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The Lojasiewicz exponent of subanalytic sets

by STANISEAW SPODZIEJA (Lo6d7)

Abstract. We prove that the infimum of the regular separation exponents of two
subanalytic sets at a point is a rational number, and it is also a regular separation exponent
of these sets. Moreover, we consider the problem of attainment of this exponent on analytic
curves.

1. Introduction. Let M be a finite-dimensional, real analytic manifold
countable at infinity, o be a distance function on M induced by a Riemannian
metric on M, and let X, Y C M be closed subanalytic sets. In the theory
of semi-analytic and subanalytic sets ([2], [15], [22], [24], [25]), an important
role is played by the fact (proved by Lojasiewicz in [22] and [25]) that X
and Y are regularly separated at any zg. Namely:

THEOREM 1.1. For any xg € X NY there exist v > 0 and C > 0 such
that for some neighbourhood {2 C M of xg,

(s) ol X) + 0@, Y) > Colw, XNV’ for 2 € 2.
If additionally xo € X \'Y, then v > 1 and (S) is equivalent to
(") o(,Y)>Clo(x, X NY) forz e 2'NX,

where C' > 0 and 2 is a neighbourhood of xg.

Note that the condition zyp ¢ X \ Y leads to the trivial cases v = 0 in
(8" and v = 0 or v = 1 in (S), provided we put 0° = 0.

In this paper we investigate the smallest exponent v satisfying (S). Bo-
chnak and Risler ([3, Corollary 2]) proved:

THEOREM 1.2. For a fized relatively compact neighbourhood §2 of xy €
xXnyY,

Lo(X,Y) :=inf{v € R: 300 Yaeco oz, X) + o(z,Y) > Co(z, X NY)"}

18 a rational number.
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The exponent v satisfying (S) for some 2 and C' > 0 is called a regular
separation exponent of X and Y at xg. The infimum of all regular separation
exponents of X and Y at x( is called the fojasiewicz exponent of X, Y at
xo and denoted by L;,(X,Y). It is easy to see that

L., (X,Y)=inf{Lp(X,Y): 2 a relatively compact neighbourhood of z¢}.
We shall prove the following generalisation of Theorem 1.2.

THEOREM 1.3. Let xo € X NY. Then L,,(X,Y) € Q, and (S) holds for
v="L(X,Y), some C >0 and a neighbourhood 2 of xy.

The exponent £,,(X,Y) is attained on an analytic curve, namely, we
have

THEOREM 1.4. Let x9 € X NY and z9 € M\ (X NY). Then for any
neighbourhood (2 of x¢ there exists an analytic curve ¢ : [0,r) — 2 such that
e(0) e XNY, p((0,7) Cc 2\ (X NY) and for some constant C' > 0,

o(p(1), X) + o(p(1),Y) < Colp(t), X NY)F0Y) g e [0, r).

The above two theorems will follow from analogous results in
a slightly more general situation. Namely, for three subanalytic sets X,Y, Z
C M such that X NY C Z, we define a regular separation exponent of Y
and Z on X at a point zg € X NY to be any real positive v such that

(#) o(x,Y)> Co(z,Z)"  forze XNL,

where C' > 0 and (2 is a neighbourhood of xg. The infimum of all such
exponents v will be denoted by L;,(X;Y,Z). If Z = X NY then obviously

Lo(X;Y,Z) = L3,(X,Y), provided zp € X \ Y. The main result of this
paper is the following

THEOREM 1.5. Let X, Y, Z be closed subanalytic subsets of M with
XNY CZ, andlet xg € X NY.

(i) We have L;(X;Y,Z) € Q, and (#) holds for v = L,,(X;Y,Z), some
C > 0 and a neighbourhood (2 of .

(i) If 2o € X\ Z, then L,,(X;Y,Z) is attained on an analytic curve,
i-e. for any neighbourhood 0 of xo there exists an analytic curve @ :
[0,7) — X N2 such that ((0,7)) C X\ Z and ¢(0) € X NY, and for
some constant Cq > 0,

Cro(p(t),Y) < o(p(t), 2) =02 for t € [0, ).

The proof of the above theorem will be given in Section 2. Unfortunately,
in Theorems 1.4 and 1.5, we cannot require that ¢(0) = z¢ (see Example 2.5).
This observation shows that, in the proof of Theorem 1.5, it does not suffice
to apply the Curve Selection Lemma. We have to use another tool, the
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notion of Lipschitz stratification introduced by T. Mostowski [26] (see also
[27]-[29]).

Sections 3 and 4 are devoted to applications of Theorem 1.5.

Let X, Y be subanalytic sets, F': X — Y be a subanalytic mapping and
I'(F) be the graph of F. Let Luo(F) := Lz o) (I'(F); X x {yo},V xY),
where 29 € X, yo = F(zg), and V = F~!(yg). Theorem 1.5 implies that
Lz, (F) is the smallest exponent v satisfying the following fundamental Lo-
jasitewicz inequality:

(L) o(F(x),y0) = Co(x, V)", ze€ XN

for some neighbourhood {2 of xg, and C' > 0 (Corollary 3.1). The inequality
(L) plays an important role in singularity theory ([2], [19], [22], [23], [32]),
and in the solution of the division problem in distribution theory ([16], [21]).

