraic realization). If E admits an alge-
braic realization, then so does the subring of H*(M,Z/2) generated by E.
The original goal of several researchers was to show that the whole ring
H*(M,Z/2) admits an algebraic realization, that is, M has an algebraic
model X with H},(X,Z/2) = H*(X,Z/2) (such a conjecture, motivated
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by far-reaching potential applications, was explicitly stated in [1]). However,
since the publication of [4] it has been known that for some manifolds M
this is impossible.

Denote by A(M) the subring of H*(M,Z/2) generated by the Stiefel-
Whitney classes of all real vector bundles on M together with each coho-
mology class Poincaré dual to a homology class represented by a smooth
submanifold of M. A very useful and important result is that A(M) admits
an algebraic realization [20, p. 93]. Already in [4] did the following conjecture
appear.

CONJECTURE A. For any compact smooth manifold M, each subring
of H*(M,7Z/2) which admits an algebraic realization is contained in A(M)
(equivalently, H),(X,Z/2) C A(X) for any compact nonsingular real alge-
braic set X).

If dim M < 5, then [18, Théoréme I1.26] implies A(M) = H*(M,Z/2
and hence M has an algebraic model X with H} (X,Z/2) = H*(X,Z/2

In order to survey known facts in higher dimensions, let us set A*(M) =
A(MYNH*(M,Z/2) for k > 0. Note A¥(M) = H*(M,Z/2) if either k = 0, 1
or k > 3dim M, and assuming dim M < 7 also A3(M) = H3(M,Z/2) (cf.
[18, Théoréme I1.26]). For any compact nonsingular real algebraic set X,
one has Hglg(X, 7/2) C A%(X). The inclusion follows from [4] (cf. also [7]
for an elementary proof). In particular, H;‘lg(X, Z/2) C AX)ifdmX =6
or dim X = 7, which means that Conjecture A is true for all compact smooth
manifolds of dimension 6 or 7. This is nontrivial since for each m > 6, there
is a compact smooth m-dimensional manifold M with A%(M) # H?(M,7/2)
(cf. [17] and Example 2.9 below, and also [4] for m > 11), which implies that
no cohomology class in H?(M,7Z/2)\ A2(M) admits an algebraic realization.
In order to avoid a possible confusion, let us mention that [4] erroneously
asserts that A(M) = H*(M,Z/2) for dimM < 6 is a consequence of [18].
However, [18] implies such an equality only for dim M < 5.

It has recently been noticed that for each positive even integer k, there
is a compact smooth manifold M having a cohomology class in H*(M,Z/2)
not admitting an algebraic realization (cf. [12] and Example 2.9). Whether
analogous examples exist for k odd greater than 1 remains an open problem.

Conjecture A, if true, implies that A(M) is the largest subring of H*(M,
7,/2) admitting an algebraic realization.

);
).

CONJECTURE B. For any compact smooth manifold M, there is a largest
subring of H*(M,Z/2) which admits an algebraic realization.

Although Conjecture B is rather unappealing, it allows us to identify
and describe in a nice way the largest subring of H*(M,Z/2) admitting an
algebraic realization, leaving however open the possibility that this subring
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may be different from A(M). To demonstrate this we need some prepara-
tion.

By a Nash manifold we shall mean an analytic submanifold of R", for
some n, which is also a semi-algebraic subset. A Nash map between Nash
manifolds is an analytic map with semi-algebraic graph. A Nash subset of a
Nash manifold is the set of common zeros of finitely many real-valued Nash
functions. For basic properties of these objects we refer to [5].

Let N be a compact Nash manifold. An element of H*(N,Z/2) is said to
be a Nash cohomology class if its Poincaré dual homology class can be repre-
sented by a Nash subset of N. The set HI]\CIash(N’ 7./2) of all Nash cohomology
classes in H*(N,Z/2) is a subgroup, while the direct sum Hy, (N,Z/2) of
the HE_ , (N,Z/2) with k > 0 forms a subring of H*(N,Z/2) (see Lemma
2.2). Clearly,

(Xv Z/2) - Hf\}ash(Xv Z/2)

for any compact nonsingular real algebraic set X.

