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A note on Bézout’s theorem

by SEAWOMIR RAMS, P10TR TWORZEWSKI and
TADEUSZ WINIARSKI (Krakow)

Abstract. We present a version of Bézout’s theorem basing on the intersection theory
in complex analytic geometry. Some applications for products of surfaces and curves are
also given.

1. Introduction. In the intersection theory in complex analytic geome-
try constructed in [T] and completed by [AR], [R1], [R2], [Rs], [R4], [R5], for
a system Xi,..., X, of irreducible analytic subsets of a complex manifold
N, one can define the analytically costructible (upper semicontinuous in the
Zariski topology) function

d:N>z—d(z) =dXy,....,X,)(z) €N,
which assigns to each point x in N the multiplicity of intersection of the sets
Xi,...,X, at the point = (see also [A], [ATW] and [CKT]). By definition,

the intersection product of these sets is the unique analytic cycle X e---0X,
defined by the equality

v(Xie---0X, z)=d(Xy,...,X,)(z) forzeN,

where v(C, x) denotes the degree of the analytic cycle C' at x. One can extend
this definition in the natural way to the case of analytic cycles. Some details
of this construction will be given in the next section of this paper.

One can observe that for a system of analytic cycles C1,...,Cp, on N and
each point a € N we have “by definition” the Bézout type equality

v(Cre---0Cya)=d(Cy,...,Cp(a),

saying that the multiplicity of the intersection product of our system coin-
cides with the intersection multiplicity at the point. Usually it is possible to
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find relations between d(C1, ..., Cp)(a) and the product v(C1,a)---v(Cyp, a)
of the multiplicities of the cycles, and so we obtain inequalities or equalities
extending the classical Bézout’s theorem to the case of analytic sets.

The organization of this paper is as follows. Section 2 is of preparatory
nature; we collect together basic constructions and facts on intersection the-
ory in complex analytic geometry. In Section 3 our main results are proved,
and then used, in Section 4, to present some applications for products of
surfaces and curves. Some comments on the presented version of Bézout’s
theorem can be found in [Np] and [Ny].

2. Intersection theory. In this paper analytic means complex analytic,
and manifold means a second-countable complex manifold. An analytic cycle
on a manifold M is a formal sum

C=) oY
jeJ
where o # 0 for j € J are integers and {Y}};es is a locally finite family of
nonempty, pairwise distinct, irreducible analytic subsets of the manifold M.
The zero cycle C = 0 is defined by J = (). The family of all analytic cycles
on N will be considered with the natural structure of Z-module.

The analytic set Uje ;Y is called the support of the cycle C. The sets
Y; are called the components of C' with multiplicities o, j € J. We say that
the cycle C' is positive if aj > 0 for all j € J. If all the components of C
have the same dimension k, C' will be called a k-cycle. For a cycle C' and an
open subset V' of M we can define in the natural way the restriction C NV
of C to V (cf. [Rg|). If ¢ : M — M’ is a biholomorphism of manifolds then
we define the image ¢(C) of C by

(C) =) ajp(Y)
jed

Now, let M be an m-dimensional manifold and let Y be a pure k-dimen-
sional analytic subset of M. For x € N we denote by v(Y,x) the degree of
Y at the point x [D, p. 194]|. This degree is equal to the classical algebraic
Samuel multiplicity, and the so-called Lelong number of Y at z. In this
paper we will consider a natural extension of this definition to the case of an
arbitrary analytic cycle. Namely, if C = )" ._; «;Y; is an analytic cycle on
M, then the sum

jeJ

Za] v(Yj, )

jeJ
is well defined and we call it the degree of the cycle C at the point x.
For the cycle C there exists a unique decomposition

C = C(m) + C(mfl) + -+ C(o),
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where C;) is a j-cycle for j = 0,...,m. We define the extended degree of C
at z by the formula
v(C,z) = (v(Ciny, @), ..., v(Coy, 7)) € zm+L
Denote by v(C') and v(C) the functions
v(C):M>z—v(Caz)eZ, v(C):M>azw—v(C,z)ecZm

Observe that v(C,z) = |v(C,x)|, where |u| denotes the sum of the coordi-
nates of p € Z™mH1.

Let M be an m-dimensional manifold and let S be a closed s-dimensional

submanifold of M. For an arbitrary analytic cycle C' = )"._;a;Y; in M the
part of C supported by S is defined as

CS: Z O@'Y}'.

jed,Y;cs

jed

Observe that every analytic cycle has the decomposition C' = C®+(C —C%).
If C' is positive, then so are both parts of this decomposition.

Let U be an open subset of M such that UN S # (. Denote by H(U) the
set of all H := (Hy, ..., Hy—_s) satisfying the following conditions:

(1) Hjis asmooth hypersurface in U containing UNS for j=1,...,m—s,
(2) MjZ,° Tw(Hj) = TS for each z € UN S.

