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Nash 
ohomology of smooth manifoldsby W. Kucharz (Albuquerque, NM)In memory of Professor Stanisªaw �ojasiewi
zAbstra
t. A Nash 
ohomology 
lass on a 
ompa
t Nash manifold is a mod 2 
oho-mology 
lass whose Poin
aré dual homology 
lass 
an be represented by a Nash subset. We�nd a 
anoni
al way to de�ne Nash 
ohomology 
lasses on an arbitrary 
ompa
t smoothmanifold M . Then the Nash 
ohomology ring of M is 
ompared to the ring of algebrai
 
o-homology 
lasses on algebrai
 models of M . This is related to three 
onje
tures 
on
erningalgebrai
 
ohomology 
lasses.1. Introdu
tion. Let X be a 
ompa
t nonsingular real algebrai
 set (in
R

n for some n). A 
ohomology 
lass in Hk(X,Z/2) is said to be algebrai
if its Poin
aré dual homology 
lass in H∗(X,Z/2) 
an be represented byan algebrai
 subset of X. The set Hk

alg(X,Z/2) of all algebrai
 
ohomology
lasses inHk(X,Z/2) is a subgroup, while the dire
t sumH∗
alg(X,Z/2) of the

Hk

alg(X,Z/2), for k ≥ 0, forms a subring of the 
ohomology ring H∗(X,Z/2).The reader 
an �nd a survey of properties and appli
ations of H∗
alg(−,Z/2)in [6℄.Ea
h 
ompa
t smooth (of 
lass C∞) manifold M has an algebrai
 model,that is, M is di�eomorphi
 to a nonsingular real algebrai
 set [19℄ (
f. also[5, Theorem 14.1.10℄ and, for a weaker but in�uential result, [15℄). We saythat a subset E of H∗(M,Z/2) admits an algebrai
 realization if there ex-ist an algebrai
 model X of M and a smooth di�eomorphism ϕ : X → Msu
h that ϕ∗(E) ⊆ H∗

alg(X,Z/2) (when E = {v} 
onsists of one element,we simply say that v admits an algebrai
 realization). If E admits an alge-brai
 realization, then so does the subring of H∗(M,Z/2) generated by E.The original goal of several resear
hers was to show that the whole ring
H∗(M,Z/2) admits an algebrai
 realization, that is, M has an algebrai
model X with H∗

alg(X,Z/2) = H∗(X,Z/2) (su
h a 
onje
ture, motivated2000 Mathemati
s Subje
t Classi�
ation: 14P20, 14P25, 14C25.Key words and phrases: algebrai
 
ohomology, Nash 
ohomology, algebrai
 model.[193℄



194 W. Ku
harzby far-rea
hing potential appli
ations, was expli
itly stated in [1℄). However,sin
e the publi
ation of [4℄ it has been known that for some manifolds Mthis is impossible.Denote by A(M) the subring of H∗(M,Z/2) generated by the Stiefel�Whitney 
lasses of all real ve
tor bundles on M together with ea
h 
oho-mology 
lass Poin
aré dual to a homology 
lass represented by a smoothsubmanifold of M . A very useful and important result is that A(M) admitsan algebrai
 realization [20, p. 93℄. Already in [4℄ did the following 
onje
tureappear.
Conjecture A. For any 
ompa
t smooth manifold M , ea
h subringof H∗(M,Z/2) whi
h admits an algebrai
 realization is 
ontained in A(M)(equivalently, H∗

alg(X,Z/2) ⊆ A(X) for any 
ompa
t nonsingular real alge-brai
 set X).If dimM ≤ 5, then [18, Théorème II.26℄ implies A(M) = H∗(M,Z/2),and hen
e M has an algebrai
 model X with H∗
alg(X,Z/2) = H∗(X,Z/2).In order to survey known fa
ts in higher dimensions, let us set Ak(M) =

