The degree at infinity of the gradient of a polynomial in two real variables

by Macied Sękalski (Kielce)

In memory of Stanisław Łojasiewicz

Abstract

Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a polynomial mapping with a finite number of critical points. We express the degree at infinity of the gradient ∇f in terms of the real branches at infinity of the level curves $\{f(x, y)=\lambda\}$ for some $\lambda \in \mathbb{R}$. The formula obtained is a counterpart at infinity of the local formula due to Arnold.

1. Main result. Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a polynomial mapping with a finite fibre over $(0,0)$. We define the degree at infinity $\operatorname{deg}_{\infty} F$ to be the topological degree of the Gauss mapping $S_{R} \ni(x, y) \mapsto F(x, y) /\|F(x, y)\| \in S_{1}$, where S_{R} is a circle (with radius R centred at $(0,0)$) around the fibre $F^{-1}(0,0)$ and S_{1} is the unit circle.

Our paper deals with $\operatorname{deg}_{\infty} F$ for the mapping $F=\nabla f=(\partial f / \partial X$, $\partial f / \partial Y)$ where $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a polynomial mapping with a finite number of critical points.

To formulate the main result we introduce the notion of critical values of a polynomial f at infinity. Namely, define

$$
J_{f}(X, Y)=Y \frac{\partial f}{\partial X}(X, Y)-X \frac{\partial f}{\partial Y}(X, Y) .
$$

The set $\left\{J_{f}(x, y)=0\right\}$ is unbounded, because it consists of points at which the polynomial f restricted to the big circles S_{R} has an extremum. The real number λ is a critical value of f at infinity if there exists a parametrization $p(t)$ meromorphic at infinity (see Section 2) of a branch of the curve $\left\{J_{f}(x, y)=0\right\}$ such that $f(p(t)) \rightarrow \lambda$ as $t \rightarrow \infty$. We assume here that $J_{f}(x, y) \not \equiv 0$ in \mathbb{R}^{2}. The set of critical values of f at infinity will be denoted by $\Lambda(f)$. If $J_{f}(x, y) \equiv 0$, then by definition f has no critical values at infinity, that is, $\Lambda(f)=\emptyset$.

Since $\Lambda(f)$ is finite we can write $\Lambda(f)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ with $\lambda_{1}<\cdots<\lambda_{n}$. Put $\lambda_{0}=-\infty$ and $\lambda_{n+1}=+\infty$. Then $\mathbb{R} \backslash \Lambda(f)=\bigcup_{i=1}^{n+1}\left(\lambda_{i-1}, \lambda_{i}\right)$ (if $\Lambda(f)=\emptyset$ then $n=0$). Moreover, let $r_{\infty}(f)$ denote the number of real branches at infinity of the curve $\{f(x, y)=0\}$ (see Section 2).

Under the above notation we have
THEOREM 1. The function $\mathbb{R} \ni \lambda \mapsto r_{\infty}(f-\lambda)$ is constant on every connected component of $\mathbb{R} \backslash \Lambda(f)$. Let $r_{i}=r_{\infty}(f-\lambda)$ for $\lambda \in\left(\lambda_{i-1}, \lambda_{i}\right)$, $i=1, \ldots, n+1$. Then

$$
\begin{equation*}
\operatorname{deg}_{\infty} \nabla f=1+\sum_{\lambda \in \Lambda(f)} r_{\infty}(f-\lambda)-\sum_{i=1}^{n+1} r_{i} \tag{1}
\end{equation*}
$$