For a given analytic subset Z of M of pure dimension k we denote by
H(U, Z) the set of all H € H(U) such that (U\S)NZ)NHiN---NH;jis an
analytic subset of U\ S of pure dimension k—j (or empty) for j = 1,...,m—s.

For every H = (Hi,...,Hp—s) € H(U,Z) an analytic cycle Z - H in
S NU is defined by the following algorithm (cf. [T], see also [F]), where in
each step we have only proper intersections, and so the intersection product
is given by the classical theory (cf. [D], [W1]). For H define

J
d::min{j €{0,1,...,m—s}: ((U\S)ﬂZ)ﬁﬂHi:Q)},
i=1
and consider the following
ALGORITHM 1.
Step 0: Let Zg = ZNU. Then Zy = 25"V + (2o — Z5™Y).
Step 1: Let Z1 = (Z() — Z(‘?mU) -Hqy and Z7 = meU + (Zl — meU).
Step 2: Let Zy = (Zl — meU) - Hy and Z5 = ZigmU + (ZQ — ngU).

We call a positive analytic cycle Z-H = Z()%U +ZigmU +-- '—I—ngU in SNU
the result of the above algorithm.
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DEFINITION 2. For ¢ € S we call
g(c) =3(Z,8)(c) := minex {¥(Z - H,c) : H € H(U, Z), c € U} € N1
the extended index of intersection and g(c) = |g(c)| the index of intersection

of Z with the submanifold S at the point c.

For a system of irreducible analytic sets Xi,..., X, on a complex mani-
fold N we can consider the analytic set Z = X7 x --- x X, in M = NP and
S = Ay the diagonal of N?. By [T, Thm. 6.2] the function
d:N>3z—d(z) =dX1,...,Xp)(x) =g(X1 x---xX,, An)(2,...,z) € N
is analytically costructible and by [T, Prop. 2.1] we can state the following

DEFINITION 3. The intersection product of the system Xi,..., X, is the
unique analytic cycle Xje---eX, such that v(X;e---eX, z)=d(x) forxeN.

One can extend this definition in the natural way to the case of analytic
cycles (see [T, Def. 6.4]). Namely, let
k k
Ce= Y oxP k=1, p,
Jk€Jk
be analytic cycles on a manifold N.
DEFINITION 4. The intersection product of the cycles Cf,...,C) is de-
fined by
CoeGm X e )
]kEJk7k:1,,p
We conclude this section with a useful theorem which follows directly
from our definitions and [AR, Cor. 5].

THEOREM 5. If C1,...,C)p is a system of cycles on a complex manifold
N, V is an open subset of N and ¢ : V — N’ is a biholomorphism, then

e(CiNV)e---ep(C,NV)=¢p((Cre---eCp)NV).

3. Bézout’s theorem. In this section an analytic cycle A:EjeJ ;X
in C" is called homogeneous (resp. projective) if all sets X; are cones in C"
(resp. projective varieties).

THEOREM 6. Let C1,...,Cp, be homogeneous cycles. Then the cycle
Cpe---e(C), is homogeneous and

deg(Cre---0Cp) =degC ---degC).

Proof. We maintain the notation of the previous section. It suffices to
prove the theorem for irreducible cones Xi,...,X,. Observe that for Z =
Xl X oo X Xp,

d(X1, ..., Xp)(0) = 9(Z, Acn)(0; ..., 0) = [g(Z, Acn)(0)].
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By [AR, Cor. 3| there exists a system H = (Hy,..., Hp_s) of hyperplanes
such that g(Z, Acn)(0) = v(Z - H,0). The classical Bézout’s theorem used
in each step of Algorithm 1 gives
|9(Z, Acn)(0)| = v(Z,0) = deg X1 - - - deg X,
Then we have the equality
v(Xie---0X,0)=d(Xq,...,X,)(0) =deg X; - - - deg Xj,.
It is easy to check that X; e ---e X, is homogeneous, so
v(Xie---0X,0)=degX ;e ---0X,

and the theorem follows.

For a projective cycle C:ZJGJ a;Y; we define the cycle C: deJ anJ,
where Y; denotes the cone over the variety Y.

In the case of the analytic intersection product we have the following
version of Bézout’s theorem.

THEOREM 7. Let C1,...,C, be projective cycles and let oy be the multi-
plicity of the point {0} in the intersection product Cy e --- e Cy. Then

deg(Cre---0C)p) =degC ---deg Cp, — ay.

Proof. Since the intersection product is linear (see [AR, Cor. 5]), we can
assume that C1,...,C, are varieties of dimensions dy, ..., d, respectively.