A(M)∩Hk(M,Z/2) for k ≥ 0. Note Ak(M) = Hk(M,Z/2) if either k = 0, 1or k ≥ 1
2
dimM , and assuming dimM ≤ 7 also A3(M) = H3(M,Z/2) (
f.[18, Théorème II.26℄). For any 
ompa
t nonsingular real algebrai
 set X,one has H2
alg(X,Z/2) ⊆ A2(X). The in
lusion follows from [4℄ (
f. also [7℄for an elementary proof). In parti
ular, H∗

alg(X,Z/2) ⊆ A(X) if dimX = 6or dimX = 7, whi
h means that Conje
ture A is true for all 
ompa
t smoothmanifolds of dimension 6 or 7. This is nontrivial sin
e for ea
h m ≥ 6, thereis a 
ompa
t smoothm-dimensional manifoldM with A2(M) 6= H2(M,Z/2)(
f. [17℄ and Example 2.9 below, and also [4℄ for m ≥ 11), whi
h implies thatno 
ohomology 
lass in H2(M,Z/2)\A2(M) admits an algebrai
 realization.In order to avoid a possible 
onfusion, let us mention that [4℄ erroneouslyasserts that A(M) = H∗(M,Z/2) for dimM ≤ 6 is a 
onsequen
e of [18℄.However, [18℄ implies su
h an equality only for dimM ≤ 5.It has re
ently been noti
ed that for ea
h positive even integer k, thereis a 
ompa
t smooth manifold M having a 
ohomology 
lass in Hk(M,Z/2)not admitting an algebrai
 realization (
f. [12℄ and Example 2.9). Whetheranalogous examples exist for k odd greater than 1 remains an open problem.Conje
ture A, if true, implies that A(M) is the largest subring of H∗(M,
Z/2) admitting an algebrai
 realization.
Conjecture B. For any 
ompa
t smooth manifoldM , there is a largestsubring of H∗(M,Z/2) whi
h admits an algebrai
 realization.Although Conje
ture B is rather unappealing, it allows us to identifyand des
ribe in a ni
e way the largest subring of H∗(M,Z/2) admitting analgebrai
 realization, leaving however open the possibility that this subring



Nash 
ohomology of smooth manifolds 195may be di�erent from A(M). To demonstrate this we need some prepara-tion.By a Nash manifold we shall mean an analyti
 submanifold of Rn, forsome n, whi
h is also a semi-algebrai
 subset. A Nash map between Nashmanifolds is an analyti
 map with semi-algebrai
 graph. A Nash subset of aNash manifold is the set of 
ommon zeros of �nitely many real-valued Nashfun
tions. For basi
 properties of these obje
ts we refer to [5℄.Let N be a 
ompa
t Nash manifold. An element of H∗(N,Z/2) is said tobe a Nash 
ohomology 
lass if its Poin
aré dual homology 
lass 
an be repre-sented by a Nash subset of N . The set Hk

Nash(N,Z/2) of all Nash 
ohomology
lasses in Hk(N,Z/2) is a subgroup, while the dire
t sum H∗
Nash(N,Z/2) ofthe Hk

Nash(N,Z/2) with k ≥ 0 forms a subring of H∗(N,Z/2) (see Lemma2.2). Clearly,
H∗

alg(X,Z/2) ⊆ H∗
Nash(X,Z/2)for any 
ompa
t nonsingular real algebrai
 set X.Given a 
ompa
t smooth manifold M , 
hoose a Nash manifold N and asmooth di�eomorphism ψ : M → N . One readily 
he
ks that the subring

ψ∗(H∗
Nash(N,Z/2)) of H∗(M,Z/2), hen
eforth denoted H∗

Nash(M,Z/2), doesnot depend on the 
hoi
e of N and ψ (see Proposition 2.3). Observe thatea
h subring of H∗(M,Z/2) admitting an algebrai
 realization is 
ontainedin H∗
Nash(M,Z/2). In parti
ular,

A(M) ⊆ H∗
Nash(M,Z/2).

Conjecture C. For any 
ompa
t smooth manifold M , the subring
H∗

Nash(M,Z/2) of H∗(M,Z/2) admits an algebrai
 realization (equivalently,
M has an algebrai
 model X with H∗

alg(X,Z/2) = H∗
Nash(X,Z/2)).In Se
tion 2 we prove some results whi
h seem to support Conje
ture C(see Theorems 2.5 and 2.7, Proposition 2.8, Example 2.9). However, thereare only two nontrivial 
ases in whi
h we 
an a
tually prove Conje
ture C,namely for all 
ompa
t smooth manifolds of dimension 6 or 7 (Corollary 1.3).Obviously, Conje
ture A implies Conje
ture B, and Conje
ture C impliesConje
ture B. Other relationships between the 
onje
tures under 
onsidera-tion are des
ribed in Propositions 1.1. and 1.2, whose proofs are 
ontainedin Se
tion 3.Given a smooth manifoldM , we setM = (M×{0})∪(M×{1}); thusMis simply a disjoint union of two 
opies of M . The unit 
ir
le will be denotedby S1.Proposition 1.1. Let M be a 
ompa
t smooth manifold. If Conje
tureB is true for either M × S1 or M , then Conje
ture C is true for M .In Se
tion 3 we show that the full strength of Conje
ture B is not neededin Proposition 1.1. To prove that Conje
ture C is true for M it su�
es to