The proof of Theorem 1 will be given in Section 4. Now let us record
Corollary. If $\Lambda(f)=\emptyset$ then $\operatorname{deg}_{\infty} \nabla f=1-r_{\infty}(f)$.
The formula from the corollary is a counterpart at infinity of the well known local result due to Arnold (see [A]). Namely, let f be an analytic function of two real variables near $(0,0) \in \mathbb{R}^{2}$ such that $f(0,0)=0$. Suppose that $(0,0)$ is an isolated solution of the equation $\nabla f(x, y)=(0,0)$. If $\operatorname{deg}_{0} \nabla f$ denotes the local degree of ∇f at $(0,0)$ and $r_{0}(f)$ is the number of branches of the curve $\{f(x, y)=0\}$ near $(0,0)$ then

$$
\operatorname{deg}_{0} \nabla f=1-r_{0}(f)
$$

Remark. Theorem 1 and its Corollary remain valid for polynomials f with compact fibre $(\nabla f)^{-1}(0,0)$.
2. Branches at infinity of an algebraic set. In this section we give the description of branches at infinity of an unbounded algebraic set in \mathbb{R}^{2}.

Let Ω and Δ be neighbourhoods of infinity in \mathbb{R}^{2} and \mathbb{R} respectively. We have the following

Proposition. Let S be an unbounded algebraic set in \mathbb{R}^{2}. Then there exists a neighbourhood of infinity Ω in \mathbb{R}^{2} such that $S \cap \Omega$ is the union of finitely many pairwise disjoint analytic curves. Each curve (branch) is homeomorphic to an open neighbourhood of infinity Δ under a homeomorphism $(x(t), y(t))$ (meromorphic at infinity) which is given by a Laurent series

$$
(x(t), y(t))=\left(\sum_{i=-\infty}^{k} a_{i} t^{i}, \sum_{i=-\infty}^{k} b_{i} t^{i}\right)
$$

with $a_{k} \neq 0$ or $b_{k} \neq 0$ and $k>0$.
Proof. See [S1, Lemma 1].
If $S=\{f(x, y)=0\}$ for a polynomial f then the number of branches at infinity of the set S will be denoted by $r_{\infty}(f)$.

Example. If $S \subset \mathbb{R}^{2}$ is given by the equation $x^{2} y-1=0$ then $S \cap \Omega$ consists of two branches at infinity. The mappings $t \mapsto\left(t, 1 / t^{2}\right)$ and $t \mapsto$ $\left(1 / t, t^{2}\right)$ for $t \neq 0$ are their parametrizations.
3. Auxiliary lemmas. In order to prove the main result we need some lemmas.

Lemma 1. For any polynomial mapping f whose set of critical points is finite there exists $A \in \mathbb{R}$ such that if we set $f_{A}(X, Y)=f(A X, Y)$ then $\nabla J_{f_{A}}(x, y) \neq(0,0)$ on the curve $\left\{J_{f_{A}}(x, y)=0\right\}$ in a neighbourhood of infinity.

Proof. The set $(\nabla f)^{-1}(0,0)$ is finite, so suppose that $\partial f / \partial X \not \equiv 0$ in a neighbourhood of infinity. Consider the function

$$
\mathbb{R}^{2} \backslash\left\{y \frac{\partial f}{\partial X}(x, y)=0\right\} \ni(x, y) \mapsto \frac{x \frac{\partial f}{\partial Y}(x, y)}{y \frac{\partial f}{\partial X}(x, y)} \in \mathbb{R}
$$

Let $A^{2} \neq 0$ be a positive regular value of this mapping. Then

$$
\nabla\left(\frac{X \frac{\partial f}{\partial Y}}{Y \frac{\partial f}{\partial X}}\right)(x, y)=\left[\frac{1}{Y \frac{\partial f}{\partial X}} \nabla\left(X \frac{\partial f}{\partial Y}-A^{2} Y \frac{\partial f}{\partial X}\right)\right](x, y) \neq(0,0)
$$

on the curve $\left\{\left(X \frac{\partial f}{\partial Y}-A^{2} Y \frac{\partial f}{\partial X}\right)(x, y)=0\right\}$. Since

$$
\nabla\left(X \frac{\partial f}{\partial Y}-A^{2} Y \frac{\partial f}{\partial X}\right)(A x, y)=A \nabla\left(X \frac{\partial f_{A}}{\partial Y}-Y \frac{\partial f_{A}}{\partial X}\right)(x, y)
$$

