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Volume and multipliities of real analyti setsby Guillaume Valette (Kraków)Abstrat. We give riteria of �nite determinay for the volume and multipliities.Given an analyti set desribed by {v = 0}, we prove that the log-analyti expansion ofthe volume of the intersetion of the set and a �little ball� is determined by that of the setde�ned by the Taylor expansion of v up to a ertain order if the mapping v has an isolatedsingularity at the origin. We also ompare the ardinalities of �nite �bers of projetionsrestrited to suh a set.1. Introdution. The question of su�ieny of jets has been studied bymany authors [2℄, [3℄, [9℄, [13℄. It allows one to ompare a given singularityto a semi-algebrai one, whih is very useful if one wants to do some e�etiveomputations.In this paper we study the volume and multipliities of real analytigerms. By volume we mean the Hausdor� measure. In [5℄ (see also [1℄) it isproved that the volume of the intersetion of a subanalyti set and a ball ofradius r has a Puiseux extension in r and ln r. We give here some expliitriteria for the determinay of this expansion up to a ertain order. Theriterion we give is based on the Kuiper�Kuo riterion. By the �ojasiewizinequality we get results of �nite determinay for mappings having an iso-lated singularity at the origin.We also study the �nite determinay of multipliities, that is, ardinal-ities of �nite �bers of a projetion restrited to a given analyti set. Thesenumbers are important sine they allow desribing the topologial type ofa subanalyti set via ylindrial deompositions. Many theorems have beenproved to enable e�etive omputations of these multipliities in the semi-algebrai ase. Therefore it is useful to have theorems whih ompare themultipliities of a real analyti set to those of the set de�ned by the Taylorexpansion of its equation.
2000 Mathematis Subjet Classi�ation: 32B20, 57N80, 58A20.Key words and phrases: analyti sets, Hausdor� measure, strati�ation, su�ieny ofjets.This paper is partially supported by the RAAG Network.[265℄



266 G. ValetteAt the beginning we reall some results of D. Trotman and L. Wilson [9℄about su�ieny of jets. They have proved that some partiular transfor-mation of �pull-bak� type an improve the regularity of a strati�ation. In[11℄ the author proved that the volume is preserved under some topologialtrivializations. Then we prove our determination theorems for the volumeand multipliities.2. Notation and some de�nitions2.1. (ti) regular strati�ations. The (ti) onditions have been introduedby D. Trotman. They generalize a ondition introdued by R. Thom whihonerned C∞ manifolds. We reall the de�nition of [9℄. Let
G

d =
d⋃

j=m

G(d; j)

where G(d; j) is the Grassmannian of j-dimensional vetor spaes in R
d.In what follows,m and n will denote �xed integers. We set R

d = R
n×R

m.We will denote by N the subset R
n and by Y the subset R

m. The mapping
π will be the projetion on Y and π⊥ will be the anonial projetion on N .We will denote by X a subset of R

d and by S = {Y,X1, . . . , Xp} astrati�ation of X by C∞ manifolds.Definition 2.1.1. A diret transversal to Y is the germ of an analytimapping v : N → Y . Its graph will be denoted by Γv.Abusively we will say �transversal� instead of �diret transversal�, sineall the transversals in this paper will be diret ones.First we reall the de�nition of (ti,j) onditions. As in [9℄ we will denoteby R
− the set of real numbers marked with the symbol − in exponent. For

i ∈ R we will say that a sequene (ys) is i-�at with respet to the sequene
(xs) if |ys| ≪ |xs|

i. We will say that the sequene (ys) is i−-�at with respetto (xs) if |ys| ≤ C|xs|
i for a onstant C.Let

G(S) =
⋃

i≤p

{(x;TxXi) ∈ X × G
d | x ∈ Xi}.For T ∈ G

d let Σ(T ) = {v ∈ Lin(N ;Y ) | Γv 6⋔ T}.Definition 2.1.2. Let i, j ∈ R ∪ R
−. We will say that (v;S) is (ti,j) ifno sequene (xs; ys;Ts) of points of G tending to 0 satis�es: |ys − v(xs)| is

i-�at and d(y − dxs
v;Σ(Ts)) is j-�at.For i ∈ R, we will say that (v;G) is (ti) if it is (ti,i−1).Remark 1. Condition (ti) an be haraterized by transversality to allthe strata Xs of Ci diret transversals to Y (see [9℄).