For two subanalytic mappings F' : X - Y, g: X — Z, where X, Y, Z
are subanalytic sets, and z¢ € X, yo = F(x0), 20 = g(x0), we show that the
number Ly, (F/g) := Ly y0,20) (LI (F,9); X X {yo} x Z, X XY x {z0}) is the
smallest exponent v satisfying

(LT) o(F(x),y0) > Co(g(z),20)", z€ XN,

in a neighbourhood {2 of xq for some C' > 0, provided F~!(yo) C g~ *(20)
(Corollary 4.1). In particular, we obtain the Lejeune-Jalabert and Teissier
result stating that in the complex analytic case L, (F/g) € Q (20, Corollary
6.4], cf. [3]). We collect some relations between L;,(F') and L,,(F/g) in
Remark 4.3.

If X is a semi-algebraic set and F': X — R™ is a semi-algebraic mapping,
then the set {L£,(F) : x € V'} is finite, where V = F~1(0) (Corollary 2.7). So,
the number £(F') = maxgey L, (F') is the smallest exponent v for which (L)
holds at each zg € V. In Theorem 3.5 we prove that there exists a rational
number [ such that
(JKS) |F(@)|(1+ |z)) = Co(z, V)*™) in X
for some constant C' > 0. Moreover, the infimum [, (F') of all such expo-
nents [ is also a rational number and satisfies (JKS), provided £L(F) > 0
and X \ V is unbounded (if X is compact, then (JKS) holds for | = 0).
Theorem 3.5 is a generalisation of the Ji, Kollar and Shiffman result to the
semi-algebraic case ([17, Theorem 5 and Corollary 6], see also [4], [9], [10],
[18]). In the case when V is finite, (JKS) is also important in the polynomial
mappings theory (Remark 3.6).

In Section 4 we consider the notion of separation of two mappings. In par-
ticular we give a version of (JKS) for two mappings (Theorem 4.5, cf. [12]).

2. Separation of subanalytic sets. We recall some notions. A subset
of a linear space M is called semi-algebraic when it is defined by a finite
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alternative of finite systems of inequalities P > 0 or P > 0, where P are
polynomials on M. A set E C M is called semi-analytic if every point of M
has a neighbourhood {2 such that E N (2 is defined by a finite alternative
of finite systems of inequalities f > 0 or f > 0, where f : 2 — R are
analytic functions. The set F is called a subanalytic subset of M if every
point € M has a neighbourhood (2 such that £ N (2 is the image under the
projection map M x R¥ — M of a semi-analytic relatively compact subset
of M x RF (where k depends on x). For the basic properties of semi-analytic
and subanalytic sets see for instance 2], [11], [15], [22], [25].

For A C M, we denote by o(-,A) the distance function to A, i.e.
o(z,A) = infrca 0(z,7) if A#0, and o(2,0) = 1.

In the remainder of this section, X, Y, Z are closed subanalytic sets in M.
We start with some remarks on L., (X;Y, Z).

REMARK 2.1. (a) If zp € X NY C Z and X N 2 C Z for some neigh-
bourhood {2 of xg, then obviously, for any C, v > 0 the inequality (#) holds
in £2. So, L,,(X;Y,Z) = 0. In order to omit this trivial case, we will assume
xo € X \ Z.

(b) Obviously, £,,(X,Y) = L., (Y, X). However, we cannot require that
Lo(X;Y,Z) = L,,(Y; X, 7). Indeed, for X = {(z1,22) : ©2 = 0} and

= Z = {(x1,m2) : 1 = w2} we easily obtain Lo(X;Y,Z) = 1 and
Lo(Y: X, Z) = 0.

Since the exponent L£;,(X;Y, Z) has a local character, the proof of Theo-
rem 1.5 can be carried out in the case of subanalytic sets in an open set G of
a finite-dimensional real linear space M. This exponent does not depend
on the choice of the norm, so we will use the Euclidean norm | - |. Set
B(zo,R) ={x € M : |z — x| < R}, where 29 € M and R > 0.

LEMMA 2.2. Let Z be a closed subanalytic subset of G and xo € Z. Let

R > 0 be such that B = B(xo, R) C G. Then
A={(z,z) e Bx(ZNB):p(x,ZNB) = |z — 2|}

is a nonempty compact and subanalytic set in G x M. Moreover, if Z 1is
a semi-algebraic (and closed) subset of M, then the set {(z,z) € M x Z :
o(z,Z) = |z — z|} is semi-algebraic.

Proof. Since {(z,z,w) € BX(ZNB)xX(ZNB): |x—z|>|r—w|}isa
subanalytic and relatively compact subset of G x M?, its projection

E={(x,2) € Bx(ZNB): yeznp |r — 2| > |z —wl|}

onto B x M is subanalytic. Moreover, A = [B x (Z N B)] \ E, and hence,
by the Gabrielov Theorem on Complement ([13, Theorem 1|, [25, IV 4]), the
set A is subanalytic. The proof is analogous when Z is semi-algebraic (by
using the Tarski-Seidenberg Theorem, see [1, Theorem 2.3.4]). =
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A curve ¢ : [0,7) — M, where r > 0, is called analytic if ¢ has an
analytic extension ¢ : (r',r) — M, where ' < 0. If M = M, then in a
neighbourhood of 0, ¢ is the sum of a power series of the form

o(t) = ot +ap P 4o oy eM, peZ, p>0.