we get $\nabla J_{f_{A}}(x, y) \neq(0,0)$ for $J_{f_{A}}(x, y)=0$. This ends the proof.
For a function h of one real variable, meromorphic at infinity, we use the following convention:

$$
\operatorname{deg}_{\infty} h=\frac{\operatorname{sgn} h\left(t^{+}\right)-\operatorname{sgn} h\left(t^{-}\right)}{2}
$$

where the numbers t^{-}and t^{+}are taken close enough to $-\infty$ and $+\infty$ respectively. Under the above convention we have

Lemma 2. If the real polynomial mapping $G=\left(g_{1}, g_{2}\right): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ has a finite fibre over $(0,0)$ and $\nabla g_{1}(x, y) \neq(0,0)$ on the curve $\left\{g_{1}(x, y)=0\right\}$ in a neighbourhood of infinity then

$$
\operatorname{deg}_{\infty} G=\sum_{i=1}^{k} \operatorname{deg}_{\infty}\left(g_{2}\left(p_{i}(t)\right) \cdot \operatorname{det}\left[\nabla g_{1}\left(p_{i}(t)\right), p_{i}^{\prime}(t)\right]\right)
$$

where $p_{i}, i=1, \ldots, k$, are parametrizations of the real branches at infinity of the curve $\left\{g_{1}(x, y)=0\right\}$.

Proof. The proof can be found in [S1].

The following corollary to Lemma 2 will be useful.
Corollary. Let $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a polynomial mapping such that $\nabla g(x, y)$ $\neq(0,0)$ for $g(x, y)=0$ near infinity. Then $r_{\infty}(g)=\operatorname{deg}_{\infty}\left(g, J_{g}\right)$.

The local counterpart of the corollary has been proven in [FAS] and [Sz].
Proof. The mapping $\left(g, J_{g}\right): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ satisfies the assumptions of Lemma 2. Let $p_{i}, i=1, \ldots, k$, be parametrizations, meromorphic at infinity, of the branches of the curve $g=0$, and $\langle\cdot, \cdot\rangle$ be the scalar product in \mathbb{R}^{2}. Then Lemma 2 gives

$$
\begin{aligned}
\operatorname{deg}_{\infty}\left(g, J_{g}\right) & =\sum_{i=1}^{k} \operatorname{deg}_{\infty}\left(J_{g}\left(p_{i}(t)\right) \operatorname{det}\left[\nabla g\left(p_{i}(t)\right), p_{i}^{\prime}(t)\right]\right) \\
& =\sum_{i=1}^{k} \operatorname{deg}_{\infty}\left(\operatorname{det}\left[\nabla g\left(p_{i}(t)\right), p_{i}(t)\right] \cdot \operatorname{det}\left[\nabla g\left(p_{i}(t)\right), p_{i}^{\prime}(t)\right]\right) \\
& =\sum_{i=1}^{k} \operatorname{deg}_{\infty}\left(\left\|\nabla g\left(p_{i}(t)\right)\right\|^{2}\left\langle p_{i}(t), p_{i}^{\prime}(t)\right\rangle\right)=\sum_{i=1}^{k} 1=r_{\infty}(g)
\end{aligned}
$$

Below we collect some simple properties of the degree. One can easily check them by using for instance the "Poincaré argument principle" (cf. [S2]):

Proposition (Properties of the degree). Let $F=\left(f_{1}, f_{2}\right), G=\left(g_{1}, g_{2}\right)$: $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be polynomial mappings such that the sets $F^{-1}(0,0)$ and $G^{-1}(0,0)$ are finite. Then

- the mapping $F \cdot G=\left(f_{1} g_{1}-f_{2} g_{2}, f_{1} g_{2}+f_{2} g_{1}\right)$ has a finite fibre over $(0,0)$ and

$$
\operatorname{deg}_{\infty}(F \cdot G)=\operatorname{deg}_{\infty} F+\operatorname{deg}_{\infty} G
$$

- $\operatorname{deg}_{\infty}\left(f_{1}, f_{2}\right)=-\operatorname{deg}_{\infty}\left(f_{2}, f_{1}\right)$ (antisymmetry),
- $\operatorname{deg}_{\infty}\left(f_{1},-f_{2}\right)=-\operatorname{deg}_{\infty}\left(f_{1}, f_{2}\right)$,
- $\operatorname{deg}_{\infty}(X, Y)=1$.