Volume and multipliities of analyti sets 267The (ti) onditions will provide our riteria of �nite determinay. To beable to express these riteria analytially we are going to give some expliitharaterizations of the (ti) onditions.Remark 2. For i ≥ 1 (in R) the following expliit haraterization of
(ti) will provide us an analyti ondition for determinay. De�ne the hornneighborhood of v of order i to be the following set:

H(v; i;C) = {q = (x; t) ∈ R
n × R

m | |v(x) − t| ≤ C|x|i}.Let
µ(L;T ) = inf

|u|=1, u∈T
‖Lu‖2whenever L : R

d → Y is a linear map and T ⊆ R
d a vetor spae (here ‖ · ‖2is the eulidian norm). Then for i ≥ 1 we get the following haraterizationof ondition (ti). The ouple (v;S) is (ti) if and only if there exists a hornneighborhood of v of order i suh that for any x in this set,(2.1) µ(d(x;y)(y − v(x));T(x;y)Xk) ≥ ε|x|i−1where Xk is the stratum ontaining the point x and ε > 0.For i negative we may relate ondition (ti) to the Kuo�Verdier ondition.We de�ne

τ(U ;V ) = sup
|π

⊥

V (u)|

|πV (u)|
.Then in [9℄ the following is proved:Lemma 2.1.3. For all T ∈ G

d, τ(Y ;T ) = 1/d(0;Σ(T )).We say that the strati�ation S is strongly Verdier regular with exponent
i (at the origin) with respet to Y if there exists a neighborhood of the originsuh that for eah stratum Xk,

τ(Y ;TxXk) ≪ |x− π(x)|i.By the above lemma we see that ondition (t0
−,i−) is atually the strongVerdier ondition with exponent 1 − i at any point of Y .Note that by de�nition of τ the strong Verdier ondition with exponent jimplies (by standard arguments, see [6℄, [7℄, [12℄) that we are able to onstruta vetor �eld tangent to the strata, extending a given vetor �eld on Y andsatisfying(2.2) |w(q) − w(π(q))| ≤ C(q)|q − π(q)|jin a su�iently small neighborhood of Y with C a ontinuous funtion tend-ing to zero when q approahes Y .



268 G. Valette2.2. Deformation of transversals. We de�ne the notion of deformationof transversals as in [9℄.Let ̺ ∈ R and m′ ∈ N. Let U be a neighborhood of the origin in R
m′ . Let

g, h1, . . . , hm′ : N → Y be smooth funtions on U satisfying |hr(x)| = o(|x|̺)(resp. |hr(x)| = O(|x|̺)) and |dxhr| = o(|x|̺−1) (resp. |dxhr| = O(|x|̺)) forany r. Then
F : N × U → N × Y,

F (x;u) = (x, f(x, u)) = (x, fu(x)) =
(
x, g(x) +

m′∑

r=1

urhr(x)
)
,is alled a deformation of ontat ̺ (resp. of ontat ̺−).Deformations of transversals indue a pull-bak transformation over thegraphs of maps from N × Y into G

d. We de�ne it as in [9℄.If for eah point p ∈ U the mapping F is transverse to the strata we mayde�ne F ∗S as the strati�ation of F−1(X) given by the manifolds F−1(Xk).Then let us de�ne the push-forward of a transversal. Let u be a transver-sal to U . We will denote by F∗u the transversal de�ned by v(x) = g(x) +∑m′

r=1 ur(x)hr(x). The map F then sends the graph of u onto the graph of v.Extend also addition to R ∪ R
− by setting a− + b = a+ b− = a+ b and

a− + b− = (a+ b)−.Theorem 2.2.1 (see [9℄). Let F be a deformation of ontat α. If theouple (F ∗u;G) is (tα+̺) then (u;F∗G) is (t̺).Let i ∈ R ∪ R
− and a ∈ R. In partiular the following orollary will beinteresting for us:Corollary 2.2.2. Let F be a deformation of ontat i+a and u = F ∗0.If (F ∗u;G) is (ti) then (0;F∗G) is strongly Verdier regular with exponent a+1.3. On the volume of strati�ed families. For r ∈ R, stritly positive,we denote by B(0; r) the ball of enter 0 and radius r and by S(0; r) thesphere of enter 0 and radius r.Let A be a subanalyti subset of R

n×R
m. We will onsider suh a subsetas a family of subanalyti subsets of R

n parametrized by R
m. For U ⊆ R

m wedenote by AU the subfamily {q = (x; t) ∈ R
n × R

m | q ∈ A, t ∈ U}, and for
t ∈ R

m we denote by At the �ber of A at t, that is, {x ∈ R
n | q = (x; t) ∈ A}.We denote by Hl the l-dimensional Hausdor� measure. We are going tostudy the Hausdor� measure of subanalyti sets. For this if X is the germof a subanalyti subset of R

n at 0 we de�ne the funtions ψ(X; r) and ψ̃ inthe following way:
ψ(X; r) = Hl(X ∩B(0; r)),



