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The degree at in�nity of the gradient ofa polynomial in two real variablesby Maciej Sękalski (Kiele)In memory of Stanisªaw �ojasiewizAbstrat. Let f : R
2 → R be a polynomial mapping with a �nite number of ritialpoints. We express the degree at in�nity of the gradient ∇f in terms of the real branhesat in�nity of the level urves {f(x, y) = λ} for some λ ∈ R. The formula obtained is aounterpart at in�nity of the loal formula due to Arnold.1. Main result. Let F : R

2 → R
2 be a polynomial mapping with a �nite�bre over (0, 0). We de�ne the degree at in�nity deg∞ F to be the topologialdegree of the Gauss mapping SR ∋ (x, y) 7→ F (x, y)/‖F (x, y)‖ ∈ S1, where

SR is a irle (with radius R entred at (0, 0)) around the �bre F−1(0, 0)and S1 is the unit irle.Our paper deals with deg∞ F for the mapping F = ∇f = (∂f/∂X,
∂f/∂Y ) where f : R

2 → R is a polynomial mapping with a �nite number ofritial points.To formulate the main result we introdue the notion of ritial values ofa polynomial f at in�nity. Namely, de�ne
Jf (X, Y ) = Y

∂f

∂X
(X, Y ) − X

∂f

∂Y
(X, Y ).The set {Jf (x, y) = 0} is unbounded, beause it onsists of points at whihthe polynomial f restrited to the big irles SR has an extremum. The realnumber λ is a ritial value of f at in�nity if there exists a parametriza-tion p(t) meromorphi at in�nity (see Setion 2) of a branh of the urve

{Jf (x, y) = 0} suh that f(p(t)) → λ as t → ∞. We assume here that
Jf (x, y) 6≡ 0 in R

2. The set of ritial values of f at in�nity will be denotedby Λ(f). If Jf (x, y) ≡ 0, then by de�nition f has no ritial values at in�nity,that is, Λ(f) = ∅.2000 Mathematis Subjet Classi�ation: 14P15, 32B10.Key words and phrases: degree at in�nity, index of gradient, branh at in�nity.[229℄



230 M. S�kalskiSine Λ(f) is �nite we an write Λ(f) = {λ1, . . . , λn} with λ1 < · · · < λn.Put λ0 = −∞ and λn+1 = +∞. Then R\Λ(f) =
⋃n+1

i=1 (λi−1, λi) (if Λ(f) = ∅then n = 0). Moreover, let r∞(f) denote the number of real branhes atin�nity of the urve {f(x, y) = 0} (see Setion 2).Under the above notation we haveTheorem 1. The funtion R ∋ λ 7→ r∞(f − λ) is onstant on everyonneted omponent of R \ Λ(f). Let ri = r∞(f − λ) for λ ∈ (λi−1, λi),
i = 1, . . . , n + 1. Then(1) deg∞∇f = 1 +

∑

λ∈Λ(f)

r∞(f − λ) −
n+1
∑

i=1

ri.The proof of Theorem 1 will be given in Setion 4. Now let us reord
Corollary. If Λ(f) = ∅ then deg∞∇f = 1 − r∞(f).The formula from the orollary is a ounterpart at in�nity of the wellknown loal result due to Arnold (see [A℄). Namely, let f be an analytifuntion of two real variables near (0, 0) ∈ R

2 suh that f(0, 0) = 0. Supposethat (0, 0) is an isolated solution of the equation ∇f(x, y) = (0, 0). If deg0 ∇fdenotes the loal degree of ∇f at (0, 0) and r0(f) is the number of branhesof the urve {f(x, y) = 0} near (0, 0) then
deg0 ∇f = 1 − r0(f).

Remark. Theorem 1 and its Corollary remain valid for polynomials fwith ompat �bre (∇f)−1(0, 0).2. Branhes at in�nity of an algebrai set. In this setion we givethe desription of branhes at in�nity of an unbounded algebrai set in R
2.Let Ω and ∆ be neighbourhoods of in�nity in R

2 and R respetively. Wehave the following
Proposition. Let S be an unbounded algebrai set in R

2. Then thereexists a neighbourhood of in�nity Ω in R
2 suh that S ∩ Ω is the union of�nitely many pairwise disjoint analyti urves. Eah urve (branh) is home-omorphi to an open neighbourhood of in�nity ∆ under a homeomorphism

(x(t), y(t)) (meromorphi at in�nity) whih is given by a Laurent series
(x(t), y(t)) =

(

k
∑

i=−∞

ait
i,

k
∑

i=−∞

bit
i
)

,with ak 6= 0 or bk 6= 0 and k > 0.Proof. See [S1, Lemma 1℄.If S = {f(x, y) = 0} for a polynomial f then the number of branhes atin�nity of the set S will be denoted by r∞(f).
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Example. If S ⊂ R

