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Entire functions that share values or small
functions with their derivatives

by Sheng Li, Zongsheng Gao and Jilong Zhang (Beijing)

Abstract. We investigate the uniqueness of entire functions sharing values or small
functions with their derivatives. One of our results gives a necessary condition on the
Nevanlinna deficiency of the entire function f sharing one nonzero finite value CM with
its derivative f ′. Some applications of this result are provided. Finally, we prove some
further results on small function sharing.

1. Introduction. In this paper, a meromorphic function always means
meromorphic in the whole complex plane. We assume the reader is familiar
with the basic notions of Nevanlinna theory (see [5, 10, 14, 17]). For a mero-
morphic function f and a constant a, we define the Nevanlinna deficiency
by

δ(a, f) = 1− lim sup
r→∞

N
(
r, 1
f−a
)

T (r, f)
,

and use the notation

Θ(a, f) = 1− lim sup
r→∞

N
(
r, 1
f−a
)

T (r, f)
.

We denote by S(r, f) any quantity satisfying

lim
r→∞

S(r, f)
T (r, f)

= 0, r 6∈ E,

where E ⊂ (0,∞) is of finite logarithmic measure. A meromorphic function
a(z) is said to be a small function of f(z) if T (r, a) = S(r, f). In addition,
we say that two meromorphic functions f(z) and g(z) share a finite value a
(resp. a small function b(z)) IM (ignoring multiplicities) when f(z)− a and
g(z)−a (resp. f(z)− b(z) and g(z)− b(z)) have the same zeros. And we say
that f(z) and g(z) share the finite value a (resp. the small function b(z))
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CM (counting multiplicities) when f(z)− a and g(z)− a (resp. f(z)− b(z)
and g(z)− b(z)) have the same zeros counting multiplicities.

Uniqueness of the entire function f sharing values with its derivative f ′

was first investigated by Rubel and Yang [13]. They proved that f ≡ f ′ if
f and f ′ share two distinct finite constants CM. Mues and Steinmetz [12]
pointed out that the same conclusion holds if the two CM shared values
are replaced by two IM shared values (for another proof when the two IM
shared values are nonzero, see Gundersen [6]).

For one CM shared value, Brück [1] posed the following question: what
can be said if one assumes that f and f ′ share only one value CM plus some
growth condition? He proposed the following well-known conjecture.

Conjecture ([1]). Let f be a nonconstant entire function. Suppose
that

ρ2(f) := lim sup
r→∞

log log T (r, f)
log r

is not a positive integer or infinite. If f and f ′ share one finite value a CM,
then f ′ − a = c(f − a) for some nonzero constant c.

Brück [1] proved that this conjecture holds when a=0 and thatN(r, 1/f ′)
= S(r, f). The case where f is of finite order was proved by Gundersen and
Yang [8]. For further results concerning f sharing one finite value CM with
f (k) (k ≥ 2), the readers can refer to [16]. Here we recall the following two
results.

Theorem 1.1 ([1]). Let f be a nonconstant entire function. If ρ2(f)<∞,
ρ2(f) 6∈ N, and if f and f ′ share the value 0 CM, then f ′ = cf for some
nonzero constant c.

Theorem 1.2 ([1]). Let f be a nonconstant entire function. If f and f ′

share the value 1 CM, and if N(r, 1/f ′) = S(r, f), then f ′ − 1 = c(f − 1)
for some nonzero constant c.

The following two results were proved by Jank, Mues and Volkmann.

Theorem 1.3 ([9]). Let f be a nonconstant meromorphic function, and
let a 6= 0 be a finite constant. If f , f ′, and f ′′ share the value a CM, then
f ′ ≡ f .

Theorem 1.4 ([9]). Let f be a nonconstant entire function, and let a 6= 0
be a finite constant. If f and f ′ share the value a IM, and if f ′′ = a whenever
f = a, then f ′ ≡ f .