If ¢ # 0, then we may assume that «,, # 0. The number p is called the order
of ¢ and denoted by ord ¢. Additionally we put ord 0 = oo.

LEMMA 2.3. Let zp € X NY C Z, where x9 € X\ Z, and let B =
B(zg, R), where R > 0 and B(xo,2R) C G. Then there exist analytic curves
¢ :[0,r) = XNDB, ¢1:[0,r) =Y, and ¢ : [0,7) — Z, where r > 0, such
that

(i) ¢((0,r)) c X\ Z,

(i) ©(0) = ¢1(0) = 1(0),
(iii) there exists C > 0 such that

(1) o(z,Y)>Co(z,2)" forxe BNX,
where a( )
_ord(p — ¢
) Y ordlp— )

(iv) the smallest exponent v for which (1) holds is defined by (2); more-
over, there exist C; > 0 and to € (0,7) such that

(3) o(p(t),Y) < Crolp(t), 2)”  fort € [0,to].
Proof. For x € B and E C G we have g(x, E) = o(z, E N B(xo,2R)).
Thus we may assume that X C B and Y, Z C B(x0,2R). Let

V= {(a:,y,z) €EXXYXZ: Q(I‘,Y) = |‘/L‘_y| A Q(‘/E’Z) = |‘T_Z‘}v
U={((zy,2),(a,b,c)) e VxV:|a—c|=|z—2z[ Al|lz—y|>]|a—Dl}.
By Lemma 2.2, the sets V and U are subanalytic and relatively compact in
G x M? and G x M?, respectively. Then the projection W ={(z,y,z)€V :

Jape)ev ((7,9,2),(a,b,c)) € U} of U is a subanalytic set. So, the comple-
ment I" =V \ W is subanalytic. Obviously,

I'={(z,y,2) € V:p0(z,Y) =inf{0(a,Y) :a € XNBAo(a,Z) = o(z,2)}}.

Since B and B(zg, 2R) are compact sets, for any a € (XN B)\ Z there exists
(z,y,2) € I such that o(z,Z) = p(a,Z). By the assumption zg € X \ Z,
there exists 1 € X NY such that (x1,x1,x1) is an accumulation point of I'.
Consequently, by the Curve Selection Lemma ([25, IV.3]), there exists an
analytic curve (@, p1,v) : [0,7) — I', where r > 0, such that ¢, ¢1, ¥
satisfy (i) and (ii).

For ¢, o1, ¥ chosen above, let the number v be given by (2). Obviously,
v € Qand v > 0. By the definition of v, there exist ty € (0,7) and C1,Cy > 0
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such that

(4)  [o(t) = 1)) < Culp(t) — (@) < Calp(t) —u(t)]  for t € [0, o).
By the definition of I" we see that (4) implies (3).
Set € = o(p(ty), Z); we have € > 0. Take any = € (X \ Z) N B such that

o(z,Z) < e. Then there exists t € (0,%9) such that o(x,Z) = o(¢(t), Z). So,
from (3) and the definition of I,

(5) o(@,Y) > o(0(t),Y) > % olo(t), 2) = L oz, 2)".

Since {x € XN B : g(x, Z) > €} is compact, by (5), diminishing C' = C/C»
if necessary, we obtain (1) for z € X N B. This gives (iii). The remaining
condition in (iv) immediately follows from (3) and (4), because (4) holds
only for v given by (2). m

By a stratification of a subset X C M we mean a decomposition of X
into a disjoint locally finite union

(6) X =S

where the subsets S, are called strata, such that each S, is a connected
embedded submanifold of M, and each (S, \ S,) N X is the union of some
strata of dimension smaller than dim S,.

The set X with stratification (6) is called locally bi-Lipschitz trivial along
each stratum if for each stratum S, and each x € S, there exist: a neigh-
bourhood U C M of z, a submanifold N of U transverse to S, at = and
of dimension complementary to dim .Sy, and a bi-Lipschitz homeomorphism
(i.e. Lipschitz homeomorphism with Lipschitz inverse)

(7) U:XNU— (SynU) x (NNX).

In [28] and [29] Parusinski showed the existence of a Lipschitz stratifica-
tion of subanalytic sets, and proved that any Lipschitz stratification of X
ensures locally bi-Lipschitz triviality of X along each stratum ([28, Theorem
1.9], and |29, Lipschitz Isotopy Lemma, Theorem 1.6]). From these results
we obtain:

LEMMA 24. Let X = X1 U ---U X, where Xq,..., X are compact
subanalytic subsets of M. Then there exists a stratification X = |J S, of X
such that each X1,..., Xy is a union of some strata So, and X is locally
bi-Lipschitz trivial along each stratum. In particular, for each stratum S,
and any y,z € S, there exist neighbourhoods §2y, 2, of y, z, respectively,
and a bi-Lipschitz homeomorphism @ : X N 2, — X N {2, which preserves
Xl, e ,Xk, i.e.