2 is given by the equation x2y − 1 = 0 then S ∩ Ωonsists of two branhes at in�nity. The mappings t 7→ (t, 1/t2) and t 7→
(1/t, t2) for t 6= 0 are their parametrizations.3. Auxiliary lemmas. In order to prove the main result we need somelemmas.Lemma 1. For any polynomial mapping f whose set of ritial pointsis �nite there exists A ∈ R suh that if we set fA(X, Y ) = f(AX, Y ) then
∇JfA

(x, y) 6= (0, 0) on the urve {JfA
(x, y) = 0} in a neighbourhood ofin�nity.Proof. The set (∇f)−1(0, 0) is �nite, so suppose that ∂f/∂X 6≡ 0 in aneighbourhood of in�nity. Consider the funtion

R
2 \

{

y
∂f

∂X
(x, y) = 0

}

∋ (x, y) 7→
x ∂f

∂Y
(x, y)

y ∂f
∂X

(x, y)
∈ R.Let A2 6= 0 be a positive regular value of this mapping. Then

∇

(

X ∂f
∂Y

Y ∂f
∂X

)

(x, y) =

[

1

Y ∂f
∂X

∇

(

X
∂f

∂Y
− A2Y

∂f

∂X

)]

(x, y) 6= (0, 0)on the urve {(

X ∂f
∂Y

− A2Y ∂f
∂X

)

(x, y) = 0
}. Sine

∇

(

X
∂f

∂Y
− A2Y

∂f

∂X

)

(Ax, y) = A∇

(

X
∂fA

∂Y
− Y

∂fA

∂X

)

(x, y)we get ∇JfA
(x, y) 6= (0, 0) for JfA

(x, y) = 0. This ends the proof.For a funtion h of one real variable, meromorphi at in�nity, we use thefollowing onvention:
deg∞ h =

sgnh(t+) − sgnh(t−)

2
,where the numbers t− and t+ are taken lose enough to −∞ and +∞ re-spetively. Under the above onvention we haveLemma 2. If the real polynomial mapping G = (g1, g2) : R

2 → R
2 has a�nite �bre over (0, 0) and ∇g1(x, y) 6= (0, 0) on the urve {g1(x, y) = 0} ina neighbourhood of in�nity then

deg∞ G =
k

∑

i=1

deg∞(g2(pi(t)) · det[∇g1(pi(t)), p
′

i(t)]),where pi, i = 1, . . . , k, are parametrizations of the real branhes at in�nityof the urve {g1(x, y) = 0}.Proof. The proof an be found in [S1℄.



232 M. S�kalskiThe following orollary to Lemma 2 will be useful.
Corollary. Let g : R

2→R be a polynomial mapping suh that ∇g(x, y)
6= (0, 0) for g(x, y) = 0 near in�nity. Then r∞(g) = deg∞(g, Jg).The loal ounterpart of the orollary has been proven in [FAS℄ and [Sz℄.Proof. The mapping (g, Jg) : R

2 → R
2 satis�es the assumptions ofLemma 2. Let pi, i = 1, . . . , k, be parametrizations, meromorphi at in-�nity, of the branhes of the urve g = 0, and 〈·, ·〉 be the salar produtin R

2. Then Lemma 2 gives
deg∞(g, Jg) =

k
∑

i=1

deg∞(Jg(pi(t)) det[∇g(pi(t)), p
′

i(t)])

=
k

∑

i=1

deg∞(det[∇g(pi(t)), pi(t)] · det[∇g(pi(t)), p
′

i(t)])

=
k

∑

i=1

deg∞(‖∇g(pi(t))‖
2〈pi(t), p

′

i(t)〉) =
k

∑

i=1

1 = r∞(g).Below we ollet some simple properties of the degree. One an easilyhek them by using for instane the �Poinaré argument priniple� (f. [S2℄):
Proposition (Properties of the degree). Let F = (f1, f2), G = (g1, g2) :

R
2 → R

2 be polynomial mappings suh that the sets F−1(0, 0) and G−1(0, 0)are �nite. Then
• the mapping F · G = (f1g1 − f2g2, f1g2 + f2g1) has a �nite �bre over

(0, 0) and
deg∞(F · G) = deg∞ F + deg∞ G,

• deg∞(f1, f2) = −deg∞(f2, f1) (antisymmetry),
• deg∞(f1,−f2) = −deg∞(f1, f2),
• deg∞(X, Y ) = 1.4. Proof of the main result. Without loss of generality (aording toLemma 1) we an assume that ∇Jf (x, y) 6= (0, 0) on the urve {Jf (x, y) = 0}near in�nity. Consider a sequene λ′

0, . . . , λ
′

n suh that(2) −∞ = λ0 < λ′

0 < λ1 < λ′

1 < · · · < λn < λ′

n < λn+1 = +∞,where λi, i = 1, . . . , n, are the ritial values of the polynomial f at in�nity(in the sense of the de�nition from Setion 1). Thus we have ri = r∞(f −λ′

i)for i = 0, . . . , n. We will alulate the sum
S =

n
∑

i=1

r∞(f − λi) −
n

∑

i=0

r∞(f − λ′

i).