As mentioned in [8], Theorem 1.3 suggests the following question of Yang
and Yi (see [14]).
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Question. Let f be a nonconstant meromorphic function, let a 6= 0 be
a finite constant, and let n and m be positive integers satisfying n < m. If
f , f (n) and f (m) share the value a CM, where n and m are not both even
or both odd, does it follow that f ≡ f (n)?

Yang [15] gave the following example to show that the answer to Question
above is, in general, negative. Let n and m be positive integers satisfying
m > n + 1, and let b 6= 0 be a constant satisfying bn = bm 6= 1. Set a = bn

and f(z) = ebz + a − 1. Then f, f (n) and f (m) share the value a CM, but
f 6≡ f (n).

For entire functions of finite order, Gundersen and Yang [8] generalized
Theorem 1.3 and gave a positive answer to Yang and Yi’s question when
m = n+ 1 by the following result.

Theorem 1.5 ([8]). Let f be a nonconstant entire function of finite
order, let a 6= 0 be a finite constant, and let n be a positive integer. If f ,
f (n) and f (n+1) share the value a CM, then f ≡ f ′.

In 2009, Chang and Zhu [2] investigated the small function sharing prob-
lem. We recall one of their results:

Theorem 1.6 ([2]). Let f be an entire function of finite order and a
an entire function of order lower than f ’s. If f and f ′ share a CM, then
f ′ − a = c(f − a) for some nonzero constant c.

In Section 2 we will give two results related to Theorems 1.1 and 1.2.
An improvement of Theorem 1.2 is shown in Section 3 by applying Theorem
2.2. An alternative improvement of Theorem 1.5 is provided in Section 4.
We give some complement to Theorem 1.6 in the final section.

2. Nevanlinna deficiency and value sharing. Looking into Theo-
rems 1.1 and 1.2 of [9], we find that the Nevanlinna deficiency plays an
important role. In fact, if f and f ′ share the value 0 CM, then f has no
zeros and hence δ(0, f) = 1 in Theorem 1.1, while in Theorem 1.2, the con-
dition N(r, 1/f ′) = S(r, f) implies that δ(0, f ′) = 1. Moreover, we obtain
the following result.

Theorem 2.1. Let f be a nonconstant entire function and k ≥ 1 be a
positive integer. Suppose that f and f (k) share the value 0 CM. Then each
zero of f is of order at most k−1. In addition, if k = 1, then f has no zeros
and δ(0, f) = Θ(0, f) = 1.

Remark. Theorem 2.1 is obvious and hence its proof is omitted. We
should point out that if k ≥ 2, then δ(0, f) = Θ(0, f) = 1 may not hold.
Take f(z) = sin z and k = 2 for example; then f(z) and f ′′(z) = − sin z
share 0 CM, but δ(0, f) = Θ(0, f) = 0.
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For the shared value a 6= 0 case, we give the following result.

Theorem 2.2. Let f be a nonconstant entire function and k ≥ 1 be a
positive integer. Suppose that f and f (k) share the value 1 CM. Then f − 1
has infinitely many zeros such that each zero of f − 1 is of order at most k,
and

N

(
r,

1
f − 1

)
≥ 1

2
T (r, f), N

(
r,

1
f − 1

)
≥ 1
k + 1

T (r, f),

and hence
δ(1, f) ≤ 1

2
, Θ(1, f) ≤ k

k + 1
.

To prove Theorem 2.2, we need the following Milloux inequality.

Lemma 2.3 ([5, 11, 14, 17]). Suppose that f(z) is a nonpolynomial mero-
morphic function in |z| < R (≤ ∞) and k is a positive integer. If f(0)
6= 0,∞, f (k)(0) 6= 1, f (k+1)(0) 6= 0, then for 0 < r < R, we have

T (r, f) < N(r, f) +N

(
r,

1
f

)
+N

(
r,

1
f (k) − 1

)
−N

(
r,

1
f (k+1)

)
+ S(r, f),

where

S(r, f) = m

(
r,
f (k)

f

)
+m

(
r,
f (k+1)

f

)
+m

(
r,

f (k+1)

f (k) − 1

)
+ log

∣∣∣∣∣f(0)(f (k)(0)− 1)
f (k+1)(0)

∣∣∣∣∣+ log 2.