(8) @(Xiﬂﬂy):Xiﬂ.Qz fori=1,... k.
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Proof. By Theorems 1.4 and 1.6 in [29] there exists a stratification X =
|J Sa of X such that each X;,..., X} is the union of some strata S,, and X
is locally bi-Lipschitz trivial along each stratum S,. Take any stratum S,
which contains at least two points. Let x € S, and let ¥ be a bi-Lipschitz
homeomorphism of the form (7). One can assume that ¥ is defined by a
Lipschitz flow obtained by integrating a Lipschitz vector field tangent to
strata of X (see proof of Theorem 1.6 in [29] and proof of Proposition 1.1
in [26]). Then ¥(X; NU) = (Sa NU) x (NN X;) for i = 1,...,k Thus,
for any y € S, N U we easily get (8). Since S,, is connected, we obtain the
assertion. m

Proof of Theorem 1.5. Without loss of generality we may assume that

xo € X \ Z. By Lemma 2.4, one can assume that there exists a stratification
XUY UZ =, S such that each of the sets X NY, X, Y, Z is a union
of some strata S,, and X UY U Z is locally bi-Lipschitz trivial along each
stratum.

Take any z9p € X NY and let S,,,...,Sq, be all the strata for which
zg € Su. Let R > 0 be such that B(zg,2R) C G and

(XUY UZ)NB(x0,2R) = (Sa;, U---U Sq,) N B(zo,2R).

Let ¢ : [0,7) — X N B(xg, R) be an analytic curve for which there exist
analytic curves 1, such that the assertion of Lemma 2.3 holds. Let v be
as in (2). Then v is a rational number and satisfies (1). Hence, it suffices to
prove that

(9) v="Ly(X;Y,Z).

In accordance with (1), it suffices to prove that for any 0 < R; < R there

exists a continuous curve k : [0,e) — X N Bj, where ¢ > 0 and B} =
B(xo, R1), such that x((0,¢)) C X\ Z, k(0) € XNY, and for some C},Cs > 0,

(10)  Cro(k(t),Y) < o(k(t), 2)” < Cae(k(t),Y)  for t € [0,¢).

Take any 0 < R; < R. Let z = ¢(0), and let © € S,,. Then S,, C X NY
and there exists yo € Sa, such that [yo — x¢| < R1/2. By Lemma 2.4, there
exist neighbourhoods {21, {25 of x and g, respectively, where {25 C Bj, and
a bi-Lipschitz homeomorphism ¢ : (X UY UZ)N 2 — (XUY UZ)N
such that @(X N .Ql) =X N {2 and @(Y N Ql) =Y N {2 and @(Z N Ql) =
Z N (2. Moreover, there exists 0 < ¢ < o such that ¢([0,¢)) C (2. Put
k(t) = @(p(t)) for ¢t € [0,¢). Since @ is a bi-Lipschitz homeomorphism,
Dio(e(t),Y) < 0(k(t),Y) < Dao(e(t),Y),
Dlg(@(t)vz) < Q(’{(t)a Z) < D2Q((P(t)v Z)
for t € [0,e) and some Dj, Dy > 0. Then by (3) we obtain (10) and, as a

consequence, (9). This gives (i). Assertion (ii) follows from the above and
Lemma 2.3.
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EXAMPLE 2.5. In Theorems 1.4 and 1.5(ii), we cannot require that ¢(0)
= 0. Indeed, let 29 = 0 € R? and

X ={(z1,20,23) € R : 2% = mpx3}, Y = {(21,20,23) € R3: 29 = 0}.
Then X NY = {(z1,72,73) ER3 111y =29 =0}. Let Z=XNY.

By Theorem 1.1, Lo(X,Y) = Lo(X;Y, Z). Note that Lo(X;Y,Z) = 2.
Indeed, we may use the polycylindric norm in R3. Let 2 = {(z1, 20, 23) €
R3 : max{|z1|, |z2|, |v3]} < €}, 0 < e < 1. For any = = (z1,72,73) € X N 2
we have o(x,Y) = |z2| and o(x, Z) = max{|x1|, |z2|}. If o(z, Z) = |22], then

o(,Y) = |z2| > |22f? = o(, 2)*.
If o(z,Z) = |x1|, then
o(2,Y) = || > |zaas| = |21]* = oz, 2)%.
So, Lo(X;Y,Z) < 2. On the other hand, taking the curve ¢ : [0,/2) > ¢ —
(t,(2/e)t?,e/2) € X N §2, we have

o(1),Y) = 222 = 2 o((0), 21"

Hence Lo(X;Y, Z) > 2. Summing up, Lo(X,Y) = Lo(X;Y,Z) = 2.

We shall show that the exponent L£y(X,Y") is not attained on any analytic
curve ¢ such that ¢(0) = 0. Assume to the contrary that for some analytic
curve ¢ = (101, 92,¢3) : [0,r) = R?, where (0) = 0, ((0,r)) C R*\ Z, we
have o(¢(t), X)+o(p(t),Y) < Co(p(t), Z)? for t € [0,7), where C' > 0. Then
(1) olp(t), X) < Ce(p(t), 2)*,  o(p(t),Y) < Colp(t), Z)* for te(0,r).