196 W. Ku
harzassume that M × S1 (resp. M) has what we 
all property H1 (resp. H0),see De�nition 3.1. This re�nement is introdu
ed with the hope that property
H i, i = 0, 1, will be easier to verify dire
tly, thereby leading to a proof ofConje
ture C.Proposition 1.2. LetM be a 
ompa
t smooth manifold. If Conje
ture Ais true for eitherM×S1 orM , then A(M) = H∗

Nash(M,Z/2) and Conje
turesA and C are true for M .An interesting 
onsequen
e of Proposition 1.2 is the following result.Corollary 1.3. For all 
ompa
t smooth manifolds M of dimension 6or 7, one has A(M) = H∗
Nash(M,Z/2). In parti
ular , Conje
ture C is truefor su
h manifolds.Proof. As we already demonstrated above, Conje
ture A is true for all
ompa
t smooth manifolds M of dimension 6 or 7. Thus it is true for M ,and hen
e Proposition 1.2 implies Corollary 1.3.In Se
tion 2 we will prove Corollary 1.3 in a more dire
t way.It is 
lear that given a 
ompa
t smooth manifold M , Conje
ture C istrue for M if and only if it is true for ea
h 
onne
ted 
omponent of M .Whether an analogous statement is true for Conje
ture A or Conje
ture Bis not obvious. We only have the following weaker result.Corollary 1.4. LetM be a 
ompa
t smooth manifold and letM1, . . . ,Mrbe the 
onne
ted 
omponents of M .(i) If Conje
ture A (resp. Conje
ture B) is true for M , then it is truefor ea
h Mi with 1 ≤ i ≤ r.(ii) If Conje
ture A (resp. Conje
ture B) is true for ea
h Mi × S1 with

1 ≤ i ≤ r, then it is true for M .Proof. (i) is obvious, while (ii) follows from Proposition 1.2 for Conje
-ture A and from Proposition 1.1 for Conje
ture B.In 
on
lusion, we have the following diagram:
Conjecture A =⇒ Conjecture B

m m

A(−) = H∗
Nash(−,Z/2) =⇒ Conjecture Cin whi
h ea
h impli
ation Φ ⇒ Ψ should be understood as follows: if Φ istrue for all 
ompa
t smooth manifolds, then Ψ is true for su
h manifolds.Furthermore, if one of the 
onje
tures under 
onsideration is true for all
onne
ted 
ompa
t smooth manifolds, then it is true for all 
ompa
t smoothmanifolds.



Nash 
ohomology of smooth manifolds 1972. Nash 
ohomology. Let N be a 
ompa
t Nash manifold. Ea
h d-dimensional Nash subset V of N (being an analyti
 subset) 
arries a uniquefundamental homology 
lass in Hd(V,Z/2), denoted here by [V ] (
f. [9℄;sin
e V is 
ompa
t, we use the singular homology instead of the Borel�Moore homology used in [9℄). We write [V ]N for the image of [V ] underthe homomorphism Hd(V,Z/2) → Hd(N,Z/2) indu
ed by the in
lusionmap V →֒ N . Ea
h element of Hd(N,Z/2) of the form [V ]N , for some
d-dimensional Nash subset V of N , is said to be a Nash homology 
lass.Sin
e [V ]N = [V1]N + · · · + [Vr]N , where V1, . . . , Vr are the irredu
ible 
om-ponents of V of dimension d, it follows that the setHNash

d
(N,Z/2) of all Nashhomology 
lasses in Hd(N,Z/2) is a subgroup. Elements of the subgroup

Hc

Nash(N,Z/2) = D−1
N

(HNash
d (N,Z/2))of Hc(N,Z/2), where c+ d = dimN and

DN : Hc(N,Z/2) → Hd(N,Z/2)is the Poin
aré duality isomorphism, are 
alled Nash 
ohomology 
lasses. Weset
H∗

Nash(N,Z/2) =
⊕

c≥0

Hc

Nash(N,Z/2).Lemma 2.1. Let f : L→ N be a 
ontinuous map between 
ompa
t Nashmanifolds. Then
f∗(H∗

