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On the solvability of a fourth-order
multi-point boundary value problem

by Yuqiang Feng and Xincheng Ding (Wuhan)

Abstract. We are concerned with the solvability of the fourth-order four-point
boundary value problem8><>:

u(4)(t) = f(t, u(t), u′′(t)), t ∈ [0, 1],

u(0) = u(1) = 0,

au′′(ζ1)− bu′′′(ζ1) = 0, cu′′(ζ2) + du′′′(ζ2) = 0,

where 0 ≤ ζ1 < ζ2 ≤ 1, f ∈ C([0, 1] × [0,∞) × (−∞, 0], [0,∞)). By using Guo–Krasno-
sel’skĭı’s fixed point theorem on cones, some criteria are established to ensure the existence,
nonexistence and multiplicity of positive solutions for this problem.

1. Introduction. Boundary value problems for fourth-order differential
equations have important applications in mechanics, hence have attracted
considerable attention over the last several decades. Some new methods were
developed and many general and beautiful results concerning the existence
of solutions were established (see [1–10] and the references therein).

In this paper, we consider the following fourth-order four-point boundary
value problem:

u(4)(t) = f(t, u(t), u′′(t)), t ∈ [0, 1],
u(0) = u(1) = 0,
au′′(ζ1)− bu′′′(ζ1) = 0, cu′′(ζ2) + du′′′(ζ2) = 0.

(1.1)

This problem occurs in beam theory, e.g. for a beam with small defor-
mation; a beam of a material which satisfies a nonlinear power-like stress
law; or a beam with two-sided links which satisfies a nonlinear power-like
elasticity law (for details, see [11]).

In this paper, we aim to establish criteria to ensure the existence, nonex-
istence and multiplicity of positive solutions for problem (1.1).
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Throughout this paper, we assume the following conditions hold:

(C1) a, b, c, d are nonnegative constants, 0 ≤ ζ1 < ζ2 ≤ 1.
(C2) Υ = ad+ bc+ ac(ζ2 − ζ1) 6= 0, −aζ1 + b ≥ 0, c(ζ2 − 1) + d ≥ 0.
(C3) f : [0, 1]× [0,∞)× (−∞, 0]→ [0,∞) is continuous.

This paper is organized as follows: In Section 2, some notation and pre-
liminaries are introduced. The existence, nonexistence and multiplicity re-
sults are given in Section 3. In Section 4, we extend the existence theorems to
the limit case. Some examples and remarks are presented in the last section
to illustrate the applications of our results.

2. Preliminaries. Let E be a Banach space. A closed convex set K ⊂ E
is called a cone if x ∈ K and x 6= 0 implies αx ∈ K for α ≥ 0 and αx /∈ K
for α < 0. A cone defines a partial order in the Banach space E: x ≤ y if
and only if y − x ∈ K.

The well-known Guo–Krasnosel’skĭı fixed point theorem on cones is use-
ful to establish existence and multiplicity results for differential equations.

Lemma 2.1. Let E be a Banach space, and let K ⊂ E be a cone. Assume
Ω1, Ω2 are open bounded subsets of E with 0 ∈ Ω1, Ω1 ⊂ Ω2 and let T :
K ∩ (Ω2 \Ω1)→ K be a completely continuous operator such that either

(i) ‖Tu‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ω1, and ‖Tu‖ ≥ ‖u‖ for u ∈ K ∩ ∂Ω2; or
(ii) ‖Tu‖ ≥ ‖u‖ for u ∈ K ∩ ∂Ω1, and ‖Tu‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ω2.

Then T has a fixed point in K ∩ (Ω2 \Ω1).

Definition 2.2. A function x ∈ C(4)[0, 1] is called a positive solution of
Problem (1.1) if x is a solution of Problem (1.1) and x(t) > 0 in (0, 1).

In Problem (1.1), let v(t) = −u′′(t). Then we get the following differen-
tial-integral equation:

−v′′(t) = f
(
t,

1�

0

K(t, s)v(s) ds,−v(t)
)
, t ∈ [0, 1],

av(ζ1)− bv′(ζ1) = 0, cv(ζ2) + dv′(ζ2) = 0,

(2.1)

where

K(t, s) =
{
s(1− t), 0 ≤ s ≤ t ≤ 1,
t(1− s), 0 ≤ t ≤ s ≤ 1.