Since o(p(t),Y) = [w2(t)], e(¢(t), Z2) = max{[p1(t)], [p2(t)]} for ¢ € [0,7),
from (11) we may assume o(p(t), Z) = |¢1(t)| for t € [0,7). So, (11) gives

(12) 0<ordyp; <oo and ordeps > 2ord ;.
By (11), the origin is an accumulation point of the subanalytic set
E = {(z1,72,23,51,52,y3) ER® 121 £ 0 A o} = yay3
A max{|zal, [21 — 1, [22 — yo, [23 — ys|} < Claa]?}.

So, by the Curve Selection Lemma we may assume that there exists an
analytic curve ¢ = (11,%9,%3) : [0,7) — X such that ¢(0) = 0 and
(p(t),9(t)) € E for t € (0,7). Then

li(t) = i(t)] < Cler(1)]* for t € [0,7),
and so ord(y; — ¥;) > 2ordgy, ¢ = 1,2. Since 0 < ordy; < 2ord ¢y,
wee have ordvy; = ord ;. Moreover, 1)? = bpib3 and 1(0) = 0, hence
ord gy < 2ord ;. Therefore, ord g = ord ¢ < co. Hence and from (12),

ord pg > 2ord 1 = 2ord ¢y; > ord e = ord ps.

This is impossible.
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COROLLARY 2.6. Let X, Y, Z be compact subanalytic subsets of a finite-
dimensional real linear space M such that X N'Y C Z. Then there exists a
stratification

(13) xny =Js.
such that for each stratum S, the function
(14) S0 3 La(X;Y, 2)

is constant. In particular, the function X NY > x — L, (X;Y,Z) is upper
semi-continuous.

Proof. By Lemma 2.4, one can assume that there exists a stratification
XUYUZ =, S such that each of X NY, X, Y, Z is a union of some
strata Sy, and X UY U Z is locally bi-Lipschitz trivial along each stratum.

Let S, C XNY. Take any z, w € S,. Then there exist neighbourhoods {2y,
{25 of z, w respectively and a bi-Lipschitz homeomorphism @ : (X UY U Z)
N — (XUYUZ)Q\QQ such that @(Xﬂ.gl) =XN{, @(Yﬂgl) =YN{)
and @(ZNH) = ZNk If X N2 C Z for some neighbourhood (2 of z,
then X N@(2N ) C Z,s0 L(X;Y,Z) = L,(X;Y,Z) = 0. Assume that
z,w € X \ Z. By Theorem 1.5, one can assume that

o(z,Y) > Cro(z, Z2)XY2)  for z e X N2,
o(x,Y) > Coo(x, Z)» V2 for x € X N (2,

where C7,C5 > 0 are some constants. Since @ is a bi-Lipschitz homeomor-
phism, we have £,(X;Y,Z) = L£,(X;Y,Z), and so the function (14) is
constant. m

COROLLARY 2.7. For any closed semi-algebraic subsets X, Y, Z of a lin-
ear space M such that X NY C Z, the set {L,(X;Y,Z) : x € XNY} is
finite.

Proof. Let B={z € M : |z| < 1}. The mapping

z
H:B —F M
92*—>1_’z’26

is a diffeomorphism. The inverse of H is of the form

2

w1+wﬂ+MwP

Moreover, H and H~! are semi-algebraic and locally bi-Lipschitz homeomor-
phisms. Let E = H (X)), W=H YY),V =HY(Z). Then EUW UV is
a semi-algebraic set, and in consequence, A = EUW UV is a compact semi-
algebraic set. By Corollary 2.6, there exists a stratification ENW = J S,
such that for each stratum S, the function S,NB > z — L,(E; W, V) is con-
stant, and the number of strata S, is finite. Since X = H(FE), Y = H(W),

H Y (w) =
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Z =HV), XNY = HEANW) = (JH(Sa N B) and H is locally bi-
Lipschitz homeomorphism, it follows that for any H(S, N B) # 0 the map-
ping H(S, N B) > x+— L,(X;Y, Z) is constant. This gives the assertion. m

By the i-th skeleton of the stratification (6) we mean X" = [Jyi g <; Sa-
The stratification (6) of a complex analytic subset X of a complex analytic
manifold M is called complex analytic if all the skeletons X are complex
analytic subsets of M. The stratification (6) of a complex algebraic subset
X of a complex linear space M is called complex algebraic if all the skeletons
X' are complex algebraic subsets of M and the number of strata S, is finite.

REMARK 2.8. Parusinski (in [28, Theorems 2.4 and 2.6]) proved that
for a complex analytic set X, we may require that the locally Lipschitz
stratification (6) is complex analytic, and for a complex algebraic set, we may
require that the stratification is complex algebraic. Hence, in Corollary 2.6,
for complex analytic sets X, Y, Z, we may require that the stratification (13)
is complex analytic, and for complex algebraic sets X, Y, Z, we may require
that it is complex algebraic.