Nash(N,Z/2)) ⊆ H∗
Nash(L,Z/2).Proof. Let v be an element of Hc

Nash(N,Z/2)). Then DN (v) = [V ]N forsome Nash subset V of N . Let S be a strati�
ation of V satisfying Whitney's
ondition (a) (
f. [5℄ or [13℄) and let g : L→ N be a smooth map homotopi
to f and transverse to S, that is, transverse to ea
h stratum of S. The set ofall smooth maps from L into N transverse to S is open and dense in the spa
eof all smooth maps (Whitney's 
ondition (a) guarantees the openness, 
f. [11,Proposition 3.6℄). There is a Nash map h : L→ N arbitrarily 
lose to g, andhen
e homotopi
 to f . In parti
ular, f∗ = h∗ in 
ohomology. Furthermore,we may assume that h is transverse to S. Thus
f∗(v) = h∗(v) = D−1

L
([h−1(V )]L),where the last equality is a 
onsequen
e of [9, Proposition 2.15℄. Hen
e f∗(v)belongs to H∗

Nash(L,Z/2) and the proof is 
omplete.Lemma 2.2. For any 
ompa
t Nash manifold N , the set H∗
Nash(N,Z/2)is a subring of the 
ohomology ring H∗(N,Z/2).Proof. We only have to show that H∗

Nash(N,Z/2) is 
losed under 
upprodu
t ∪. One readily sees that if v1 and v2 are in H∗
Nash(N,Z/2), then the
ross produ
t v1 × v2 is in H∗

Nash(N ×N,Z/2). Sin
e v1 ∪ v2 = △∗(v1 × v2),



198 W. Ku
harzwhere △ : N → N ×N is the diagonal map, Lemma 2.1 implies that v1 ∪ v2belongs to H∗
Nash(N,Z/2).We 
an de�ne the Nash 
ohomology of an arbitrary 
ompa
t smoothmanifold M . To this end, 
hoose a Nash manifold N and a smooth di�eo-morphism ψ : M → N , and set

Hc

Nash(M,Z/2) = ψ∗(Hc

Nash(N,Z/2)),

H∗
Nash(M,Z/2) =

⊕

c≥0

(Hc

Nash(M,Z/2)).Proposition 2.3. With notation as above, H∗
Nash(M,Z/2) does not de-pend on the 
hoi
e of N and ψ. Moreover , H∗

Nash(M,Z/2) is a subring ofthe 
ohomology ring H∗(M,Z/2).Proof. Let L be another Nash manifold and let θ : M → L be a smoothdi�eomorphism. Then σ = ψ ◦ θ−1 : L→ N is a smooth di�eomorphism. Inview of Lemma 2.1,
σ∗(H∗

Nash(N,Z/2)) = H∗
Nash(L,Z/2).This implies

θ∗(H∗
Nash(L,Z/2)) = ψ∗(H∗

Nash(N,Z/2)),whi
h shows H∗
Nash(M,Z/2) is well de�ned. The fa
t that H∗

Nash(M,Z/2) isa subring of H∗(M,Z/2) follows immediately from Lemma 2.2.Proposition 2.4. If f : M → P is a 
ontinuous map between 
ompa
tsmooth manifolds, then
f∗(H∗

Nash(P,Z/2)) ⊆ H∗
Nash(M,Z/2).Proof. The assertion follows from Lemma 2.1.Given a smooth manifold P , we let N∗(P ) denote the unoriented bordismgroup of P (
f. [10℄).Theorem 2.5. Let f : M → P be a smooth map between 
ompa
t smoothmanifolds. Assume that the bordism 
lass of f in N∗(P ) is equal to the bor-dism 
lass of a 
onstant map from some 
ompa
t smooth manifold into P .Then the subring f∗(H∗

Nash(P,Z/2)) of H∗(M,Z/2) admits an algebrai
 re-alization.Proof. Without loss of generality, we may assume P is a 
onne
ted Nashmanifold. Let V1, . . . , Vr be Nash subsets of P su
h that {[V1]P , . . . , [Vr]P }is the set of all Nash homology 
lasses in H∗(P,Z/2). Let λi : P → R bea Nash fun
tion with λ−1
i