Given a compact smooth manifold M, choose a Nash manifold NV and a
smooth diffeomorphism ¢ : M — N. One readily checks that the subring
¥ (Hi o, (N, Z/2)) of H*(M,7Z/2), henceforth denoted HY,y, (M, Z/2), does
not depend on the choice of N and 1) (see Proposition 2.3). Observe that
each subring of H*(M,Z/2) admitting an algebraic realization is contained
in H{, ., (M,Z/2). In particular,

A(M) € Hyasn (M, Z/2).

CONJECTURE C. For any compact smooth manifold M, the subring
H{,,(M,Z/2) of H*(M,Z/2) admits an algebraic realization (equivalently,
M has an algebraic model X with H} (X,7Z/2) = HY,y,(X,Z/2)).

alg

In Section 2 we prove some results which seem to support Conjecture C
(see Theorems 2.5 and 2.7, Proposition 2.8, Example 2.9). However, there
are only two nontrivial cases in which we can actually prove Conjecture C,
namely for all compact smooth manifolds of dimension 6 or 7 (Corollary 1.3).

Obviously, Conjecture A implies Conjecture B, and Conjecture C implies
Conjecture B. Other relationships between the conjectures under considera-
tion are described in Propositions 1.1. and 1.2, whose proofs are contained
in Section 3.

Given a smooth manifold M, we set M = (M x {0})U(M x {1}); thus M
is simply a disjoint union of two copies of M. The unit circle will be denoted
by St.

PROPOSITION 1.1. Let M be a compact smooth manifold. If Conjecture
B is true for either M x S' or M, then Conjecture C is true for M.

*
alg

In Section 3 we show that the full strength of Conjecture B is not needed
in Proposition 1.1. To prove that Conjecture C is true for M it suffices to
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assume that M x S (resp. M) has what we call property H' (resp. H°),
see Definition 3.1. This refinement is introduced with the hope that property
H', i = 0,1, will be easier to verify directly, thereby leading to a proof of
Conjecture C.

PROPOSITION 1.2. Let M be a compact smooth manifold. If Conjecture A
is true for either M xS* or M, then A(M) = H}, (M, Z/2) and Conjectures
A and C are true for M.

An interesting consequence of Proposition 1.2 is the following result.

COROLLARY 1.3. For all compact smooth manifolds M of dimension 6
or 7, one has A(M) = HY,,,(M,Z/2). In particular, Conjecture C is true
for such manifolds.

Proof. As we already demonstrated above, Conjecture A is true for all
compact smooth manifolds M of dimension 6 or 7. Thus it is true for M,
and hence Proposition 1.2 implies Corollary 1.3. =

In Section 2 we will prove Corollary 1.3 in a more direct way.

It is clear that given a compact smooth manifold M, Conjecture C is
true for M if and only if it is true for each connected component of M.
Whether an analogous statement is true for Conjecture A or Conjecture B
is not obvious. We only have the following weaker result.

COROLLARY 1.4. Let M be a compact smooth manifold and let M, ..., M,
be the connected components of M.

(i) If Congecture A (resp. Conjecture B) is true for M, then it is true
for each M; with 1 <i <r.

(ii) If Conjecture A (resp. Conjecture B) is true for each M; x S' with
1 <4 <r, then it is true for M.