From (2.1), we get the integral equation

v(t) =
ζ2�

ζ1

G(t, s)f
(
s,

1�

0

K(s, τ)v(τ) dτ,−v(s)
)
ds,
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where

G(t, s) =


1
Υ

((a(s− ζ1) + b)(d+ c(ζ2 − t)), s ≤ t ≤ 1, ζ1 ≤ s ≤ ζ2,

1
Υ

((a(t− ζ1) + b)(d+ c(ζ2 − s)), 0 ≤ t ≤ s, ζ1 ≤ s ≤ ζ2,

Υ = ad+ bc+ ac(ζ2 − ζ1).

Let E = C[0, 1]. Then E is a Banach space endowed with the norm ‖x‖ =
max0≤t≤1 |x(t)|. Let C+[0, 1] = {x ∈ E | x(t) ≥ 0}. Then C+[0, 1] is a
normal cone in E.

Let K = {x ∈ C+[0, 1] | minη1≤t≤η2 x(t) ≥ 1
4‖x‖}, where η1 = ζ1 +

1
4(ζ2 − ζ1) and η2 = ζ2 − 1

4(ζ2 − ζ1). Then K is a normal cone in E.
Define an operator T : C+[0, 1]→ E as

Tx(t) =
ζ2�

ζ1

G(t, s)f
(
s,

1�

0

K(s, τ)x(τ) dτ,−x(s)
)
ds.

Lemma 2.3.

(1) 0 ≤ G(t, s) ≤ G(s, s) for t ∈ [0, 1], s ∈ [ζ1, ζ2].
(2) T : C+[0, 1]→ E is completely continuous.
(3) T (C+[0, 1]) ⊂ K, in particular T (K) ⊂ K.

Proof. (1) can be obtained by a simple computation. The proof of (2) is
standard, and we omit it. Using Lemmas 2.3 and 2.4 of [10], we can easily
verify (3).

Lemma 2.4. A function x ∈ C(4)[0, 1] is a positive solution of Prob-
lem (1.1) if and only if u = −x′′ is a nonzero fixed point of T in K.

Proof. Assume u is a nonzero fixed point of T in K. Let x be a solution
of the linear boundary value problem{−x′′(t) = u(t), t ∈ [0, 1],

x(0) = x(1) = 0.

Then x(t) =
	1
0K(t, s)u(s) ds.

Since u is a solution of the integral equation

v(t) =
ζ2�

ζ1

G(t, s)f
(
s,

1�

0

K(s, τ)v(τ) dτ,−v(s)
)
ds,

it is a solution of the boundary value problem (2.1). Hence we get
x(4)(t) = f(t, x(t), x′′(t)), t ∈ [0, 1],
x(0) = x(1) = 0,
ax′′(ζ1)− bx′′′(ζ1) = 0, cx′′(ζ2) + dx′′′(ζ2) = 0,
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i.e. x is a solution of Problem (1.1). Since K(t, s) > 0, (t, s) ∈ (0, 1)× (0, 1),
and u(t) ≥ 0 for t ∈ [0, 1] and u(t) > 0 for t ∈ [η1, η2], it follows that x(t) > 0
in (0, 1), i.e. x(t) is a positive solution of Problem (1.1).

Conversely, if x ∈ C(4)[0, 1] is a positive solution of Problem (1.1), then
x(t) ≥ 0, x′′(t) ≤ 0 in [0, 1] and x(t) > 0 in (0, 1).

Let u = −x′′. Then x(t) =
	1
0K(t, s)u(s) ds, u(t) ≥ 0, u(t) 6= 0 in [0, 1]

and u(t) satisfies−u
′′(t) = f

(
t,

1�

0

K(t, s)u(s) ds,−u(t)
)
, t ∈ [0, 1],

au(ζ1)− bu′(ζ1) = 0, cu(ζ2) + du′(ζ2) = 0,

which implies u is a fixed point of T in C+[0, 1]. By Lemma 2.3(3), we have
u ∈ K.