REMARK 2.9. Let X, Y, Z be closed subanalytic subsets of an open sub-
set G C R™ such that X NY C Z. Under a given locally Lipschitz stratifica-
tion

XUYUZ:U&X

such that X NY is a union of some strata S, for any g € X NY such
that zp € X \ Z, we may determine a neighbourhood (2 of 2y on which the
inequality (#) holds for v = L,,(X;Y, Z).

Indeed, let Sy, . .., Sq, be all the strata for which xg € S,,. Take any R >0
such that B = B(zg,R) C Gand (XUY UZ)NB = (S, U---US,,)NB.
Put 2 = {& € R" : |z — x9| < R/2}. Under the notation of the proof of
Theorem 1.5, we obtain (1) for v = £,,(X;Y,Z). For x € X such that
|z — x| < R/2, we have p(x,Y) = o(x,Y N B) and o(z,Z) = o(x, Z N B).
Thus, by (1), we obtain o(z,Y) > Co(z, Z)*=X¥2) for x € X N 1.

3. Lojasiewicz exponent of a mapping. Let X, Y be closed suban-
alytic subsets of M, and let F' : X — Y be a subanalytic mapping, i.e. a
continuous mapping with subanalytic graph I'(F').

From Theorem 1.5 we get (cf. [3, Corollary 1], [20, Corollary 6.4]):

COROLLARY 3.1. Let myp € X, yo = F(z0), and V. = F~1(yy). The
number Ly, (F) = L(gyy0)(L'(F); X x {yo},V x Y) is the smallest exponent
v satisfying (L) for some C > 0 and a neighbourhood (2 of xy.

Proof. For any x € X we have o(F(x),y0) = o((z, F(z)),X X {yo})
and o(z,V) = o((z, F(x)),V x Y). So, condition (L) is equivalent to the
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inequality o(z, X x {yo}) > Co(z,V xY)", z € I'(F)N A, where A is a
neighbourhood of (g, y0). Thus, Theorem 1.5 gives the assertion. =

The number L, (F) is called the Lojasiewicz exponent of F' at xg. From
Corollaries 3.1 and 2.6, we immediately obtain

COROLLARY 3.2. Let V.= F~1(yy), where yo € Y. The function V >
x +— Ly (F) is upper semi-continuous.

REMARK 3.3. Let V = F~1(F(x)) and let 29 € X \ V. By Corollary 3.1
and Theorem 1.5, the exponent L;,(F) is attained on an analytic curve,
i.e. for any neighbourhood 2 of xg there exist €y > 0 and an analytic
curve ¢ : [0,7) — X N {2 such that ¢(0) € V, ¢((0,7)) € X \ V and
o(F(o(t)),10) < Cro(p(t), V)E=oF) for t € [0,7). We cannot require that
©(0) = zo. Indeed, it suffices to consider the set X from Example 2.5 and
the projection map F(x1,x2,x3) = x2.

In the remainder of this section, F' : X — R™ is a semi-algebraic mapping,
i.e. a continuous mapping defined on a semi-algebraic set X C R™ with semi-
algebraic graph I'(F). We assume that X is closed. Let V = F~1(0).

According to Corollaries 2.7 and 3.1, the set {£,(F) : € V'} is finite,
so we may define a special regular separation exponent of F',

LF)=max{L,(F):x eV} ifV #0.
Additionally, we put L(F)=01if V = 0.
REMARK 3.4. (a) Obviously, £L(F') = 0 if and only if for each connected
component W of X either VAW =W or VNW = 0.

(b) From the definition of L(F'), it follows that if X is a compact set,
then there exists C' > 0 such that |F(z)| > Co(z, V)& for z € X,

In the considerations at infinity we will use the notion of curves mero-
morphic at infinity instead of analytic curves. A curve ¢ : [a,00) — RF,
where a € R, is called meromorphic at infinity if ¢ is the sum of a Laurent
series of the form

ot) = aptf +ap P o €RY peZ

If ¢ # 0, then we may assume that «;, # 0. The number p is called the degree
of ¢ and denoted by deg¢. Additionally, we put deg( = —oo.

THEOREM 3.5. If X \ 'V is an unbounded set, then for any v € Q such

that v > L(F), there exists a unique | € Q such that for some constant
C >0,

(15) |F(z)|(1+|z))! > Co(x, V)" forze X,
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and for some curve ¢ : [a,00) — X \ 'V meromorphic at infinity, with
deg >0,

(16) [F(e)I(L+ o)) < Colp(t), V)", t € la,00),

where C' > 0 is a constant.

Proof. For any r > 0, the set {x € X : |z| < r} is compact, so there
exists C, > 0 such that
(17) Cro(z, V) <|F(z)| forze X, |z|<r.

Observe that the set
W ={we X\ V:Voex (Jw| = |z| = 20(w,V)"|F(2)| 2 o(z, V)"|F(w)])}
is unbounded. Indeed, since X \ V' is unbounded, for any sufficiently large
r > 0 the set

A={o(z,V)'/|F(x)]:|z|=r ANz e X\V}
is nonempty, and A C (0,00). Thus, from (17) we get 0 < supA < 1/C,,
and therefore, there exists w € X \ V such that |w| = r and
o(w, V)V 1
———" > —sup A.
[F(w)] ~ 2
This implies that w € W. In consequence, W is an unbounded set.