Volume and multipliities of analyti sets 269where l is the Hausdor� dimension of X, and
ψ̃(X; r) =

ψ(X; r)

µlrl
,where µl is the volume of the unit ball in R

l. In [5℄ J.-M. Lion and J.-P. Rolinhave proved that the funtion ψ has an expansion in r and ln r. This is alsoproved in [1℄ and [8℄.Theorem 3.0.3 ([1℄, [5℄, [8℄). Let (X; 0) be a subanalyti germ. The fun-tion ψ(X; r) has an expansion
ψ(X; r) =

∑

(α;β)∈N2, α≥pl

aα,βr
α/p lnβ r.

The expansion of ψ up to order k will designate the terms having anexponent in r less than or equal to k.Note that the limit
θ(X;x) := lim

r→0

Hl(X ∩B(x; r))

µlrlis the density of X (or the Lelong number). This number was originallyintrodued for omplex analyti sets and then generalized to real subanalytisets by K. Kurdyka and G. Raby in [4℄. It gives interesting information onthe behavior of the volume of a germ. In [11℄ the author has studied thevariation of the density along strati�ed spaes.We reall some results whih we will need in the next setion and whihan be found in [11℄.3.1. Volumes, multipliities and isotopies. In this setion we bound thevariation of the volume through the isotopies whih are i-approximations ofthe identity.Definition 3.1.1. Let A and B be two subanalyti families of sets and ibe a positive real number. We de�ne an i-approximation of the identity to bea family of mappings whih indues a family of germs of homeomorphisms
h : (A; 0) → (B; 0) of type h(x; t) = (ht(x); t) suh that for every t,(3.3) |ht(x) − x| ≪ |x|ifor all x ∈ B(0; r) with r su�iently lose to zero.Remark 3. Note that if dH denotes the Hausdor� distane betweenompat sets, that is,

dH(A;B) = max(sup
x∈A

d(x;B); sup
x∈B

d(x;A))then it follows from the de�nition of i-approximation of the identity that
dH(At ∩B(0; r);Bt ∩B(0; r)) ≪ ri,with the notations of the de�nition above.



270 G. ValetteIn [11℄ the following proposition is proved (in a slightly more generalsetting; the following one is the ase α≪ ri in [11℄).Proposition 3.1.2. Let i be a stritly positive real number. Let h : A→
B be an i-approximation of the identity and let P be in G(n; l) (where l =
dimAt = dimBt for any t ∈ R

m). Then for any ompat subset V of R
mthere exists a onstant C and a subanalyti subset K(P ; r; t) ⊆ P satisfying

ψ(P ∩B(0; r) \K(P ; r; t); r) ≪ ri+l−1,and suh that for any x ∈ K(P ; r; t) and t ∈ V ,
card(π−1

P (x) ∩At ∩B(0; r)) = card(π−1
P (x) ∩Bt ∩B(0; r)).This proposition has been proved to study the behavior of the density ofstrati�ed sets satisfying the Whitney ondition. Atually using the Cauhy�Crofton formula it allows us to bound the variation of the volume. It is thekey point in the proof of the theorem below (again the reader is referred to[11℄ for the proof).Theorem 3.1.3. Let i ∈ R and h : A→ B be an i-approximation of theidentity. Let V be a ompat subanalyti subset of R

m. Then there exists aonstant C suh that for all t in V ,
|ψ(At; r) − ψ(Bt; r)| ≪ ri+l−1.Let us give another de�nition we shall need in the next setion. Let P bean l-dimensional vetor spae of R

n and i ∈ R with i ≥ 1. For j ∈ N we set
KP

j (A ∩B(0; r)) = {x ∈ P | card(π−1
P (x) ∩At ∩B(0; r)) = j}.Definition 3.1.4. We say that j is a multipliity of A for P of order iif 0 ∈ cl(KP

j (A)) and if there exists a positive onstant C suh that for any
r su�iently lose to zero,