(0) = Vi. By applying the Artin�Mazur theorem[5, Theorem 8.4.4℄ to the Nash map λ = (λ1, . . . , λr) : P → R
r, we obtaina nonsingular algebrai
 set Y , a 
onne
ted 
omponent Y0 of Y , a Nash dif-feomorphism σ : P → Y0, and a regular map µ = (µ1, . . . , µr) : Y → R

r



Nash 
ohomology of smooth manifolds 199satisfying µ|Y0 = λ ◦ σ−1. Sin
e σ is a di�eomorphism we get(1) H∗
Nash(P,Z/2) = σ∗(H∗

Nash(Y0,Z/2)).Next, σ(V1), . . . , σ(Vr) are Nash subsets of Y0 and {[σ(V1)]Y0
, . . . , [σ(Vr)]Y0

}is the set of all Nash homology 
lasses inH∗(Y0,Z/2). Sin
e σ(Vi) = µ−1
i

(0)∩
Y0 and µ−1

i
(0) is an algebrai
 subset of Y , we obtain σ(Vi) = Wi ∩Y0, where

Wi is the 
losure of σ(Vi) in the Zariski topology on Y . In parti
ular, Wi isan algebrai
 subset of Y of dimension dimσ(Vi) and [σ(Vi)]Y0
is the image of

[Wi]Y under the homomorphism between the Borel�Moore homology groups
HBM

∗ (Y,Z/2) → HBM
∗ (Y0,Z/2) = H∗(Y0,Z/2)indu
ed by the in
lusion map e : Y0 →֒ Y (Y may not be 
ompa
t andtherefore the Borel�Moore homology is required, 
f. [9℄). Consequently,(2) H∗

Nash(Y0,Z/2) = e∗(H∗
alg(Y,Z/2)).The bordism 
lass of the smooth map g = e ◦ σ ◦ f : M → Y in N∗(Y )is equal to the bordism 
lass of a 
onstant map from some 
ompa
t smoothmanifold K into Y . We may assume that K is a nonsingular real algebrai
set. It follows that there exist a nonsingular real algebrai
 set X, a smoothdi�eomorphism ϕ : X → M , and a regular map h : X → Y homotopi
 to

g ◦ ϕ (
f. [2, Theorem 2.8.2℄). Sin
e ϕ∗ ◦ g∗ = (g ◦ ϕ)∗ = h∗ in 
ohomology,(3) ϕ∗(g∗(H∗
alg(Y,Z/2)) = h∗(H∗

alg(Y,Z/2)) ⊆ H∗
alg(X,Z/2).On the other hand, g∗ = (e ◦ σ ◦ f)∗ = f∗ ◦ σ∗ ◦ e∗, and hen
e, in view of (1)and (2), we get

g∗(H∗
alg(Y,Z/2)) = f∗(H∗

Nash(P,Z/2)),whi
h 
ombined with (3) yields
ϕ∗(f∗(H∗

Nash(P,Z/2))) ⊆ H∗
alg(X,Z/2).The last in
lusion means that f∗(H∗

Nash(P,Z/2)) admits an algebrai
 real-ization.Corollary 2.6. Let f : M → P be a smooth map between 
ompa
tsmooth manifolds. If the bordism 
lass of f in N∗(P ) is zero, then the subring
f∗(H∗

Nash(P,Z/2)) of H∗(M,Z/2) admits an algebrai
 realization.Proof. If the bordism 
lass of f in N∗(P ) is zero, thenM is the boundaryof a 
ompa
t smooth manifold with boundary, and hen
e the bordism 
lassof any 
onstant map fromM into P is zero. It now su�
es to apply Theorem2.5.Our next result is in the style of Nash's original paper [15℄.Theorem 2.7. For any 
onne
ted 
ompa
t smooth manifold M there isa nonsingular real algebrai
 set X su
h that



200 W. Ku
harz(i) X has exa
tly two 
onne
ted 
omponents, ea
h di�eomorphi
 to M ,(ii) for any smooth map h : M → X transforming M di�eomorphi
allyonto a 
onne
ted 
omponent of X, one has
H∗

Nash(M,Z/2) = h∗(H∗
alg(X,Z/2)).Proof. Let F : M × [0, 1] → M be the 
anoni
al proje
tion. Setting

M = (M × {0}) ∪ (M × {1}) we let f : M → M denote the restri
tionof F . The bordism 
lass of f in N∗(M) is zero and hen
e, by Corollary 2.6,the subring f∗(H∗
Nash(M,Z/2)) of H∗(M,Z/2) admits an algebrai
 realiza-tion. Let X be an algebrai
 model of M and let ϕ : X → M be a smoothdi�eomorphism satisfying
ϕ∗(f∗(H∗