Lemma 2.5. Let x ∈ K. Then for s ∈ [0, 1],

h(s)
4
‖x‖ ≤

1�

0

K(s, τ)x(τ) dτ ≤ g(s)‖x‖,

where h(s) = 1
2s(1− s)−

1
2(1− s)η2

1 − 1
2s(1− η2)2 and g(s) = 1

2s(1− s).
Proof. For s, τ ∈ [0, 1], noting that K(s, τ) ≥ 0, for x ∈ K we have

η2�

η1

K(s, τ)x(τ) dτ ≤
1�

0

K(s, τ)x(τ) dτ ≤
1�

0

K(s, τ)‖x‖ dτ.

Since minη1≤t≤η2 x(t) ≥ 1
4‖x‖, we obtain

1
4

η2�

η1

K(s, τ) dτ ‖x‖ ≤
1�

0

K(s, τ)x(τ) dτ ≤
1�

0

K(s, τ) dτ ‖x‖.

i.e., h(s)
4 ‖x‖ ≤

	1
0K(s, τ)x(τ) dτ ≤ g(s)‖x‖.

3. Existence, multiplicity and nonexistence of positive solu-
tions. Let

γ1 = 1
4 min{h(η1), h(η2)}, γ2 = 1

4 min{h(ζ1), h(ζ2)},
where h is defined in Lemma 2.5. For l > 0, define

H(l) = min
{
f(t, u, v)

∣∣ (t, u, v) ∈ [η1, η2]× [γ1l,
1
8 l]×

[
−l,−1

4 l
]}
,

F (l) = max
{
f(t, u, v)

∣∣ (t, u, v) ∈ [ζ1, ζ2]×
[
γ2l,

1
8 l
]
× [−l, 0]

}
.

Then H,F : (0,∞)→ [0,∞) are continuous. Let

α =
1	ζ2

ζ1
G(s, s) ds

, β =
4	η2

η1
G(s, s) ds

.

The main result of this paper reads as follows:
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Theorem 3.1. If there exist distinct positive numbers a, b such that
F (a) ≤ aα and H(b) ≥ bβ, then Problem (1.1) has a positive solution x∗

satisfying min{a, b} ≤ ‖x∗′′‖ ≤ max{a, b}.

Proof. Firstly, it is easy to verify that when s ∈ [η1, η2],

γ1‖x‖ ≤
1�

0

K(s, τ)x(τ) dτ ≤ 1
8
‖x‖,

while s ∈ [ζ1, ζ2] implies

γ2‖x‖ ≤
1�

0

K(s, τ)x(τ) dτ ≤ 1
8
‖x‖.

Without loss of generality, we assume that a < b. Let Ka = {x ∈ K |
‖x‖ = a}, Kb = {x ∈ K | ‖x‖ = b}, and Ka,b = {x ∈ K | a ≤ ‖x‖ ≤ b}.

If x ∈ Ka, then

‖Tx‖ = max
0≤t≤1

ζ2�

ζ1

G(t, s)f
(
s,

1�

0

K(s, τ)x(τ) dτ,−x(s)
)
ds

≤
ζ2�

ζ1

G(s, s)f
(
s,

1�

0

K(s, τ)x(τ) dτ,−x(s)
)
ds

≤
ζ2�

ζ1

G(s, s)F (a) ds ≤ aα
ζ2�

ζ1

G(s, s) ds = ‖x‖.

If x ∈ Kb, then

‖Tx‖ ≥ min
η1≤t≤η2

ζ2�

ζ1

G(t, s)f
(
s,

1�

0

K(s, τ)x(τ) dτ,−x(s)
)
ds

≥ 1
4

ζ2�

ζ1

G(s, s)f
(
s,

1�

0

K(s, τ)x(τ) dτ,−x(s)
)
ds

≥ 1
4

η2�

η1

G(s, s)f
(
s,

1�

0

K(s, τ)x(τ) dτ,−x(s)
)
ds

≥ 1
4

η2�

η1

G(s, s)H(b) ds ≥ 1
4
bβ

η2�

η1

G(s, s) ds = ‖x‖.