ψ̃(KP
j (A ∩B(0; r)); r) ≥ Cri.We will denote by m(P ;A; i) the set of multipliities of order i of A for P .Another onsequene of Proposition 3.1.2 is the invariane of the set

m(P ;A; i) under i-approximation of the identity for any P .3.2. Rugose isotopies. In this setion we are going to prove an isotopylemma whih will be used to prove �nite determinay in the next setion.Given a subset A of R
n and ε > 0, we denote by Aε the set of points

q ∈ R
n suh that d(q;A) ≤ ε.Proposition 3.2.1. Let A be a subanalyti subset of Rn of dimension l.Let B ⊆ A be a subanalyti subset of dimension k < l. Then there exists aonstant C suh that for all ε ∈ ]0; 1] and for all real r small enough,(3.4) ψ(Bε ∩A; r) ≤ Crl−1ε.



Volume and multipliities of analyti sets 271Proof. The jaobian of the distane funtion to a subset of R
n is equal to

1 wherever this funtion is di�erentiable. Moreover the family B′ = {(x;α) ∈
A × R | d(x;B) = α} is a subanalyti family. So using Proposition 3.0.4 of[11℄ we dedue that there exists a onstant C suh that for all α ∈ ]0; 1] wehave ψ(B′

α; r) ≤ Crl−1. So, we an write
ψ(Bε ∩A; r) =

\
Bε∩A∩B(0;r)

dHl ≤
\

α∈]0;ε[

ψ(B′
α; r) dH1 ≤ Crl−1ε.Now let X ⊆ R

n × R
m be a subanalyti family of sets of dimension l.Assume, as in Setion 2, that X has a strati�ation S = {Y,X1, . . . , Xp}.We have:Theorem 3.2.2. If S satis�es the strong Verdier ondition with exponent

i ≥ 1 then there exist a neighborhood U of the origin and a trivialization
h : π−1(U) \B → N × U \B′,where B (resp. B′) is a subanalyti subfamily of X (resp. of X0 × U) suhthat ψ(Bt; r) ≪ ri+l−1 (resp. ψ(B′

t; r) ≪ Cri+l−1) for t in U , whih is an
i-approximation of the identity preserving the Xj ∩ π

−1(U).Proof. We prove this result by a similar method to that used in [11℄.Let Ak denote the k-skeleton of the strati�ation S, that is, the union ofthe strata of dimension less than or equal to k. We de�ne the isotopy (andthe families B and B′) on Ak indutively on k. The result is obvious for
k = dimY . Assume that it is true at a rank k. Then by Remark 3 we have(3.5) dH(π−1(t) ∩Ak ∩B(t; r);π−1(t′) ∩Ak ∩B(t′; r)) ≪ rifor t and t′ �xed in Y . The isotopy is onstruted by lifting a basis of Y toa strati�ed vetor �eld tangent to strata and rugose with exponent i (see [6℄or [12℄). As the onstrution an be arried out with all vetors of a basis of
Y suessively we will assume that dimY = 1.Let w be a onstant unit vetor �eld on Y . By (2.2) we may extend wto a vetor �eld tangent to the strata and satisfying (2.2). Let φ be the one-parameter group generated by this vetor �eld. Write φ = (φ1;φ2) ∈ N ×Y ;then by Gronwall's Lemma we have

d(q;Y )e−Ms ≤ d(φ(q; s);Y ) ≤ eMsd(q;Y )for a onstant M . Hene the ratio d(q;Y )/d(φr(q; s);Y ) is bounded belowand above. This proves that the integral urves annot join Y or leave aneighborhood of Y in a �nite time. Moreover by the mean value theorem,
|φ1(q; t) − q| ≤ t sup

s∈[0;t]
|π⊥(w(φ(q; s)))| ≤ C(q) sup

s∈[0;t]
d(φ(q; s);Y )i.Hene as the ratio d(q;Y )/d(φr(q; s);Y ) is bounded we get(3.6) |φ1(q; t) − q| ≤ C(q)d(q;Y )i



272 G. Valette(with maybe a di�erent funtion C tending to zero when we approah Y ).This proves that the mapping will de�ne an i-approximation of the identity.Therefore to omplete the indution step it su�es to prove existene ofintegral urves starting from a point q ∈ Ak+1 and su�iently far from Ak.More preisely, let(3.7) B = {q ∈ Ak+1 | d(q;Ak) ≤
√
C(q) d(q;Y )i}.Now by (3.5) and (3.6) we see that if q ∈ Ak+1 does not belong to B then