Remark. In Lemma 2.3, the conditions on f at z = 0 can be omitted
after amending the constant in S(r, f).

Proof of Theorem 2.2. Suppose that f and f (k) share 1 CM. Then ob-
viously each zero of f − 1 is of order at most k. Set g = f − 1. Then by
assumption, we have

(2.1) N

(
r,

1
g

)
= N

(
r,

1
f − 1

)
= N

(
r,

1
f (k) − 1

)
= N

(
r,

1
g(k) − 1

)
.

From Lemma 2.3 and (2.1) we obtain

T (r, f) ≤ T (r, g) +O(1)

< N

(
r,

1
g

)
+N

(
r,

1
g(k) − 1

)
−N

(
r,

1
g(k+1)

)
+ S(r, g)

< 2N
(
r,

1
f − 1

)
+ S(r, g) = 2N

(
r,

1
f − 1

)
+ S(r, f),

which yields

N

(
r,

1
f − 1

)
≥ 1

2
T (r, f), so δ(1, f) ≤ 1

2
.
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Note that eachm-order zero of g(k)−1 is countedm−1 times inN(r, 1/g(k+1))
and each zero of g is of order at most k. Applying Lemma 2.3 again, we see
that

T (r, f) ≤ T (r, g) +O(1) < kN

(
r,

1
g

)
+N

(
r,

1
g(k) − 1

)
+ S(r, g)

= (k + 1)N
(
r,

1
f − 1

)
+ S(r, g) = (k + 1)N

(
r,

1
f − 1

)
+ S(r, f).

Thus, we obtain

N

(
r,

1
f − 1

)
≥ 1
k + 1

T (r, f), so Θ(1, f) ≤ k

k + 1
.

3. An application of Theorem 2.2

Theorem 3.1. Let f be a nonconstant entire function. If f and f ′ share
the value 1 CM, and if N(r, 1/f ′) < αT (r, f), where α ∈ [0, 1/4), then
f ′ − 1 = c(f − 1) for some nonzero constant c.

To prove Theorem 3.1, besides Theorem 2.2, we also use the following
lemma.

Lemma 3.2 ([14]). Let f be a meromorphic function, and k be a positive
integer. Then

N

(
r,

1
f (k)

)
≤ N

(
r,

1
f

)
+ kN(r, f) + S(r, f).

Proof of Theorem 3.1. Since f is an entire function, by Lemma 3.2 we
have

(3.1) N

(
r,

1
f ′′

)
≤ N

(
r,

1
f ′

)
+ S(r, f) < αT (r, f) + S(r, f).

Set

(3.2) F =
f ′′′

f ′′
− f ′′

f ′
− 2

f ′′

f ′ − 1
+ 2

f ′

f − 1
.

Then F is a meromorphic function and hence from the fundamental estimate
of the logarithmic derivative, we have

(3.3) m(r, F ) = S(r, f).

Since the poles of F coincide with the zeros of f ′ and f ′′, by assumption
and (3.1) we have

(3.4) N(r, F ) ≤ N
(
r,

1
f ′

)
+N

(
r,

1
f ′′

)
+ S(r, f) < 2αT (r, f) + S(r, f).

Combining (3.3) with (3.4), we see that T (r, F ) < 2αT (r, f) + S(r, f).
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We assume that F 6≡ 0. Notice that all zeros of f − 1 and f ′ − 1 are
simple. Let z0 be a common zero of f − 1 and f ′ − 1. Then f ′′(z0) 6= 0, and
it is easy to see that F is holomorphic at z0, and F (z0) = 0. Thus we have

N

(
r,

1
f − 1

)
≤ N

(
r,

1
F

)
≤ T (r, F ) +O(1)

≤ 2αT (r, F ) + S(r, f) <
1
2
T (r, f).