Proof. (i) is obvious, while (ii) follows from Proposition 1.2 for Conjec-
ture A and from Proposition 1.1 for Conjecture B. u

In conclusion, we have the following diagram:

Conjecture A — Conjecture B

) 0

A(—) = H{,4,(—Z/2) = Conjecture C

in which each implication ¢ = ¥ should be understood as follows: if @ is
true for all compact smooth manifolds, then ¥ is true for such manifolds.
Furthermore, if one of the conjectures under consideration is true for all
connected compact smooth manifolds, then it is true for all compact smooth
manifolds.
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2. Nash cohomology. Let N be a compact Nash manifold. Each d-
dimensional Nash subset V' of N (being an analytic subset) carries a unique
fundamental homology class in Hy(V,Z/2), denoted here by [V] (cf. [9];
since V is compact, we use the singular homology instead of the Borel—
Moore homology used in [9]). We write [V]y for the image of [V] under
the homomorphism Hy(V,Z/2) — Hy(N,Z/2) induced by the inclusion
map V — N. Each element of Hy(N,Z/2) of the form [V]y, for some
d-dimensional Nash subset V' of N, is said to be a Nash homology class.
Since [V]ny = [Vi]n + -+ + [V;]n, where Vi,...,V, are the irreducible com-
ponents of V of dimension d, it follows that the set HY*"(N, Z/2) of all Nash
homology classes in Hy(N,Z/2) is a subgroup. Elements of the subgroup

H{on(N, 2/2) = D' (Hy™"(N, Z,/2))
of H°(N,Z/2), where ¢ +d = dim N and
Dy : H(N,Z/2) — Hy(N,Z/2)
is the Poincaré duality isomorphism, are called Nash cohomology classes. We
set
Hltlash(]\c Z/Q) = @ Hl%ash(Nﬂ Z/Q)
c>0

LEMMA 2.1. Let f: L — N be a continuous map between compact Nash

manifolds. Then

J*(Hasn(N; 2/2)) © Hyaon (L, Z/2).

Proof. Let v be an element of HY, (N,Z/2)). Then Dy(v) = [V]n for
some Nash subset V' of N. Let S be a stratification of V satisfying Whitney’s
condition (a) (cf. [5] or [13]) and let g : L — N be a smooth map homotopic
to f and transverse to S, that is, transverse to each stratum of S. The set of
all smooth maps from L into IV transverse to S is open and dense in the space
of all smooth maps (Whitney’s condition (a) guarantees the openness, cf. [11,
Proposition 3.6]). There is a Nash map h : L — N arbitrarily close to g, and
hence homotopic to f. In particular, f* = hA* in cohomology. Furthermore,
we may assume that h is transverse to S. Thus

f*(v) =r*(v) = D (W (V)]o),
where the last equality is a consequence of |9, Proposition 2.15]. Hence f*(v)
belongs to HY, gy, (L,Z/2) and the proof is complete. m

LEMMA 2.2. For any compact Nash manifold N, the set H{, 4 (N,Z/2)
is a subring of the cohomology ring H*(N,7Z/2).

Proof. We only have to show that HY,  (N,Z/2) is closed under cup
product U. One readily sees that if v; and vy are in HY, (N,Z/2), then the

cross product vy X vy is in HY, (N X N,Z/2). Since vi Uvy = A*(v1 X v3),
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where A : N — N x N is the diagonal map, Lemma 2.1 implies that v1 U vy
belongs to H{, 4 (N,Z/2). =

We can define the Nash cohomology of an arbitrary compact smooth
manifold M. To this end, choose a Nash manifold N and a smooth diffeo-
morphism ¢ : M — N, and set

Hlslash(M7 Z/Q) = w*(Hﬁlash(N7 Z/Q)),
Hltlash<M7 Z/Q) = @(Hﬁlash(Ma Z/Q))
c>0
PROPOSITION 2.3. With notation as above, HY, (M,Z/2) does not de-
pend on the choice of N and 1. Moreover, HY,, (M,Z/2) is a subring of
the cohomology ring H*(M,7Z/2).
Proof. Let L be another Nash manifold and let # : M — L be a smooth
diffeomorphism. Then o = ¢ 0 §~! : L — N is a smooth diffeomorphism. In
view of Lemma 2.1,

0" (Hyash (N, 2/2)) = Hyaon(L; Z/2).
This implies
0" (Hyash (L, 2/2)) = " (HRasn (N, Z/2)),
which shows HY, (M, Z/2) is well defined. The fact that HY, 4 (M,Z/2) is
a subring of H*(M,Z/2) follows immediately from Lemma 2.2. m

PROPOSITION 2.4. If f: M — P is a continuous map between compact
smooth manifolds, then

f*(HItIash(Pa Z/Q)) - Hltlash(M7 Z/Q)
Proof. The assertion follows from Lemma 2.1. =

Given a smooth manifold P, we let NV, (P) denote the unoriented bordism
group of P (cf. [10]).