φ(q; s) annot fall in Ak. This establishes the existene of the desired integralurves. Moreover, if we set
h : Ak+1 \B → π−1(0) × U, q = (x; t) 7→ (φ1(q;−t); t),then h is a homeomorphism onto its image for eah t and an i-approximationof the identity. Let

B′ = (A0 × U) \ h(A \B).Note that again as a onsequene of (3.5) and (3.6) we have(3.8) B′ ⊆ {q ∈ Ak+1 | d(q;Ak) ≤ C(q)d(q;Y )i}(su�iently lose to Y ). Therefore to �nish the proof we just remark that(3.7) (resp. (3.8)) and Proposition 3.2.1 show that at the last step of theindution we have ψ(Bt; r) ≪ ri+l−1 (resp. ψ(B′
t; r) ≪ ri+l−1) as required.4. Finite determinay of the volume and multipliities. In thissetion for a ∈ R we denote by [a] the greatest integer less than or equalto a.4.1. Transversal setions of a strati�ed set. Here we will give some de-terminay theorems for the volume of a transversal setion to a strati�edset. More preisely, we are going to give expliit su�ient onditions for theexpansion of ψ(Γv∩X; r) to be determined by that of v up to a ertain order.The results on the determination of the volume of the zero lous of a givenmap will be given in the next setion and will be dedued from those of thissetion sine the intersetion of the graph with the soure axis is preiselythe zero lous.For this setion we �x a strati�ed spae (X;S) where S={Y ;X1, . . . , Xp}.We assume that X is subanalyti. We reall that Y = R

m, N = R
n and

X ⊆ N × Y = Rd.Theorem 4.1.1. Let v : N → Y be a subanalyti transversal and let aand j be positive real numbers with j ≥ 1. If (v;S) satis�es the (tj) onditionthen the expansion to order a of ψ̃(Γv∩X; r) only depends on the [j+a]-jet of
v at 0. Moreover , for every P ∈ G(d; l) with l = dimX−m, m(P ;Γv ∩X; a)only depends on the [j + a]-jet of v.



Volume and multipliities of analyti sets 273Proof. Let u and v be two C [j+a] mappings having the same [j + a]-jet.Let F (x; t) = (x; v(x) + th(x)) where h(x) = u(x) − v(x). Then F is adeformation of ontat [j + a] and F∗0 = v.Thanks to Corollary 2.2.2 we know that (0;F ∗S) is strongly Verdierregular with exponent a + 1 at any point of {0} × R. So by Theorem 3.2.2there exists an isotopy H : R
d′ × [0; 1] → R

d′ (where d′ = n+ 1) preservingthe strata F−1(Xk) whih is an (a + 1)-approximation of the identity. Forany map u : N → Y let φu(x) = (x;u(x)).Then we set
H̃ : Γv+h → Γv, q 7→ H̃(q) = φv ◦H1 ◦ φ−v−h(q),where H1(x) = H(x; 1). As a onsequene we have

|H̃(q) − q| = |φv(H1(φ−v−h(q)) − q|

= |φv(H1(φ−v−h(q))) − φv(φ−v(q))|

. |H1(φ−v−h(q)) − φ−v(q)| for φv is Lipshitz

. |H1(φ−v−h(q)) − φ−v−h(q)| + |φ−v−h(q) − φ−v(q)|

≪ d(q;Y )a+1 sine j[j+a]h(0) = 0.Therefore the mapping H̃ is an (a+1)-approximation of the identity. But byTheorem 3.1.3 this implies that the expansions of the volume of Γv ∩X and
Γu ∩X oinide. Moreover by Theorem 3.1.2 the multipliities also oinideup to order a.Remark 4. Thus by Remark 2 we may make expliit the riterion of theabove theorem. More preisely, inequality (2.1) provides an analyti riterionfor the determinay of the volume and multipliities of transverse setions.Note also that by the �ojasiewiz inequality the above theorem yields�nite determinay for every analyti mapping with an isolated singularity.In partiular in the ase of a funtion we get the following interestingorollary:Corollary 4.1.2. If v is a subanalyti funtion with an isolated singu-larity at the origin satisfying |∂xv| ≥ C|x|j−1 in a horn neighborhood , thenthe expansion of ψ̃(Γv∩X; r) up to order a is determined by its [j+a]-jet. Inpartiular the density θ(Γv ∩X) just depends on the [j]-jet (this is the aseof a = 0).In the ase where j < 1, Theorem 4.1.1 is no longer true. The problemomes indeed from h whih does not derease su�iently fast. Neverthelesswe have the following result whih will be useful for the next setion.Let v be a diret transversal and A a vetor spae diretly transverse to Y .Let πA be the projetion onto A along Y . Then πA indues a di�eomorphismof Γv onto A.