Since v is a rational number, by Lemma 2.2 and the Tarski-Seidenberg
Theorem we conclude that W is a semi-algebraic set. Moreover, W is un-
bounded, thus, by the Curve Selection Lemma at infinity, there exists a curve
(¢, 1) @ [a,00) — ['(F|w) meromorphic at infinity such that degy > 0,
01 = F(p), degpy € Z. If V # (), then by Lemma 2.2 we may assume that
o(e(t),V) = |e(t) — ¥(t)| for t € [a,00), where 9 : [a,00) — V is a curve
meromorphic at infinity. If V = (), we put ¢» = ¢ + 1. Let
vdeg(p — ¢) — deg F(¢)

deg ¢ '
Obviously [ € Q. Moreover, there exist C/,C” > 0 and R > 0, where R =
|o(to)| for some tg, such that for any ¢ € [a,00) satisfying |¢(t)] > R, we
have

(18)

[ =

v

t),V) o(p(t), V)"
[F(e(1))] [F(e(2))]
Take any 2 € X \ V such that |z| > R. Since degy > 0, we have |z| = |¢(t)|
for some t € [a, 00). By the definition of W and from (18),

V)Y olp(t), V)"

19 CUQ(:E—SQCH—S 1+ o)) = 1+ |z

o) g I < (L IO = (L4 Ja)

Let C = min{C”, Cgrmin{1, (1+ R)'}}. Then (19) gives (15) for z € X such
that |z| > R. Since (1 + |z|)! > min{1, (1+ R)'} for |z| < R, (17) gives (15)
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for € X such that |z| < R. Summing up, (15) holds in X. Moreover, (16)
immediately follows from (18). m

For any v € Q such that v > L(F'), we denote by I (F,v) the unique
number [ € Q satisfying (15) and (16) of the assertion of Theorem 3.5. If
v = L(F), then for simplicity we write [ (F') instead of I (F, L(F)).

REMARK 3.6. In the case when V is finite, the Lojasiewicz exponent of
F' at infinity L£o(F) has been investigated, where

Loo(F) =sup{v € R: 3¢ >0 Vaoex (Jz| > R= |F(z)| > C|z|")}.

It is easy to see that, in this case, we have Loo(F) = L(F) — loo(F).
This exponent has been applied in many problems concerning polynomial
mappings (see for instance [5]-[8], [14], [16], [18], [30], [31], [33], [34]).

In the case of polynomial mappings F' : R” — R™, estimations from
above of L, (F') are very interesting. In the complex case this has been done
([4], [9], [10], [17], [18]). The real case is more difficult. We have the following:

PROPOSITION 3.7. Let F = (fi,..., fm) : R — R™ be a polynomial
mapping, Fc : C* — C™ be the complezification of F, V = F~1(0) and
Ve = F(EI(O). Then, for any xg € V,

(20) Lag(F) < Lag (Fe) Lo (Ve, RY).
Moreover, if d = maxi<j<m, deg f; > 0, then
(21) Ly (F) < dLyy (W, R™),

where W C C™ is the zero-set of the complexification of g = f2 +--- + f2.

Proof. The inequality (20) follows immediately from the definition.

It is easy to observe that L, (F) = $L4(g). As the degree of I'(gc) is
equal to 2d, by Theorem 4.2 in [10] we obtain £;,(gc) < 2d. Hence and from
(20) we get (21). m

EXAMPLE 3.8. For a polynomial function g : R” — R, and its complex
zero-set We = g(El(O), the exponent L, (Wc,R™) for 9 € R" N W can be
large.

Indeed, we take the Masser and Philippon example (|17, Example 15]).
Let fl(x) = T2 — xila f2(x) = T3 — xga sy fn—l(m) = Tn — .Z‘fll_l, fn(m) = 1‘%,
and g = f2+---+ f2 forx = (z1,...,2,). Let F = (f1,..., fn) : R® — R",
Then Lo(F) > d*, and by (21), d* < dLo(We,R"), i.e. Lo(We,R?) > d" 1

4. Remarks on separation of two mappings. Let X, Y, Z be closed
subanalytic sets and let F': X — Y and g : X — Z be subanalytic mappings,
z0 € X, yo = F(xg), V= F1(yo) € g7 (20), where 2y € Z. From Theorem
1.5 and Corollary 2.6, we easily obtain
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COROLLARY 4.1. Ly (F/g) = Lzgyo,20)(L'(F,9); X x {yo} X Z,X x Y
x {zo}) is the smallest exponent v satisfying (LT) for some C > 0 and
a neighbourhood 2 of xy. Moreover, the function V > x — L,(F/g) is upper
semi-continuous.

REMARK 4.2. If g71(29) N 2 = V N §2 for some neighbourhood {2 of z,
then Lo, (F) < Lo (F/9)Lay(9)-

Indeed, on(F(x),50) > Don(g(x), z0) =079 > D' g(a, V)~o (F/9) a0 (9)
in a neighbourhood of xg for some constants D, D’ > 0.