THEOREM 2.5. Let f : M — P be a smooth map between compact smooth
manifolds. Assume that the bordism class of f in N.(P) is equal to the bor-
dism class of a constant map from some compact smooth manifold into P.
Then the subring f*(HY,q,(PZ/2)) of H*(M,Z/2) admits an algebraic re-
alization.

Proof. Without loss of generality, we may assume P is a connected Nash
manifold. Let Vi,...,V, be Nash subsets of P such that {[Vi]p,...,[V;]p}
is the set of all Nash homology classes in H.(P,Z/2). Let A; : P — R be
a Nash function with )\i_l(()) = V;. By applying the Artin—-Mazur theorem
[5, Theorem 8.4.4] to the Nash map A = (A1,..., ) : P — R", we obtain
a nonsingular algebraic set Y, a connected component Yy of Y, a Nash dif-
feomorphism o : P — Yj, and a regular map p = (p1,...,4,) : Y — R”
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satisfying u|Yp = A o 0~1. Since o is a diffeomorphism we get

(1) Hasn (P, 2/2) = 0" (Hyasn (Y0, Z/2))-

Next, o(V4),...,0(V;) are Nash subsets of Yy and {[c(V1)]vy, .-, [0(Vi)]ve }
is the set of all Nash homology classes in H. (Y, Z/2). Since o(V;) = p; *(0)N
Yo and g *(0) is an algebraic subset of Y, we obtain o(V;) = W; N Yy, where
Wi is the closure of o(V;) in the Zariski topology on Y. In particular, W; is

an algebraic subset of Y of dimension dim o (V;) and [0(V;)]y, is the image of
[W;]y under the homomorphism between the Borel-Moore homology groups

HPM(Y, 2/2) — HPM (Yo, Z/2) = Ho (Y0, Z/2)
induced by the inclusion map e : Yj — Y (Y may not be compact and

therefore the Borel-Moore homology is required, cf. [9]). Consequently,
(2) Hyosn (Y0, Z/2) = e (H;, (Y, Z/2)).

alg

The bordism class of the smooth map g =eooco f: M — Y in N.(Y)
is equal to the bordism class of a constant map from some compact smooth
manifold K into Y. We may assume that K is a nonsingular real algebraic
set. It follows that there exist a nonsingular real algebraic set X, a smooth
diffeomorphism ¢ : X — M, and a regular map h : X — Y homotopic to
g o (cf. [2, Theorem 2.8.2]). Since ¢* o ¢* = (g o ¢)* = h* in cohomology,

(3) (9" (Hag (Y, 2/2)) = W (H, (Y, Z/2)) © Hp (X, Z/2).
On the other hand, g* = (eooo f)* = f*oo*oe*, and hence, in view of (1)
and (2), we get
9" (Hug(Y,Z/2)) = f*(HRaen (P, Z/2)),
which combined with (3) yields

@ ([ (Hyasn (P, Z/2))) © Hyo (X, Z/2).
The last inclusion means that f*(Hg,q, (P, Z/2)) admits an algebraic real-
ization. =

COROLLARY 2.6. Let f : M — P be a smooth map between compact
smooth manifolds. If the bordism class of f in N.(P) is zero, then the subring
J*(H{uan (P Z/2)) of H*(M,Z/2) admits an algebraic realization.

Proof. If the bordism class of f in N, (P) is zero, then M is the boundary
of a compact smooth manifold with boundary, and hence the bordism class
of any constant map from M into P is zero. It now suffices to apply Theorem
25. =

Our next result is in the style of Nash’s original paper [15].