We choose a point @ :==(1:¢q1:...:¢,) € CiN...NCy,. To simplify
our notation we put V := ({1} x C*)? ¢ CP"*t1) and Q := (1,q1,...,qn).
The Grassmannian of affine r-planes through the point Q is denoted by
GTQ(Cp(n—i—l))_

By [AR, Cor. 3] the set of affine hyperplanes H containing Q, meeting
the space V properly and satisfying the condition

LN A LN
i=1 =1
where (v); stands for the first coordinate of a vector v, is an open and dense

subset of GpQ(nH)_l((Cp(”H)). Since the map

H— HnVeaX ™ 2(y)

restricted to the set of hyperplanes that do not contain V is continuous, we
can assume that

(Tl o)) = (i(TTe:9).0),
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Proceeding inductively we construct a system H = (Hi,..., Hy,_sq,) of
affine hypersurfaces such that

(T1¢: ) =5(] ¢ 4) (@
a(Hci-mv,Q) =§(HCZ-,A)(Q

where H|y := (H1NV,..., Hy,_s4,NV). Here, by abuse of notation, both
the diagonal in (C™)P and the one in (P")? are denoted by A. Moreover, we
identify @, resp. Q, with the corresponding point in A.

Applying [TW, Thm. 2.2] in each step of Algorithm 1 we get

o(TIC:- Q) =w(T] i HIv. Q)
i(T1¢a)@=3(I]cna)@

As an immediate consequence we obtain the equality

which implies

6’10-'4@,:2%%—#&0-{0},

Jj>1
where C1 o---0 (), := Ejzl a;Y;. By Theorem 6, we have
deg(Cre---0(Cp) =deg(Cy---degCp — . m

4. Applications. To show an application of Theorem 6 we analyze the
product of an algebraic surface and a curve. We start with the following
lemma:

LEMMA 8. Let S be a projective surface and let C C S be a curve that
has no common component with Sing(S). Then

SeC=C+> aijai+a-{0},
i=1

where

(1) a; € Sing(S) USing(C) fori=1,...,r,
(2) i > (v(S,a;) =) v(C,a;) fori=1,...,r,
(3) a>0.

Proof. (1) It is obvious that all components of the cycle SeC are cones.
If a € Reg(S) N Reg(C), then the germ C, can be cut out from S, by

one smooth hypersurface that meets S transversally along C The latter
implies that C appears in the intersection product with multiplicity one and

(1) holds.
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~

(2) Since g(§ x C,A)(1,ai,1,a;) =v(C,a;) + ay, it suffices to prove the
inequality

g(g X 67 A)(l) ai, 1, ai) > V(Sv ai) ’ 1/(07 ai) :
The latter is an immediate consequence of [Wy, Property 3|.

(3) To prove that a > 0 choose H := (Hy,...) € H(U,S x C), where U
is a neighbourhood of 0, such that

(S x C)-H,0) = §(5 x C, A)(0).
By [AR, Corollary 3] we can assume H; to be hyperplanes. Let Z;, ZiA denote

the results of the ith step of Algorithm 1 applied to H, S x 6, A, where A
is the diagonal in (C"*1)2,
One can see that ZlA = ZQA = 0. Thus

Zy=(HiNHyNH;)- (SxC) = +Z/Bk0ka

where j : C"*1 > 2+ (z,2) € A and C}, are two-dimensional cones.
Observe that j(a;) C |JCy for each a; such that a; > 0. Now

Zy=Hy- (Zﬁkck) = Bl

where [, are lines. Consequently
§(§ x C, 4)(0) (deg Z B Z ﬁk)
LCA LA

Choose b € @; N U. Observe that if @; # [, for all k, then a; = 0. Indeed, we
have H € H(U, S x C'), which yields the equality g(b) = v(C,b) and implies

that C is the only component of the cycle SeC passing through b.
If a; > 0 then @; is one of the lines lx, say a; = ly,, and

§(S % C, 2)(b) Siex ((C,0), B, 0):
Since (§(S x C, A)(b))1 > 1/(6, b), we get o; < 3, and
= g(S x C, A)(0 (C+Zalal,)22ﬁ;€20.-
g A

Now we can state

COROLLARY 9. Let S be a projective surface and let C' C S be a curve
that has no common component with Sing(S). Then

> (w(S.a) = 1)-v(C,a) < (deg(S) — 1) - deg(C).
a€Sing(S)NC
Proof. We maintain the notation of Lemma 8. By Theorem 6 we have

deg(§o 5) = deg(9) - deg(C),
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so Lemma 8 yields

deg(S) - deg(C) = deg(C) + Z a; + a.

By Lemma 8(2) we get

> (W(S.a) = 1)-v(Ca) < (deg(S) — 1) - deg(C). =
a€Sing(S)NC

REMARK 10. It is natural to ask to what extent the bounds from Lem-
ma 8 and Corollary 9 are sharp. This amounts to the question how to control
the behaviour of the multiplicity of the point 0 in the intersection product
of cones. Let us point out that the latter can be expressed with the help of
the Hilbert function (see [AR], [AM]) and computed using various computer
algebra systems.
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