Nash(M,Z/2))) ⊆ H∗
alg(X,Z/2).By 
onstru
tion, X has exa
tly two 
onne
ted 
omponents

X0 = ϕ−1(M × {0}), X1 = ϕ−1(M × {1}),ea
h di�eomorphi
 to M . Thus (i) holds.To show that (ii) is also satis�ed we argue as follows. Let ei : Xi →֒ Xbe the in
lusion map, i = 0, 1. Sin
e e∗
i
◦ϕ∗ ◦f∗ = (f ◦ϕ◦ ei)

∗ and f ◦ϕ◦ ei :
Xi →M is a smooth di�eomorphism, we get

H∗
Nash(Xi,Z/2) = e∗i (ϕ

∗(f∗(H∗
Nash(M,Z/2)))) ⊆ e∗i (H

∗
alg(X,Z/2)),whi
h immediately yields

H∗
Nash(Xi,Z/2) = e∗i (H

∗
alg(X,Z/2)).The last equality implies (ii).As we already noted in Se
tion 1, for any 
ompa
t smooth manifold M ,one has A(M) ⊆ H∗

Nash(M,Z/2), and Ak(M) = Hk(M,Z/2) if either k =
0, 1 or k ≥ 1

2
dimM , and assuming dimM ≤ 7 also A3(M) = H3(M,Z/2).Hen
eHk

Nash(M,Z/2) = Hk(M,Z/2) for k and dimM satisfying the same re-stri
tions. We shall now identify two 
onditions whi
h the Nash 
ohomology
lasses always satisfy and show how this leads to a 
onstru
tion of manifoldswith H i

Nash(M,Z/2) 6= H i(M,Z/2) for some i.Denote by ̺M : H∗(M,Z) → H∗(M,Z/2) the homomorphism indu
edby the epimorphism Z → Z/2. Set
Bk(M) = {v ∈ Hk(M,Z/2) | v ∪ v is in ̺M (H2k(M,Z))},

B(M) =
⊕

k≥0

Bk(M).

Note (this is not important for our purposes) that B(M) is a subring of
H∗(M,Z/2).



Nash 
ohomology of smooth manifolds 201Proposition 2.8. For any 
ompa
t smooth manifold M ,(i) H∗
Nash(M,Z/2) ⊆ B(M),(ii) H2
Nash(M,Z/2) = A2(M).Proof. Let X be a 
ompa
t nonsingular real algebrai
 set. It follows from[3, Theorem A(b)℄ that

H∗
alg(X,Z/2) ⊆ B(X),while, as we already re
alled in Se
tion 1,

H2
alg(X,Z/2) ⊆ A2(X).Hen
e (i) and (ii) follow from Theorem 2.7.We 
an now reprove Corollary 1.3 in a more dire
t way.Proof of Corollary 1.3. Let M be a 
ompa
t smooth manifold of dimen-sion 6 or 7. We have Ak(M) = Hk

Nash(M,Z/2) = Hk(M,Z/2) for all k 6= 2.In view of Proposition 2.8(ii), A(M) = H∗
Nash(M,Z/2). Conje
ture C is truefor M sin
e A(M) admits an algebrai
 realization.We shall next demonstrate that Proposition 2.8(i) gives a nontrivial 
on-dition.

Example 2.9. For any positive even integer k and any integer m ≥
2k+ 2, there exists an m-dimensional orientable 
onne
ted 
ompa
t smoothmanifold M with Bk(M) 6= Hk(M,Z/2). Proposition 2.8(i) implies that anelement u in Hk(M,Z/2) \ Bk(M) is not in Hk

Nash(M,Z/2), and hen
e udoes not admit an algebrai
 realization.We 
an 
onstru
t su
h a manifold M as follows. It is known that thereis a 6-dimensional orientable 
onne
ted 
ompa
t smooth manifold N with
B2(N) 6= H2(N,Z/2) (
f. [17, Lemmas 1, 2℄). Choose a 
ohomology 
lass vin H2(N,Z/2)\B2(N). Let P

2(C) be the 
omplex proje
tive plane and let zbe the generator of H2(P2(C),Z/2) ∼= Z/2. Let P = P
2(C)× · · · × P