THEOREM 2.7. For any connected compact smooth manifold M there is
a nonsingular real algebraic set X such that
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(i) X has exactly two connected components, each diffeomorphic to M,
(ii) for any smooth map h : M — X transforming M diffeomorphically
onto a connected component of X, one has

Hysn (M, 2/2) = h*(Hp4(X, Z/2)).

Proof. Let F : M x [0,1] — M be the canonical projection. Setting
M = (M x {0}) U (M x {1}) we let f : M — M denote the restriction
of F'. The bordism class of f in N.(M) is zero and hence, by Corollary 2.6,
the subring f*(Hy,y,(M,Z/2)) of H*(M,Z/2) admits an algebraic realiza-
tion. Let X be an algebraic model of M and let ¢ : X — M be a smooth
diffeomorphism satisfying

" (f* (HNasn (M, Z/2))) € Hyjo (X, Z/2).
By construction, X has exactly two connected components
Xo = 90_1(M X {0})7 Xy = 90_1(M X {1})7

each diffeomorphic to M. Thus (i) holds.

To show that (ii) is also satisfied we argue as follows. Let ¢; : X; — X
be the inclusion map, i = 0, 1. Since e o p* o f* = (fopoe;)* and fopoe, :
X; — M is a smooth diffeomorphism, we get

HYasn (X, 2/2) = €5 (0" (f " (HRasn (M, Z/2)))) C €7 (Hz, (X, Z/2)),
which immediately yields
Hasn (X, Z/2) = €5 (Hy1,(X, Z/2)).

alg

The last equality implies (ii). m

As we already noted in Section 1, for any compact smooth manifold M,
one has A(M) C H¥, , (M,Z/2), and A¥(M) = H*(M,Z/2) if either k =
0,1 or k > 2 dim M, and assuming dim M < 7 also A3(M) = H3(M,Z/2).
Hence HE (M, Z/2) = H¥*(M,Z/2) for k and dim M satisfying the same re-
strictions. We shall now identify two conditions which the Nash cohomology
classes always satisfy and show how this leads to a construction of manifolds
with Hi,, (M,Z/2) # H'(M,Z/2) for some i.

Denote by opr : H*(M,Z) — H*(M,Z/2) the homomorphism induced
by the epimorphism Z — Z/2. Set

B¥(M) ={ve H*(M,Z/2) | vUvis in op (H*(M, 7))},
B(M) = @ B*(M).

k>0

Note (this is not important for our purposes) that B(M) is a subring of
H*(M,7/2).
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PROPOSITION 2.8. For any compact smooth manifold M,

(1) HltTash(M’ Z/Z) c B(M)a
(11) Hl%ash(M’ Z/Z) = AQ(M)

Proof. Let X be a compact nonsingular real algebraic set. It follows from
[3, Theorem A(b)] that

ag(X,Z/2) € B(X),
while, as we already recalled in Section 1,

H3,(X,Z/2) C A*(X).

Hence (i) and (ii) follow from Theorem 2.7. =
We can now reprove Corollary 1.3 in a more direct way.

Proof of Corollary 1.3. Let M be a compact smooth manifold of dimen-
sion 6 or 7. We have A¥(M) = HE_, (M,7/2) = H*(M,Z/2) for all k # 2.
In view of Proposition 2.8(ii), A(M) = H{, 4, (M,Z/2). Conjecture C is true
for M since A(M) admits an algebraic realization. m

We shall next demonstrate that Proposition 2.8(i) gives a nontrivial con-
dition.

ExaMPLE 2.9. For any positive even integer k and any integer m >
2k + 2, there exists an m-dimensional orientable connected compact smooth
manifold M with B*(M) # H*(M,Z/2). Proposition 2.8(i) implies that an
element u in H*¥(M,Z/2) \ B¥(M) is not in HE_, (M,Z/2), and hence u
does not admit an algebraic realization.