4. Proof of the main result. Without loss of generality (according to Lemma 1) we can assume that $\nabla J_{f}(x, y) \neq(0,0)$ on the curve $\left\{J_{f}(x, y)=0\right\}$ near infinity. Consider a sequence $\lambda_{0}^{\prime}, \ldots, \lambda_{n}^{\prime}$ such that

$$
\begin{equation*}
-\infty=\lambda_{0}<\lambda_{0}^{\prime}<\lambda_{1}<\lambda_{1}^{\prime}<\cdots<\lambda_{n}<\lambda_{n}^{\prime}<\lambda_{n+1}=+\infty \tag{2}
\end{equation*}
$$

where $\lambda_{i}, i=1, \ldots, n$, are the critical values of the polynomial f at infinity (in the sense of the definition from Section 1). Thus we have $r_{i}=r_{\infty}\left(f-\lambda_{i}^{\prime}\right)$ for $i=0, \ldots, n$. We will calculate the sum

$$
S=\sum_{i=1}^{n} r_{\infty}\left(f-\lambda_{i}\right)-\sum_{i=0}^{n} r_{\infty}\left(f-\lambda_{i}^{\prime}\right)
$$

By using the Corollary to Lemma 2 and antisymmetry of the degree we get

$$
\begin{aligned}
S & =\sum_{i=1}^{n} \operatorname{deg}_{\infty}\left(f-\lambda_{i}, J_{f}\right)-\sum_{i=0}^{n} \operatorname{deg}_{\infty}\left(f-\lambda_{i}^{\prime}, J_{f}\right) \\
& =\sum_{i=0}^{n} \operatorname{deg}_{\infty}\left(J_{f}, f-\lambda_{i}^{\prime}\right)-\sum_{i=1}^{n} \operatorname{deg}_{\infty}\left(J_{f}, f-\lambda_{i}\right)
\end{aligned}
$$

Let us split the set of all parametrizations at infinity of the curve $\left\{J_{f}(x, y)\right.$ $=0\}$ into two subsets G^{+}and G^{-}, where G^{+}consists of those parametrizations p for which $f(p(t)) \rightarrow \infty$ as $t \rightarrow \infty$ and the remaining parametrizations are contained in G^{-}, i.e. if $p \in G^{-}$then $f(p(t)) \rightarrow \lambda \in \Lambda(f)$ as $t \rightarrow \infty$. To shorten our formulas we set $w_{p}(t)=\operatorname{det}\left[\nabla J_{f}(p(t)), p^{\prime}(t)\right]$. Moreover we will omit the variable t and write $w_{p}, f(p)$ instead of $w_{p}(t), f(p(t))$. According to Lemma 2 we have

$$
\begin{align*}
S= & \sum_{i=0}^{n} \sum_{p \in G^{+} \cup G^{-}} \operatorname{deg}_{\infty}\left(\left(f(p)-\lambda_{i}^{\prime}\right) w_{p}\right) \tag{3}\\
& -\sum_{i=1}^{n} \sum_{p \in G^{+} \cup G^{-}} \operatorname{deg}_{\infty}\left(\left(f(p)-\lambda_{i}\right) w_{p}\right) \\
= & \sum_{p \in G^{+} \cup G^{-}}\left[\operatorname{deg}_{\infty}\left(\left(f(p)-\lambda_{0}^{\prime}\right) w_{p}\right)\right. \\
& \left.+\sum_{i=1}^{n}\left[\operatorname{deg}_{\infty}\left(\left(f(p)-\lambda_{i}^{\prime}\right) w_{p}\right)-\operatorname{deg}_{\infty}\left(\left(f(p)-\lambda_{i}\right) w_{p}\right)\right]\right] .
\end{align*}
$$