2(C) bethe ℓ-fold produ
t, where 2ℓ = k−2, and let w = z×· · ·×z in Hk−2(P,Z/2)be the ℓ-fold 
ross produ
t; if ℓ = 0, we assume that P 
onsists of onepoint and w = 1. Let Q be the unit (m − (2k + 2))-sphere; if m = 2k + 2,then by 
onvention, Q 
onsists of one point. Set M = N × P × Q and
u = v×w×1. Then M is an orientable 
onne
ted 
ompa
t smooth manifoldof dimension m, and u is a 
ohomology 
lass in Hk(M,Z/2). Making useof Künneth's theorem in 
ohomology, one readily 
he
ks that u is not in
Bk(M).
Remark 2.10. If M is a 
ompa
t smooth manifold and r is an oddpositive integer, then Br(M) = Hr(M,Z/2). Indeed, for any 
ohomology
lass b in Hr(M,Z/2), one has b ∪ b = Sqr(b) = Sq1(Sqr−1(b)), where Sqi isthe ith Steenrod square (
f. [16, p. 281℄ or [14, p. 182℄) and ea
h 
lass in the
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harzimage of Sq1 belongs to ̺M (H∗(M,Z)) (
f. [14, p. 182℄). In parti
ular, the
onstru
tion in Example 2.9 
annot be repeated with k odd.
Remark 2.11. Example 2.9 implies that the Nash homology does notbehave in a fun
torial manner. More pre
isely, there exists a Nash map

f : L → N between 
ompa
t Nash manifolds su
h that f∗([L]) is not in
HNash

∗ (N,Z/2). One 
onstru
ts L, N , and f as follows. In view of Example2.9, there is a 
ompa
t Nash manifold N having a homology 
lass z whi
his not in HNash
∗ (N,Z/2). By [18℄, z = f∗([L]) for some 
ompa
t smoothmanifold L and smooth map f : L → N . We may assume that L is a Nashmanifold and f is a Nash map (
f. [5, Corollary 8.9.7℄).3. Proofs of Propositions 1.1 and 1.2. Conje
ture B is equivalentto the following statement: For any 
ompa
t smooth manifold M , if E1 and

E2 are subsets of H∗(M,Z/2), ea
h admitting an algebrai
 realization, thenthe union E1 ∪ E2 admits an algebrai
 realization.
Definition 3.1. A 
ompa
t smooth manifoldM is said to have property

H i, where i = 0 or i = 1, if for any subset E of H∗(M,Z/2) admitting analgebrai
 realization, the union E ∪H i(M,Z/2) admits an algebrai
 realiza-tion.Sin
e H i(M,Z/2), with i = 0 or i = 1, always admits an algebrai
realization, M has property H i, provided Conje
ture B is true for M . Notethat M has property H0 if and only if for any subring R of H∗(M,Z/2)admitting an algebrai
 realization and for any 
onne
ted 
omponent M ′of M , the subring e∗(R) of H∗(M ′,Z/2), where e : M ′ →֒M is the in
lusionmap, admits an algebrai
 realization.It is hoped that ea
h 
ompa
t smooth manifold has property H i. Thiswould be interesting in view of the next two results.Proposition 3.2. Let M be a 
ompa
t smooth manifold. If M ×S1 hasproperty H1, then Conje
ture C is true for M .Proof. Suppose M × S1 has property H1. Let π : M × S1 → M be the
anoni
al proje
tion. By Corollary 2.6, the subring R = π∗(H∗
Nash(M,Z/2))ofH∗(M×S1,Z/2) admits an algebrai
 realization. PropertyH1 implies thatthere exist an algebrai
 model Y of M × S1 and a smooth di�eomorphism

ψ : Y →M × S1 satisfying(1) ψ∗(R ∪H1(M × S1,Z/2)) ⊆ H∗
alg(Y,Z/2).Choose a point y0 in S1 and let i : M ×{y0} →֒M ×S1 be the in
lusionmap. Sin
e i∗◦π∗ = (π◦i)∗ and the 
anoni
al proje
tion π◦i : M×{y0} →Mis a smooth di�eomorphism, we get

H∗
Nash(M × {y0},Z/2) = i∗(π∗(H∗

Nash(M,Z/2))) = i∗(R).
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ohomology of smooth manifolds 203Set K = ψ−1(M × {y0}) and let θ : K →M × {y0} be the restri
tion of ψ.Sin
e θ is a smooth di�eomorphism,(2) H∗
Nash(K,Z/2) = θ∗(H∗