We can construct such a manifold M as follows. It is known that there
is a 6-dimensional orientable connected compact smooth manifold N with
B?(N) # H?(N,7Z/2) (cf. [17, Lemmas 1, 2]). Choose a cohomology class v
in H%(N,Z/2)\ B%(N). Let P?(C) be the complex projective plane and let z
be the generator of H?(P?(C),Z/2) = 7Z/2. Let P =P?(C) x --- x P?(C) be
the ¢-fold product, where 2/ = k—2, and let w = z x - - - x z in H*"2(P,Z/2)
be the f¢-fold cross product; if £ = 0, we assume that P consists of one
point and w = 1. Let @ be the unit (m — (2k + 2))-sphere; if m = 2k + 2,
then by convention, ) consists of one point. Set M = N x P x Q and
u =v Xw X 1. Then M is an orientable connected compact smooth manifold
of dimension m, and u is a cohomology class in H*(M,Z/2). Making use
of Kiinneth’s theorem in cohomology, one readily checks that u is not in
Bk (M).

REMARK 2.10. If M is a compact smooth manifold and r is an odd
positive integer, then B"(M) = H"(M,Z/2). Indeed, for any cohomology
class b in H"(M,7Z/2), one has bUb = Sq"(b) = Sq' (Sq"~1(b)), where Sq' is
the ith Steenrod square (cf. [16, p. 281] or [14, p. 182]) and each class in the
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image of Sq! belongs to onr(H*(M,Z)) (cf. [14, p. 182]). In particular, the
construction in Example 2.9 cannot be repeated with k£ odd.

REMARK 2.11. Example 2.9 implies that the Nash homology does not
behave in a functorial manner. More precisely, there exists a Nash map
f L — N between compact Nash manifolds such that f.([L]) is not in
HNash (N 7,/2). One constructs L, N, and f as follows. In view of Example
2.9, there is a compact Nash manifold N having a homology class z which
is not in HN*M(N,Z/2). By [18], z = f.([L]) for some compact smooth
manifold L and smooth map f: L — N. We may assume that L is a Nash
manifold and f is a Nash map (cf. [5, Corollary 8.9.7]).

3. Proofs of Propositions 1.1 and 1.2. Conjecture B is equivalent
to the following statement: For any compact smooth manifold M, if E; and
E, are subsets of H*(M,7Z/2), each admitting an algebraic realization, then
the union E; U E5 admits an algebraic realization.

DEFINITION 3.1. A compact smooth manifold M is said to have property
H', where ¢ = 0 or i = 1, if for any subset E of H*(M,Z/2) admitting an
algebraic realization, the union EU H"(M,7Z/2) admits an algebraic realiza-
tion.

Since H(M,Z/2), with i = 0 or i = 1, always admits an algebraic
realization, M has property H', provided Conjecture B is true for M. Note
that M has property H if and only if for any subring R of H*(M,Z/2)
admitting an algebraic realization and for any connected component M’
of M, the subring e*(R) of H*(M',7/2), where e : M’ — M is the inclusion
map, admits an algebraic realization.

It is hoped that each compact smooth manifold has property H*®. This
would be interesting in view of the next two results.

PROPOSITION 3.2. Let M be a compact smooth manifold. If M x S' has
property H', then Conjecture C is true for M.

Proof. Suppose M x S' has property H'. Let 7 : M x S' — M be the
canonical projection. By Corollary 2.6, the subring R = 7*(HY,,(M,Z/2))
of H*(M x S*,7/2) admits an algebraic realization. Property H! implies that
there exist an algebraic model Y of M x S' and a smooth diffeomorphism
Y :Y — M x S! satisfying
(1) P (RUHY (M x S',Z/2)) C Hj, (Y, Z/2).

Choose a point yo in S* and let i : M x {yo} — M x S! be the inclusion
map. Since i*or* = (mwoi)* and the canonical projection moi : M x{yo} — M
is a smooth diffeomorphism, we get

Hasn (M X {yo}, Z/2) = i (7" (HNasn (M, 2/2))) = i*(R).
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Set K =~ 1(M x {yo}) and let § : K — M x {yo} be the restriction of 1.
Since 6 is a smooth diffeomorphism,

(2) Hyasn (K, 2/2) = 0" (HNasn (M % {yo}, Z/2)) = 0% (i"(R)).