Note that if $p \in G^{+}$then $\operatorname{deg}_{\infty}\left((f(p)-\lambda) w_{p}\right)$ does not depend on λ. In this case we have

$$
\begin{equation*}
\sum_{i=1}^{n}\left[\operatorname{deg}_{\infty}\left(\left(f(p)-\lambda_{i}^{\prime}\right) w_{p}\right)-\operatorname{deg}_{\infty}\left(\left(f(p)-\lambda_{i}\right) w_{p}\right)\right]=0 \tag{4}
\end{equation*}
$$

If $p \in G^{-}$then $f(p(t)) \rightarrow \lambda_{p} \in \Lambda(f)$ as $t \rightarrow \infty$. Then for $\lambda_{i} \neq \lambda_{p}$ we have

$$
\operatorname{deg}_{\infty}\left(\left(f(p)-\lambda_{i}^{\prime}\right) w_{p}\right)=\operatorname{deg}_{\infty}\left(\left(f(p)-\lambda_{i}\right) w_{p}\right)
$$

hence

$$
\begin{align*}
\sum_{i=1}^{n}\left[\operatorname{deg}_{\infty}((f(p)-\right. & \left.\left.\left.\lambda_{i}^{\prime}\right) w_{p}\right)-\operatorname{deg}_{\infty}\left(\left(f(p)-\lambda_{i}\right) w_{p}\right)\right] \tag{5}\\
& =\operatorname{deg}_{\infty}\left(\left(f(p)-\lambda_{p}^{\prime}\right) w_{p}\right)-\operatorname{deg}_{\infty}\left(\left(f(p)-\lambda_{p}\right) w_{p}\right)
\end{align*}
$$

Here λ_{p}^{\prime} denotes the next number after λ_{p} in the sequence (2).

From (3)-(5) we get

$$
\begin{aligned}
S= & \sum_{p \in G^{+}} \operatorname{deg}_{\infty}\left(\left(f(p)-\lambda_{0}^{\prime}\right) w_{p}\right)+\sum_{p \in G^{-}}\left[\operatorname{deg}_{\infty}\left(\left(f(p)-\lambda_{0}^{\prime}\right) w_{p}\right)\right. \\
& \left.+\operatorname{deg}_{\infty}\left(\left(f(p)-\lambda_{p}^{\prime}\right) w_{p}\right)-\operatorname{deg}_{\infty}\left(\left(f(p)-\lambda_{p}\right) w_{p}\right)\right]
\end{aligned}
$$

But the inequalities $\lambda_{0}^{\prime}<\lambda_{p}<\lambda_{p}^{\prime}$ imply that the numbers $f(p)-\lambda_{0}^{\prime}$ and $f(p)-\lambda_{p}^{\prime}$ have opposite signs for t large, hence

$$
\operatorname{deg}_{\infty}\left(\left(f(p)-\lambda_{0}^{\prime}\right) w_{p}\right)+\operatorname{deg}_{\infty}\left(\left(f(p)-\lambda_{p}^{\prime}\right) w_{p}\right)=0
$$

so we get the equality

$$
\begin{equation*}
S=\sum_{p \in G^{+}} \operatorname{deg}_{\infty}\left(\left(f(p)-\lambda_{0}^{\prime}\right) w_{p}\right)-\sum_{p \in G^{-}} \operatorname{deg}_{\infty}\left(\left(f(p)-\lambda_{p}\right) w_{p}\right) \tag{6}
\end{equation*}
$$