Degree at in�nity of the gradient 233By using the Corollary to Lemma 2 and antisymmetry of the degree weget
S =

n
∑

i=1

deg∞(f − λi, Jf ) −
n

∑

i=0

deg∞(f − λ′

i, Jf )

=

n
∑

i=0

deg∞(Jf , f − λ′

i) −
n

∑

i=1

deg∞(Jf , f − λi).Let us split the set of all parametrizations at in�nity of the urve {Jf (x, y)
= 0} into two subsets G+ and G−, where G+ onsists of those parametriza-tions p for whih f(p(t)) → ∞ as t → ∞ and the remaining parametrizationsare ontained in G−, i.e. if p ∈ G− then f(p(t)) → λ ∈ Λ(f) as t → ∞. Toshorten our formulas we set wp(t) = det[∇Jf (p(t)), p′(t)]. Moreover we willomit the variable t and write wp, f(p) instead of wp(t), f(p(t)). Aordingto Lemma 2 we have

S =

n
∑

i=0

∑

p∈G+∪G−

deg∞((f(p) − λ′

i)wp)(3)
−

n
∑

i=1

∑

p∈G+∪G−

deg∞((f(p) − λi)wp)

=
∑

p∈G+∪G−

[

deg∞((f(p) − λ′

0)wp)

+

n
∑

i=1

[deg∞((f(p) − λ′

i)wp) − deg∞((f(p) − λi)wp)]
]

.

Note that if p ∈ G+ then deg∞((f(p) − λ)wp) does not depend on λ. Inthis ase we have(4) n
∑

i=1

[deg∞((f(p) − λ′

i)wp) − deg∞((f(p) − λi)wp)] = 0.

If p ∈ G− then f(p(t)) → λp ∈ Λ(f) as t → ∞. Then for λi 6= λp wehave
deg∞((f(p) − λ′

i)wp) = deg∞((f(p) − λi)wp),hene
(5)

n
∑

i=1

[deg∞((f(p) − λ′

i)wp) − deg∞((f(p) − λi)wp)]

= deg∞((f(p) − λ′

p)wp) − deg∞((f(p) − λp)wp).Here λ′
p denotes the next number after λp in the sequene (2).



234 M. S�kalskiFrom (3)�(5) we get
S =

∑

p∈G+

deg∞((f(p) − λ′

0)wp) +
∑

p∈G−

[deg∞((f(p) − λ′

0)wp)

+ deg∞((f(p) − λ′

p)wp) − deg∞((f(p) − λp)wp)].But the inequalities λ′

0 < λp < λ′

p imply that the numbers f(p) − λ′

0 and
f(p) − λ′

p have opposite signs for t large, hene
deg∞((f(p) − λ′

0)wp) + deg∞((f(p) − λ′

p)wp) = 0,so we get the equality(6) S =
∑

p∈G+

deg∞((f(p) − λ′

0)wp) −
∑

p∈G−

deg∞((f(p) − λp)wp).

Observe that for p ∈ G+,
sgn(f(p(t)) − λ′

0) = sgn((f(p(t)))′ · t) = sgn(〈∇f(p(t)), p(t)〉),while for p ∈ G−,
sgn(f(p(t)) − λp) = − sgn(f(p(t))′ · t) = − sgn(〈∇f(p(t)), p(t)〉).In fat, from the equality Jf (p(t)) =

(

Y ∂f
∂X

− X ∂f
∂Y

)

◦ p(t) = 0 we see thatthe vetors ∇f(p(t)) and p(t) are parallel, hene we have
f(p(t))′t = 〈∇f(p(t)), p′(t)〉t =

〈∇f(p(t)), p(t)〉

‖p(t)‖2
〈p(t), p′(t)〉tand the above equalities follow beause the quotient 〈p(t), p′(t)〉t/‖p(t)‖2 ispositive in a neighbourhood of in�nity in R.The above two equalities applied to (6), Lemma 2 and the properties ofthe degree give

S =
∑

p∈G+

deg∞(〈∇f(p(t)), p(t)〉wp) +
∑

p∈G−

deg∞(〈∇f(p(t)), p(t)〉wp)

= deg∞

(

Jf , X
∂f

∂X
+ Y

∂f

∂Y

)

= deg∞

(

X
∂f

∂X
+ Y

∂f

∂Y
, X

∂f

∂Y
− Y

∂f

∂X

)

= deg∞(∇f · (X,−Y )) = deg∞∇f − 1.We are done.We end this setion with a simple example of alulation of the degreeby using the main theorem.
Example. Let f(X, Y ) =

∏k
i=1(Y (X2 + i)−1) (see [D℄). One an hekthat the only ritial value at in�nity is zero, that is, Λ(f) = {0}. We have

r∞(f − 1) + r∞(f + 1) = 2 and r∞(f) = k, thus
deg∞∇f = 1 + k − 2 = k − 1.
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