It follows from Lemma 2.1 that T has a fixed point u∗ ∈ Ka,b, i.e.,
Problem (2.1) has a solution u∗ ≥ 0 with a ≤ ‖u∗‖ ≤ b. Let x∗(t) =	1
0K(t, s)u∗(s) ds. Then x∗ is a positive solution of Problem (1.1).



18 Y. Q. Feng and X. C. Ding

By Theorem 3.1, we can give the following multiplicity result:

Corollary 3.2. Assume there exist n + 1 positive numbers 0 < a1

< · · · < an+1 such that either

(i) F (α2k−1) < αa2k−1 and H(α2k) > βa2k, k = 1, . . . , [(n+ 1)/2], or
(ii) F (α2k) < αa2k and H(α2k−1) > βa2k−1, k = 1, . . . , [(n+ 1)/2].

Here [λ] denotes the integer part of λ ∈ R. Then Problem (1.1) has at least
n positive solutions x1, . . . , xn, which satisfy

ak < ‖x′′k‖ < ak+1, k = 1, . . . , n.

Proof. Suppose case (i) holds. Since F,H : (0,∞)→ [0,∞) are continu-
ous, for every pair (αk, αk+1) there exists a par (bk, ck) such that αk < bk <
ck < αk+1 and

F (b2k−1) ≤ b2k−1α, H(c2k−1) ≥ c2k−1β, k = 1, . . . , [(n+ 1)/2],
H(b2k) ≥ b2kβ, F (c2k) ≤ c2kα, k = 1, . . . , [(n+ 1)/2].

According to Theorem 3.1, every pair (bk, ck) gives a positive solution x of
Problem (1.1) such that

bk < ‖x′′‖ < ck, k = 1, . . . , n.

When case (ii) holds, the proof is similar.

Corollary 3.3. Assume there exists a > 0 such that either

(i) F (a) < aα, or
(ii) H(a) > aβ.

Then T has no fixed point u ∈ K satisfying ‖u‖ = a.

Proof. Suppose case (i) holds.
On the contrary, assume that x ∈ K is such that ‖x‖ = a and Tx = x.

Then

a = ‖Tx‖ = max
0≤t≤1

ζ2�

ζ1

G(t, s)f
(
s,

1�

0

K(s, τ)x(τ) dτ,−x(s)
)
ds

≤
ζ2�

ζ1

G(s, s)f
(
s,

1�

0

K(s, τ)x(τ) dτ,−x(s)
)
ds

≤
ζ2�

ζ1

G(s, s)F (a) ds < aα

ζ2�

ζ1

G(s, s) ds = a,

a contradiction.
Case (ii) is handled similarly.

By Corollary 3.3 and Lemma 2.4, we have the following nonexistence
result.
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Theorem 3.4. If

sup
l>0

F (l)
l

< α or inf
l>0

H(l)
l

> β,

then Problem (1.1) has no positive solution.

4. Limit case. Let

H0 = lim
l→0+

H(l)
l
, H∞ = lim

l→∞

H(l)
l
, F0 = lim

l→0+

F (l)
l
, F∞ = lim

l→∞

F (l)
l
.

The following existence and multiplicity results in the limit case follow di-
rectly from Theorem 3.1.

Corollary 4.1. Assume that either

(1) F0 < α, H∞ > β, or
(2) F∞ < α, H0 > β.

Then Problem (1.1) has at least one positive solution.

Corollary 4.2. Let a > 0 be a constant. Assume that either

(1) F0 < α, F∞ < α, H(a) > aβ, or
(2) F (a) < aα, H0 > β, H∞ > β.

Then Problem (1.1) has at least two positive solutions x1, x2 satisfying

0 < ‖x′′1‖ < a < ‖x′′2‖.

5. Examples and remarks. In this section, we present some examples
to illustrate the applications of our results.

Let a = b = c = d = 1, ζ1 = 1
4 , ζ2 = 3

4 . Then −aζ1 + b = 3
4 > 0,

c(ζ2 − 1) + d = 3
4 > 0, Υ = 5

2 , η1 = 3
8 , η2 = 5

8 ,

G(t, s) =

{
2
5

(
3
4 + s

)(
7
4 − t

)
, s ≤ t ≤ 1, 1

4 ≤ s ≤
3
4 ,

2
5

(
3
4 + t

)(
7
4 − s

)
, 0 ≤ t ≤ s, 1

4 ≤ s ≤
3
4 .