However, by Theorem 2.2, we have

(3.5) N

(
r,

1
f − 1

)
≥ 1

2
T (r, f),

a contradiction.
Thus we have F ≡ 0. Integration of (3.2) yields

(3.6) A
f ′′

f ′
=
(
f ′ − 1
f − 1

)2

,

where A is a nonzero constant. Since f and f ′ share 1 CM, for a point z1
satisfying f(z1) = f ′(z1) = 1 we have f ′′(z1) 6= 0, and hence A = 1/f ′′(z1).
Thus if we assume that f ′′/f ′ is not a constant function, we see from (3.6)
that

N

(
r,

1
f − 1

)
= O

(
N

(
r,
f ′′

f ′

))
= S(r, f),

a contradiction to (3.5).
Therefore, f ′′/f ′ is a constant function and hence there exists a nonzero

constant c such that
f ′ − 1
f − 1

= c.

This completes the proof of Theorem 3.1.

4. Another improvement of Theorem 1.5. As another application
of Theorem 2.2 (in fact, we use Theorem 3.1 directly), we give an alternative
improvement of Theorem 1.5 by the following result, in which the order
restriction on f is omitted.

Theorem 4.1. Let f be a nonconstant entire function, let a 6= 0 be a
finite constant, and let n be a positive integer. If f (n) and f (n+1) share the
value a CM, then N(r, 1/f ′) < αT (r, f) where α ∈ [0, 1/8), and if there is
some finite value z0 such that f(z0) ∈ {f (n)(z0), f (n+1)(z0)}, then f ≡ f ′.

To prove Theorem 4.1, we recall the following lemma, which is a gener-
alization of the second main theorem of Nevanlinna theory.
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Lemma 4.2 ([3, 17]). Let f and ϕν(z) (ν = 1, . . . , q) be meromorphic
functions. Suppose ϕν(z) (ν = 1, . . . , q) are distinct and satisfy

T (r, ϕν) = o{T (r, f)} = S(r, f) (ν = 1, . . . , q).

Then

{q − 1− o(1)}T (r, f) <
q∑

ν=1

N

(
r,

1
f − ϕν

)
+ qN(r, f) + S(r, f).

Proof of Theorem 4.1. We can assume that a = 1. From Lemma 3.2, we
get

N

(
r,

1
f (n+1)

)
≤ N

(
r,

1
f

)
+ kN(r, f) + S(r, f)

≤ αT (r, f) + S(r, f) = αT

(
r,
f (n)

f
f

)
+ S(r, f)

≤ 2αT (r, f (n)) + S(r, f (n)).

Now Theorem 3.1 is valid for f (n) and f (n+1), thus if we set g = f (n), then
for some nonzero constant c, we have

(4.1) g′ − 1 = c(g − 1),

which gives

(4.2) g = b+ decz

for some constants b and d 6= 0. From integration of (4.2), we obtain

(4.3) f(z) = P (z) +
d

cn
ecz,

where P (z) is a polynomial with degP ≤ n. Therefore,

(4.4) f ′(z) = P ′(z) +
d

cn−1
ecz.

We claim that b = 0. Indeed, if b 6= 0, then from (4.2) and (4.3), we find
that degP = n ≥ 1. Thus P ′(z) 6≡ 0. By Lemma 5.1 and our assumption,
(4.4) yields

(1− o(1))T (r, f ′) < N

(
r,

1
f ′

)
+N

(
r,

1
f ′ − P ′

)
+ S(r, f)(4.5)

<
1
8
T (r, f) + S(r, f) ≤ 1

4
T (r, f ′) + S(r, f ′),

a contradiction.
Now we have proved that b = 0. From (4.1) and (4.2), we see that c = 1.