We have i 060 = 1) o j, where j : K — Y is the inclusion map, and hence
0* o i* = j* o4p*. In view of (2),

(3) HYaan (K, Z/2) = 57 (¢ (R)).

It follows from (1) that H;lg(X, 7./2) = H'(Y,Z/2). This implies that K
can be approximated by nonsingular algebraic subsets of Y. More precisely,
there is a smooth diffeomorphism ¢ : Y — Y| which can be chosen arbitrarily
close to the identity map, such that X = ¢~!(K) is a nonsingular algebraic
subset of Y (cf. [8, Theorem 3.1] or [5, Theorem 12.4.11]). The restriction
7:X — K of ¢ is a smooth diffeomorphism and hence

Hftlash(X’ Z/Q) = T*(Hlt]ash(Kv Z/Q))v
which in view of (3) yields

(4) Hyash (X, 2/2) = (57 (47 (R))).
We may assume that ¢ is homotopic to the identity map of Y. In particular,
o* is the identity homomorphism. Thus denoting by e : X — Y the inclusion
map, we get coe = jorT and e = e* o 0* = 7% 0 j*, which in view of (4)
implies
(5) Hltlash(Xa Z/Q) = 6*(1/}*(}2))
Combining (1) and (5), we obtain
Hyasn(X,2/2) € e*(Hyy (Y, 2/2)) C Hye(X,2/2),

where the last inclusion follows from the fact that e : X — Y is a regular
map. Thus

Hltfash(Xa Z/Q) = ;lg(Xa Z/Q)
and the proof is complete since X is diffeomorphic to M. =

PROPOSITION 3.3. Let M be a compact smooth manifold. If M has prop-
erty HO, then Conjecture C is true for M.

Proof. Define f : M — M by f(x,i) = x for x in M and i = 0, 1. Clearly,
the bordism class of f in NV,(M) is zero. By Corollary 2.6, the subring R =
[*(Hf o (M, Z/2)) of H*(M,Z/2) admits an algebraic realization. Define
e: M — M by e(z) = (x,0) for z in M. If M has property H°, then the
subring e*(R) of H*(M,Z/2) admits an algebraic realization. Observing that
foe: M — M is the identity map, we get

Hltlash(M7 Z/Q) = e*(f*(HltTash(M7 Z/Q))) = 6*(R),

which completes the proof. m
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Proof of Proposition 1.1. If Conjecture B is true for M x S' (resp. M),
then M x S (resp. M) has property H' (resp. H). The proof is complete
in view of Propositions 3.2 and 3.3.

Proof of Proposition 1.2. Suppose that Conjecture A is true for M x S*.
Let m: M x S' — M be the canonical projection. By Corollary 2.6, the sub-
ring 7 (Hy o (M, Z/2)) of H*(M x S1,7Z/2) admits an algebraic realization,
and hence

T (Hiasn (M, Z/2)) € A(M x SY).

Fix a point yo in S! and define e : M — M x S by e(z) = (x,y) for =
in M. Since e*on* = (moe)* and moe : M — M is the identity map, we get
HRosn(M, Z,/2) = &* (" (Hn (M, Z/2))) € " (A(M x 1)) € A(M),
which implies HY, ., (M,Z/2) = A(M). Thus Proposition 1.2 is proved under
the hypothesis that Conjecture A is true for M x S* (recall that A(M) admits

an algebraic realization).

Suppose now that Conjecture A is true for M. Then Conjecture B is
true for M. In view of Proposition 1.1, Conjecture C is true for M, which
implies that it is also true for M. Thus A(M) = Hy, (M, Z/2), which yields
A(M) = H{,,(M,Z/2). The last equality means that Conjecture A is true
for M. m
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