274 G. ValetteProposition 4.1.3. Assume that X is a subanalyti set. Let A ∈ G(d;n)be transverse to Y , a, j ∈ R, and v a subanalyti diret transversal. If (v;S)satis�es ondition (tj) then the expansion up to order a of ψ̃(πA(X ∩Γv)) isdetermined by the [j+a]-jet of v. Moreover , the multipliities of πA(X∩Γv; r)of order less than or equal to a are determined by the [j + a]-jet of v.Proof. Here we set again F (q) = v(x) + th(x) where q = (x; t) and h isa funtion having a zero [j + a]-jet.Atually we have F−1(X) = {(x; t) ∈ R
n×R | (x;Ft(x)) ∈ X}. We reallthat π⊥ denotes the orthogonal projetion on the orthogonal of Y .Hene

F−1(X) ∩ (N × {t}) = π⊥(X ∩ ΓFt
) × {t}.So

F−1(X) ∩N × {0} = π⊥(X ∩ Γv) × {0},

F−1(X) ∩N × {1} = π⊥(X ∩ Γu) × {1}.We set
h = (π⊥|A)−1 ◦H1 ◦ π

⊥where H1 is onstruted as in the proof of Theorem 4.1.1. So h is an approx-imation of the identity to the same order as H1, whih proves the result.In the ase where j = 1− we also obtain an interesting result:Proposition 4.1.4. Let A and B be vetor spaes diretly transverse to
Y to 0. If all the (Y ;Xj) satisfy ondition (a) of Whitney then

θ(πA(B ∩X); 0) = θ(A ∩X; 0).Moreover , for every P ∈ G(n; l), the set m(π⊥(B∩X)); 1;P ) does not dependon B.Proof. The (a) ondition of Whitney atually implies (t1
−
) for any direttransversal v (see Lemma 2.1.3). The proof is very similar to that of Theorem4.1.3. The only di�erene is that a = 1− and j = 0− and the deformationwill be of ontat 1− (reall that the density is the onstant term of ψ̃).Remark 5. In the situation of the above proposition it is not true thatthe number θ(B ∩X; 0) is independent of B.4.2. SV-su�ieny of jets. In this setion we onsider a strati�ation

S = {{0}, X1, . . . , Xs} of N . Let
S0 = {Y,X1 × {0}, . . . , Xs × {0}}.Hene the zero lous of a mapping v is the intersetion of the graph of vwith N × {0}.From Theorem 4.1.3 we may dedue expliit riteria for determination ofthe volume and multipliities.



Volume and multipliities of analyti sets 275Theorem 4.2.1. Suppose X is a subanalyti set and v a subanalytifuntion. If (v;S0) is (tj) then the expansion up to order a of ψ̃(X∩v−1(0); r)is determined by z = j[j+a]v(0). Moreover , in this ase, for eah vetorsubspae P , the multipliities of X ∩ v−1(0) for P are determined by z up toorder a.Proof. This is atually a onsequene of Proposition 4.1.3. More preiselyit is the ase where A = N×{0}; then the mapping πA|X
is just the identity.Remark 6. As in the above setion we get an analyti riterion fordeterminay via inequality (2.1). We know that ondition (ti) is satis�ed by

(v;S0) if there exists a horn neighborhood of type
{x ∈ R

n | |v(x)| ≤ C|x|i}on whih we have a onstant C suh that
|dxv(w)| ≥ C|x|i−1for any unit vetor w ∈ R

n.As a onsequene we get the following result:Theorem 4.2.2. Let v be an analyti funtion with an isolated singular-ity at the origin suh that
|∂xv| ≥ C|x|j−1in a neighborhood as in the above remark. Then the terms of the expansion of

ψ̃(v−1(0); r) up to order a are determined by its [j + a]-jet. In partiular inthis ase the number θ(v−1(0); 0) only depends on the [j]-jet of the funtion v.Let us point out that by the �ojasiewiz inequality we may �nd an orderof determination for every funtion with an isolated singularity at the origin.
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