Hence

max
0≤t≤1

ζ2�

ζ1

G(t, s) ds =
9
32
, min

0≤t≤1

ζ2�

ζ1

G(t, s) ds =
5
32
,

and α = 240
74 , β = 7680

299 , γ1 = 3
256 , γ2 = 3

512 .

Example 5.1. Let f(t, u, v) = te−u − 160v
v2+1

. Then f : [0, 1] × [0,∞) ×
(−∞, 0]→ [0,∞) is continuous and there exist positive numbers l1 = 1 and
l2 = 160 such that

H(l1) > βl1, F (l2) < αl2.



20 Y. Q. Feng and X. C. Ding

Theorem 3.1 implies that the boundary value problem
u(4)(t) = te−u(t) − 160u′′(t)

(u′′(t))2 + 1
, t ∈ [0, 1],

u(0) = u(1) = 0,

u′′
(

1
4

)
− u′′′

(
1
4

)
= 0, u′′

(
3
4

)
+ u′′′

(
3
4

)
= 0,

has at least one positive solution.

Remark 5.2. (1) It is easy to check that when f is either sublinear, i.e.

min f0 = lim
−v→0+

min
t∈[0,1]

inf
u∈[0,∞)

f(t, u, v)
−v

=∞,

max f∞ = lim
−v→∞

max
t∈[0,1]

sup
u∈[0,∞)

f(t, u, v)
−v

= 0,

or superlinear, i.e.

max f0 = lim
−v→0+

max
t∈[0,1]

sup
u∈[0,∞)

f(t, u, v)
−v

= 0,

min f∞ = lim
−v→∞

min
t∈[0,1]

inf
u∈[0,∞)

f(t, u, v)
−v

=∞,

as defined in [10], there always exist distinct positive numbers a, b such that
F (a) ≤ aα and H(b) ≥ bβ. Hence by Theorem 3.1, Problem (1.1) has at
least one positive solution.

(2) In Example 5.1, we can see that

min f0 = 160, max f∞ = 0, max f0 =∞, min f∞ = 0,

i.e. f is neither sublinear nor superlinear. Thus the conditions of Theores 3.1
or 3.2 in [10] do not hold. However, by Theorem 3.1 of this paper, we can
obtain the existence of a positive solution.

Example 5.3. Let f(t, u, v) = te−u + min{v2 − v, 170156}. Then f :
[0, 1] × [0,∞) × (−∞, 0] → [0,∞) is continuous and there exist numbers
l1 = 2, l2 = 412, l3 = 60000 such that

F (l1) < αl1, H(l2) > βl2, F (l3) < αl3.

Corollary 3.2 implies that the problem
u(4)(t) = te−u(t) + min{(u′′(t))2 − u′′(t), 170156}, t ∈ [0, 1],
u(0) = u(1) = 0,
u′′
(

1
4

)
− u′′′

(
1
4

)
= 0, u′′

(
3
4

)
+ u′′′

(
3
4

)
= 0,

has at least two positive solutions.
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Example 5.4. Let f(t, u, v) = tu + v2

1+v2
. Then f : [0, 1] × [0,∞) ×

(−∞, 0]→ [0,∞) is continuous. For l > 0,

0 ≤ F (l) = max
{
f(t, u, v)

∣∣ (t, u, v) ∈
[

1
4 ,

3
4

]
×
[

3
512 l,

1
8 l
]
× [−l, 0]

}
≤ 19

32 l.

Then

sup
l>0

F (l)
l
≤ 19

32
< α.

Hence an application of Theorem 3.4 shows that the problem
u(4)(t) = tu(t) +

(u′′(t))2

1 + (u′′(t))2
, t ∈ [0, 1],

u(0) = u(1) = 0,
u′′
(

1
4

)
− u′′′

(
1
4

)
= 0, u′′

(
3
4

)
+ u′′′

(
3
4

)
= 0,

has no positive solution.
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