REMARK 4.3. Let F': M — R¥ and g : M — R™ be analytic mappings,
V =F~10) c g7(0), and let z¢ € V.

(a) We have L, (F') > L4,(F/g). Indeed, g is a locally Lipschitz mapping,
so lg(x)[Eo ) < Colr, g 1(0))E®) < Cola, V)Eol®) < C'|F ()] in
neighbourhood of zy for some C,C’ > 0.

(b) If o is a smooth point of V', then L, (F/g) = L4, (F'), provided the
components of g generate the ideal of the germ of V' at xg. In particular
Ly, (F) = supy, Lo, (F/h), where h runs through all analytic mappings such
that V' N 2 C h=1(0) for some neighbourhood {2 of x¢. Indeed, it is easy to
see that £,,(g) = 1, and then (a) and Remark 4.2 give the assertion.

(c) If 2o is a singular point of V, then we can require neither £, (F) =
supy, Lz, (F/h) nor Ly, (F) > supy, Lz (F/h).

Indeed, for F(z,y) = zy, (v,y) € R% we have Lo(F) = 2. Moreover,
for any nonzero analytic mapping h such that h(z,y) = 0 for zy = 0 in a
neighbourhood of 0, we have |h(z,y)| = |F(z,y)||hi(z,y)|, where hy is an
analytic mapping. Thus, Lo(F/h) <1 <2 = Ly(F).

On the other hand, for F(z,y,z) = (22,yz) and g(z,vy,2) = (z,yz), we
have V = F~10,0) = ({0} x R x {0}) U ({0,0} x R), and in the poly-
cylindric norm, o((z,y, 2), V) = min{max{|z|, |y|}, max{|z|,|z|}}. Then we
easily deduce that Lo(F) =2 = Lo(F/g).

Let F: X — RF and g : X — R™ be semi-algebraic mappings, V =
F~1(0), and let V C g~1(0). By Corollaries 2.7 and 4.1, the set {£.(F/g) :
x € V'} is finite. Then we may define

L(F/g) =max{L,(F/g):x €V} ifV #£0.
Additionally we put L(F/g) =0if V = 0.
REMARK 4.4. (a) Obviously, £(F/g) = 0 if and only if for each con-
nected component W of X either W C g=(0) or VNW = .

(b) From the definition of £(F/g) it follows that if X is a compact set,
then there exists C' > 0 such that |F(z)| > C|g(z)|*F/9) for 2 € X.

Repeating the proof of Theorem 3.5 (by considering |g(x)| instead of
o(x,V)) we obtain
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THEOREM 4.5. If X \ V is an unbounded set, then for any v € Q such
that v > L(F/g), there exists a unique | € Q such that for some constant
C >0,

(22) |F(2)|(1+[2))! > Clg()|”  for any z € X,
and for some curve ¢ : [r,00) — X\V meromorphic at infinity, with deg ¢ >0,

(23) IF(e)I(1 + @) < C'g(e@)), ¢ € [r,00),
where C' > 0 is a constant.

For any v € Q such that v > L(F/g), the unique number [ € Q satisfying
the assertion of Theorem 4.5 is denoted by loo(F/g,v). If v = L(F/g), then,
for simplicity, we write lo(F/g).

In the case of polynomial mappings F : R” — R* and ¢ : R* — R™, we
have the following connection between lo(F/g,v), loo(F,v) and L(F).

COROLLARY 4.6. Let ¢1,...,9m be the components of g, and d =
maxi<j<mdeggj. If V# 0 and d > 0, then
(24) lo(F/9,0) < Lo(F,0) + (A= Dv for any v €Q, v > L(F).

The proof will be preceded by a lemma.

LEMMA 4.7. Let h € R[x1,...,2,], d = degh > 0, and S = h=1(0). If
S £, then there exists C > 0 such that C|h(z)| < o(z, S)(1 + |z|?~) for
any x € R™.

Proof. Tt is well known that there exist polynomials hq, ..., hy, € R[z,y],
where x = (z1,...,2,),y = (Y1, - -, Yn), such that deg hy, ... ,degh, < d—1

and
n

(25) h(z) = h(y) =Y (x5 —y;)hi(@, ).

j=1
Let z € S. Then there exists D > 0 such that for any j =1,...,n,
(26)  |hj(z,y)| < DA+ |z|4™Y)  for x,y € R” such that |y| < |2| 4 2|z

Take any x € R", and let y € S be such that p(x,S) = |r — y|. Since
o(z,5) < |z — z|, we have |y| < |z] + 2|z|. So, by (25) and (26),

n
(@) < |2 =yl hy(, )] < nlz — y[ DA+ 2],
j=1
Then, for C' = 1/nD, we obtain the assertion. m
Proof of Corollary 4.6. By Lemma 4.7, there exists C; > 0 such that
(27) Cilg(z)| < o(z, V)1 + |2|*™Y)  for z € R™
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Then for v € Q with v > L(F'), by Theorem 3.5, there exists Cy > 0 such
that

Cy Colg(@)]” < Caolw, V)" (1 + |2471)" < |F(@)[(1+ )= (1 4 |21y
for any x € R™. Hence, by Theorem 4.5, we easily obtain (24). =
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