Then from (4.4), we obtain

(4.6) f(z) = P (z) + dez and f ′(z) = P ′(z) + dez.
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If P ′(z) 6≡ 0, then the same contradiction as in (4.5) can be deduced.
Therefore, P ′(z) ≡ 0, which implies that P (z) ≡ p ∈ C. By assumption, we
can suppose that f(z0) = f (n)(z0), and we get

p = f(z0)− f (n)(z0) = 0.

This together with (4.6) indicates that our conclusion is true.

5. Further results for small function sharing. Chang and Zhu [2]
gave the following example to show that the condition that the order of the
shared function a is smaller than f ’s is necessary.

Example. Let

f = e2z − (z − 1)ez, a = e2z − zez.

Then f ′ − a = ez(f − a).

If we check this example carefully, we find that the order of the function
b = a′ − a = e2z − z equals f ’s. Thus, we ask: what can be said if the order
of b = a′ − a is smaller than f ’s? Concerning this question, we first prove
the following result.

Theorem 5.1. Let f and a be entire functions of finite order. If f and
f ′ share the entire function a CM, and if ρ(f −a) > ρ(a′−a), then f ′−a =
c(f − a) for some nonzero constant c.

Example. Let

f = e2z + ez + 1/2, a = ez + 1.

Then ρ(f) = ρ(a) = 1, b = a′ − a = −1, and f ′ − a = 2(f − a). This
example satisfies the assumption of Theorem 5.1 but it does not satisfy the
assumption of Theorem 1.6.

To prove Theorem 5.1, we need the following lemmas; Lemma 5.3 is
proved in [2] with a reasoning similar to that in the proof of Lemma 4 in [7].

Lemma 5.2 ([7]). Let f be a nonconstant meromorphic function of fi-
nite order ρ, and let ε > 0 be a given constant. Then there exists a set
E ⊂ [0, 2π) of linear measure zero such that if ϕ0 ∈ [0, 2π) \E, then there is
a constant R0 = r(ϕ0) such that for all z satisfying arg z = ϕ0 and |z| > R0,
we have ∣∣∣∣f ′(z)f(z)

∣∣∣∣ ≤ |z|ρ−1+ε.

Lemma 5.3 ([2]). Let f be an analytic function on some ray arg z = θ
starting from z0 = r0e

iθ and K(x) a positive, decreasing, continuous function
on the interval [r0,+∞). Suppose that |f ′(z)|K(|z|) is unbounded on the ray
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arg z = θ starting from z0 = r0e
iθ. Then there exists an infinite sequence of

points zn = rne
iθ, where rn →∞, such that |f ′(zn)|K(|zn|)→∞ and∣∣∣∣ f(zn)

f ′(zn)

∣∣∣∣ ≤ (1 + o(1))|zn|.

Proof of Theorem 5.1. Let g = f − a and b = a′ − a. By assumption,

(5.1)
g′ + b

g
=
f ′ − a
f − a

= eh(z),

where h(z) is an entire function such that ρ(eh) ≤ max{ρ(f), ρ(a)} <∞ and
b is a small function of g such that ρ(b) = σ < ρ = ρ(g). Since ρ(eh) < ∞,
we see that h(z) is a polynomial such that deg h(z) ≤ ρ.

If b(z) ≡ 0, then from (5.1), we have

T (r, eh) = m(r, eh) = m(r, g′/g) = S(r, g) = O(rρ+1).

Thus h(z) is a constant function, and hence our assertion holds.
Next we assume that b(z) 6≡ 0 and h(z) is a nonconstant polynomial

such that ρ ≥ deg h(z) = n ≥ 1.
From Lemma 5.2, for any given ε > 0 (0 < ε < (ρ− σ)/3), there exists

a set E ⊂ [0, 2π) of linear measure zero such that if ϕ0 ∈ [0, 2π) \ E, then
there is a constant R0 = R(ϕ0) such that for all z satisfying arg z = ϕ0 and
|z| > R0, we have

(5.2)
∣∣∣∣g′(z)g(z)

∣∣∣∣ ≤ |z|ρ−1+ε.