Observe that for $p \in G^{+}$,

$$
\operatorname{sgn}\left(f(p(t))-\lambda_{0}^{\prime}\right)=\operatorname{sgn}\left((f(p(t)))^{\prime} \cdot t\right)=\operatorname{sgn}(\langle\nabla f(p(t)), p(t)\rangle)
$$

while for $p \in G^{-}$,

$$
\operatorname{sgn}\left(f(p(t))-\lambda_{p}\right)=-\operatorname{sgn}\left(f(p(t))^{\prime} \cdot t\right)=-\operatorname{sgn}(\langle\nabla f(p(t)), p(t)\rangle)
$$

In fact, from the equality $J_{f}(p(t))=\left(Y \frac{\partial f}{\partial X}-X \frac{\partial f}{\partial Y}\right) \circ p(t)=0$ we see that the vectors $\nabla f(p(t))$ and $p(t)$ are parallel, hence we have

$$
f(p(t))^{\prime} t=\left\langle\nabla f(p(t)), p^{\prime}(t)\right\rangle t=\frac{\langle\nabla f(p(t)), p(t)\rangle}{\|p(t)\|^{2}}\left\langle p(t), p^{\prime}(t)\right\rangle t
$$

and the above equalities follow because the quotient $\left\langle p(t), p^{\prime}(t)\right\rangle t /\|p(t)\|^{2}$ is positive in a neighbourhood of infinity in \mathbb{R}.

The above two equalities applied to (6), Lemma 2 and the properties of the degree give

$$
\begin{aligned}
S & =\sum_{p \in G^{+}} \operatorname{deg}_{\infty}\left(\langle\nabla f(p(t)), p(t)\rangle w_{p}\right)+\sum_{p \in G^{-}} \operatorname{deg}_{\infty}\left(\langle\nabla f(p(t)), p(t)\rangle w_{p}\right) \\
& =\operatorname{deg}_{\infty}\left(J_{f}, X \frac{\partial f}{\partial X}+Y \frac{\partial f}{\partial Y}\right)=\operatorname{deg}_{\infty}\left(X \frac{\partial f}{\partial X}+Y \frac{\partial f}{\partial Y}, X \frac{\partial f}{\partial Y}-Y \frac{\partial f}{\partial X}\right) \\
& =\operatorname{deg}_{\infty}(\nabla f \cdot(X,-Y))=\operatorname{deg}_{\infty} \nabla f-1
\end{aligned}
$$

We are done.
We end this section with a simple example of calculation of the degree by using the main theorem.

Example. Let $f(X, Y)=\prod_{i=1}^{k}\left(Y\left(X^{2}+i\right)-1\right)$ (see [D]). One can check that the only critical value at infinity is zero, that is, $\Lambda(f)=\{0\}$. We have $r_{\infty}(f-1)+r_{\infty}(f+1)=2$ and $r_{\infty}(f)=k$, thus

$$
\operatorname{deg}_{\infty} \nabla f=1+k-2=k-1
$$

References

[A] V. I. Arnold, Index of a singular point of a vector field, the Petrovskiü-Oleĭnik inequality and mixed Hodge structures, Funct. Anal. Apl. 12 (1978), no. 1, 1-12.
[D] A. H. Durffe, The index of grad $f(x, y)$, Topology 37 (1998), 1339-1361.
[FAS] T. Fukuda, K. Aoki and W. Z. Sun, On the number of branches of a plane curve germ, Kodai Math. J. 9 (1986), 179-187.
[S1] M. Sękalski, On the degree of a polynomial mapping $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ at infinity, Univ. Iagell. Acta Math. 37 (1999), 121-125.
[S2] -, On the local degree of plane analytic mappings, ibid. 39 (2001), 197-202.
[Sz] Z. Szafraniec, On the number of branches of a 1-dimensional semianalytic set, Kodai Math. J. 11 (1988), 78-85.

Department of Mathematics
Technical University
Al. 1000LPP 7
25-314 Kielce, Poland
E-mail: matms@tu.kielce.pl

Reçu par la Rédaction le 19.11.2004
Révisé le 9.11.2005