Nash(M × {y0},Z/2)) = θ∗(i∗(R)).We have i ◦ θ = ψ ◦ j, where j : K →֒ Y is the in
lusion map, and hen
e
θ∗ ◦ i∗ = j∗ ◦ ψ∗. In view of (2),(3) H∗

Nash(K,Z/2) = j∗(ψ∗(R)).It follows from (1) that H1
alg(X,Z/2) = H1(Y,Z/2). This implies that K
an be approximated by nonsingular algebrai
 subsets of Y . More pre
isely,there is a smooth di�eomorphism σ : Y → Y , whi
h 
an be 
hosen arbitrarily
lose to the identity map, su
h that X = σ−1(K) is a nonsingular algebrai
subset of Y (
f. [8, Theorem 3.1℄ or [5, Theorem 12.4.11℄). The restri
tion

τ : X → K of σ is a smooth di�eomorphism and hen
e
H∗

Nash(X,Z/2) = τ∗(H∗
Nash(K,Z/2)),whi
h in view of (3) yields(4) H∗

Nash(X,Z/2) = τ∗(j∗(ψ∗(R))).We may assume that σ is homotopi
 to the identity map of Y . In parti
ular,
σ∗ is the identity homomorphism. Thus denoting by e : X →֒ Y the in
lusionmap, we get σ ◦ e = j ◦ τ and e∗ = e∗ ◦ σ∗ = τ∗ ◦ j∗, whi
h in view of (4)implies(5) H∗

Nash(X,Z/2) = e∗(ψ∗(R)).Combining (1) and (5), we obtain
H∗

Nash(X,Z/2) ⊆ e∗(H∗
alg(Y,Z/2)) ⊆ H∗

alg(X,Z/2),where the last in
lusion follows from the fa
t that e : X →֒ Y is a regularmap. Thus
H∗

Nash(X,Z/2) = H∗
alg(X,Z/2)and the proof is 
omplete sin
e X is di�eomorphi
 to M .Proposition 3.3. Let M be a 
ompa
t smooth manifold. If M has prop-erty H0, then Conje
ture C is true for M .Proof. De�ne f : M →M by f(x, i) = x for x inM and i = 0, 1. Clearly,the bordism 
lass of f in N∗(M) is zero. By Corollary 2.6, the subring R =

f∗(H∗
Nash(M,Z/2)) of H∗(M,Z/2) admits an algebrai
 realization. De�ne

e : M → M by e(x) = (x, 0) for x in M . If M has property H0, then thesubring e∗(R) of H∗(M,Z/2) admits an algebrai
 realization. Observing that
f ◦ e : M →M is the identity map, we get

H∗
Nash(M,Z/2) = e∗(f∗(H∗

Nash(M,Z/2))) = e∗(R),whi
h 
ompletes the proof.
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harzProof of Proposition 1.1. If Conje
ture B is true for M × S1 (resp. M),then M × S1 (resp. M) has property H1 (resp. H0). The proof is 
ompletein view of Propositions 3.2 and 3.3.Proof of Proposition 1.2. Suppose that Conje
ture A is true for M × S1.Let π : M ×S1 →M be the 
anoni
al proje
tion. By Corollary 2.6, the sub-ring π∗(H∗
Nash(M,Z/2)) of H∗(M×S1,Z/2) admits an algebrai
 realization,and hen
e

π∗(H∗
Nash(M,Z/2)) ⊆ A(M × S1).Fix a point y0 in S1 and de�ne e : M → M × S1 by e(x) = (x, y0) for xin M . Sin
e e∗ ◦π∗ = (π ◦ e)∗ and π ◦ e : M →M is the identity map, we get

H∗
Nash(M,Z/2) = e∗(π∗(H∗

Nash(M,Z/2))) ⊆ e∗(A(M × S1)) ⊆ A(M),whi
h implies H∗
Nash(M,Z/2) = A(M). Thus Proposition 1.2 is proved underthe hypothesis that Conje
ture A is true forM×S1 (re
all that A(M) admitsan algebrai
 realization).Suppose now that Conje
ture A is true for M . Then Conje
ture B istrue for M . In view of Proposition 1.1, Conje
ture C is true for M , whi
himplies that it is also true forM . Thus A(M) = H∗

Nash(M,Z/2), whi
h yields
A(M) = H∗

Nash(M,Z/2). The last equality means that Conje
ture A is truefor M .
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