Set h(z) = anz
n + an−1z

n−1 + · · · + a0, where an = αne
iϕn , αn ≥ 0,

ϕn ∈ [0, 2π). Denote

Ω0 = {θ ∈ [0, 2π) : cos(ϕn + nθ) = 0} ∪ E,
Ω+ = {θ ∈ [0, 2π) : cos(ϕn + nθ) > 0} \ E,
Ω− = {θ ∈ [0, 2π) : cos(ϕn + nθ) < 0} \ E.

Let θ ∈ Ω+. Then from (5.1) and (5.2), we have∣∣∣∣ b(reiθ)g(reiθ)

∣∣∣∣ ≥ |eh(reiθ)| − ∣∣∣∣g′(reiθ)g(reiθ)

∣∣∣∣ ≥ exp{Re{h(reiθ)} − |z|ρ−1+ε →∞,

which yields

(5.3) |g(reiθ)| ≤ |b(reiθ)| ≤ exp{rσ+ε}.

Let now θ ∈ Ω−. We discuss two cases:

Case 1: |g′(z)| exp{−rσ+ε} is bounded on the ray arg z = θ. Then there
is some M = M(θ) > 0 such that

|g′(reiθ)| exp{−rσ+ε} ≤M,
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which gives

(5.4) |g(reiθ)| = |g′(0)|+
∣∣∣ z�
0

g′(ζ) dζ
∣∣∣ ≤ 2Mr exp{rσ+ε} ≤ exp{rσ+2ε}.

Case 2: |g′(z)| exp{−rσ+ε} is unbounded on arg z = θ. Then by Lemma
5.3, there exist zn = rne

iθ, where rn → ∞, such that |g′(zn)| exp{−rσ+ε
n }

→ ∞ and

(5.5)
∣∣∣∣ g(zn)
g′(zn)

∣∣∣∣ ≤ (1 + o(1))|zn|.

Since b(z) 6≡ 0, from (5.1) and (5.5) we get

|g′(rneiθ)| =

∣∣∣∣∣∣ b(rneiθ)

1− g(rneiθ)
g′(rneiθ)

eh(rneiθ)

∣∣∣∣∣∣ ≤
∣∣∣∣ b(rneiθ)1− o(1)

∣∣∣∣ ≤ 2 exp{rσ+ε
n },

which contradicts that |g′(zn)| exp{−rσ+ε
n } → ∞.

Now we deduce from (5.3) and (5.4) that for each θ ∈ Ω+ ∪ Ω− and
sufficiently large r, we have

(5.6) |g(reiθ)| ≤ exp{rσ+2ε}.

Notice that Ω0 = [0, 2π) \ (Ω+ ∪ Ω−) has linear measure zero. There-
fore, we can deduce from (5.6) and the Phragmén–Lindelöf theorem (see [4,
pp. 138–139]) that (5.6) holds for each θ ∈ [0, 2π). Then we get a contradic-
tion that ρ = ρ(g) ≤ σ. This completes our proof.

By Theorem 5.1, we have two corollaries.

Corollary 5.4. Let f be an entire function of finite order. If f and
f ′ share an entire function a CM, and if b = a′ − a is a polynomial, then
f ′ − a = c(f − a) for some nonzero constant c.

Corollary 5.5. Let f be an entire function of finite order. If f and f ′

have the same fixed points with same multiplicities, then f ′ − z = c(f − z)
for some nonzero constant c.

Example. Let f = e2z +z/2+1/4. Then f and f ′ share a = z CM, and
f and f ′ have the same fixed points with same multiplicities. In this case,
we have b = a′ − a = 1− z, and f ′ − a = 2(f − a).
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